Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Mini-Review Article

Antiviral Medications: Unravelling their Significance in Context to COVID-19

Author(s): Rishabh Chalotra, Amanjot Singh, Shivani Chib, Swati Gautam, Muhammed Amanat, Kakul Chaudhary, Manish Kumar* and Randhir Singh*

Volume 5, Issue 4, 2024

Published on: 24 January, 2024

Article ID: e240124226147 Pages: 11

DOI: 10.2174/0126667975280977231224175043

Price: $65

Abstract

Viruses represent a significant health menace due to their rapid transmissibility and potential to cause worldwide pandemics, resulting in substantial loss of human life. Antiviral agents play a pivotal role in mitigating the impact of viral infections. Nonetheless, treating viral infections is a multifaceted process due to the inherent characteristics of viruses, such as their capacity to undergo mutations and rapid evolution. Consequently, the effectiveness of current antiviral therapies can be impeded. This review encompasses the diverse manners in which viruses, emphasizing COVID-19, affect the human body and elucidates the challenges encountered in formulating efficacious antiviral treatments. Moreover, the limitations of conventional antiviral therapies are underscored. Additionally, a comprehensive compendium of 41 antiviral drugs is presented, detailing their mechanisms of action and routes of administration. Subsequently, the discussion includes 9 drugs repurposed for treating COVID-19, delineating their primary use as well as any accompanying side effects. In conclusion, while antiviral drugs remain pivotal in the battle against viral infections, the obstacles associated with their development and usage warrant careful consideration. Ongoing research is imperative to devise more potent and less toxic antiviral interventions against COVID-19 infection.

Keywords: COVID-19, antiviral drugs, repurposing, nanotechnology, virus, JN.1.

Graphical Abstract
[1]
Gurunathan S, Qasim M, Choi Y, et al. Antiviral potential of nanoparticles-Can nanoparticles fight against coronaviruses? Nanomaterials 2020; 10(9): 1645.
[http://dx.doi.org/10.3390/nano10091645] [PMID: 32825737]
[2]
Dube A. Nanomedicines for infectious diseases. Springer 2019.
[http://dx.doi.org/10.1007/s11095-019-2603-x]
[3]
Qasim M, Lim DJ, Park H, Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol 2014; 14(10): 7374-87.
[http://dx.doi.org/10.1166/jnn.2014.9578] [PMID: 25942798]
[4]
Zhou P. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[5]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2095-128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[7]
Scott LJ, Perry CM. Delavirdine. Drugs 2000; 60(6): 1411-44.
[http://dx.doi.org/10.2165/00003495-200060060-00013] [PMID: 11152019]
[8]
Vrouenraets SME, Wit FWNM, Tongeren J, Lange JMA. Efavirenz: A review. Expert Opin Pharmacother 2007; 8(6): 851-71.
[http://dx.doi.org/10.1517/14656566.8.6.851] [PMID: 17425480]
[9]
Pai A, Pai GK, Muddukrishna B. Preparation, solid state characterization of etraverine Co-Crystals with improved solubility. Lat Am J Pharm 2017; 36(5): 972-9.
[10]
Mirochnick M, Clarke DF, Dorenbaum A. Nevirapine. Clin Pharmacokinet 2000; 39(4): 281-93.
[http://dx.doi.org/10.2165/00003088-200039040-00004] [PMID: 11069214]
[11]
Goldsmith DR, Perry CM. Atazanavir. Drugs 2003; 63(16): 1679-93.
[http://dx.doi.org/10.2165/00003495-200363160-00003] [PMID: 12904086]
[12]
Rizza SA. Boceprevir. Drugs Today 2011; 47(10): 743-51.
[13]
McKeage K, Perry CM, Keam SJ. Darunavir. Drugs 2009; 69(4): 477-503.
[http://dx.doi.org/10.2165/00003495-200969040-00007] [PMID: 19323590]
[14]
Hsu A, Granneman GR, Bertz RJ. Ritonavir. Clin Pharmacokinet 1998; 35(4): 275-91.
[http://dx.doi.org/10.2165/00003088-199835040-00002] [PMID: 9812178]
[15]
González de Requena D, Blanco F, Garcia-Benayas T, Jiménez-Nácher I, González-Lahoz J, Soriano V. Correlation between lopinavir plasma levels and lipid abnormalities in patients taking lopinavir/ritonavir. AIDS Patient Care STDS 2003; 17(9): 443-5.
[http://dx.doi.org/10.1089/108729103322395465] [PMID: 14588081]
[16]
Plosker GL, Noble S. Indinavir. Drugs 1999; 58(6): 1165-203.
[http://dx.doi.org/10.2165/00003495-199958060-00011] [PMID: 10651394]
[17]
Bardsley-Elliot A, Plosker GL. Nelfinavir. Drugs 2000; 59(3): 581-620.
[http://dx.doi.org/10.2165/00003495-200059030-00014] [PMID: 10776836]
[18]
Zeuzem S, Andreone P, Pol S, et al. Telaprevir for retreatment of HCV infection. N Engl J Med 2011; 364(25): 2417-28.
[http://dx.doi.org/10.1056/NEJMoa1013086] [PMID: 21696308]
[19]
King JR, Acosta EP. Tipranavir. Clin Pharmacokinet 2006; 45(7): 665-82.
[http://dx.doi.org/10.2165/00003088-200645070-00003] [PMID: 16802849]
[20]
Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 2004; 43(9): 595-612.
[http://dx.doi.org/10.2165/00003088-200443090-00003] [PMID: 15217303]
[21]
Dando TM, Plosker GL. Adefovir dipivoxil. Drugs 2003; 63(20): 2215-34.
[http://dx.doi.org/10.2165/00003495-200363200-00007] [PMID: 14498759]
[22]
Lea AP, Bryson HM. Cidofovir. Drugs 1996; 52(2): 225-30.
[http://dx.doi.org/10.2165/00003495-199652020-00006] [PMID: 8841740]
[23]
Brocato RL, Hooper JW. Progress on the prevention and treatment of hantavirus disease. Viruses 2019; 11(7): 610.
[http://dx.doi.org/10.3390/v11070610] [PMID: 31277410]
[24]
Taylor K, Fritz K, Parmar M. Lamivudine. StatPearls 2020.
[25]
Sungkanuparph S, Manosuth W, Kiertiburanakul S, Piyavong B, Chumpathat N, Chantratita W. Options for a second-line antiretroviral regimen for HIV type 1-infected patients whose initial regimen of a fixed-dose combination of stavudine, lamivudine, and nevirapine fails. Clin Infect Dis 2007; 44(3): 447-52.
[http://dx.doi.org/10.1086/510745] [PMID: 17205457]
[26]
Gao WY, Shirasaka T, Johns DG, Broder S, Mitsuya H. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J Clin Invest 1993; 91(5): 2326-33.
[http://dx.doi.org/10.1172/JCI116463] [PMID: 8387546]
[27]
Winters MA, Shafer RW, Jellinger RA, Mamtora G, Gingeras T, Merigan TC. Human immunodeficiency virus type 1 reverse transcriptase genotype and drug susceptibility changes in infected individuals receiving dideoxyinosine monotherapy for 1 to 2 years. Antimicrob Agents Chemother 1997; 41(4): 757-62.
[http://dx.doi.org/10.1128/AAC.41.4.757] [PMID: 9087484]
[28]
Hodge RAV, Cheng YC. The mode of action of penciclovir. Antivir Chem Chemother 1993; 4(6) (Suppl.): 13-24.
[http://dx.doi.org/10.1177/09563202930040S601]
[29]
Kausar S, Said Khan F, Ishaq Mujeeb URM, et al. A review: Mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol 2021; 35: 20587384211002621.
[http://dx.doi.org/10.1177/20587384211002621] [PMID: 33726557]
[30]
Meyers JD, Wade JC, Mitchell CD, et al. Multicenter collaborative trial of intravenous acyclovir for treatment of mucocutaneous herpes simplex virus infection in the immunocompromised host. Am J Med 1982; 73(1): 229-35.
[http://dx.doi.org/10.1016/0002-9343(82)90097-3] [PMID: 7048914]
[31]
McGavin JK, Goa KL. Ganciclovir. Drugs 2001; 61(8): 1153-83.
[http://dx.doi.org/10.2165/00003495-200161080-00016] [PMID: 11465876]
[32]
Seth AK, Misra A, Umrigar D. Topical liposomal gel of idoxuridine for the treatment of herpes simplex: Pharmaceutical and clinical implications. Pharm Dev Technol 2005; 9(3): 277-89.
[http://dx.doi.org/10.1081/PDT-200031432] [PMID: 15458233]
[33]
Robinson DM, Scott LJ, Plosker GL. Entecavir. Drugs 2006; 66(12): 1605-22.
[http://dx.doi.org/10.2165/00003495-200666120-00009] [PMID: 16956310]
[34]
Le P, Rothberg M. Herpes zoster infection. BMJ 2019; 364: k5095.
[http://dx.doi.org/10.1136/bmj.k5095] [PMID: 30630827]
[35]
Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Trifluridine. Drugs 1982; 23(5): 329-53.
[http://dx.doi.org/10.2165/00003495-198223050-00001] [PMID: 6284470]
[36]
Acosta EP, Fletcher CV. Valacyclovir. Ann Pharmacother 1997; 31(2): 185-91.
[http://dx.doi.org/10.1177/106002809703100211] [PMID: 9034421]
[37]
Wilde MI, Langtry HD. Zidovudine. Drugs 1993; 46(3): 515-78.
[http://dx.doi.org/10.2165/00003495-199346030-00010] [PMID: 7693435]
[38]
Dunn CJ, Goa KL. Zanamivir. Drugs 1999; 58(4): 761-84.
[http://dx.doi.org/10.2165/00003495-199958040-00016] [PMID: 10551442]
[39]
McClellan K, Perry CM. Oseltamivir. Drugs 2001; 61(2): 263-83.
[http://dx.doi.org/10.2165/00003495-200161020-00011] [PMID: 11270942]
[40]
Geary RS, Henry SP, Grillone LR. Fomivirsen. Clin Pharmacokinet 2002; 41(4): 255-60.
[http://dx.doi.org/10.2165/00003088-200241040-00002] [PMID: 11978144]
[41]
Bergmann M, Beer R, Kofler M, Helbok R, Pfausler B, Schmutzhard E. Acyclovir resistance in herpes simplex virus type I encephalitis: A case report. J Neurovirol 2017; 23(2): 335-7.
[http://dx.doi.org/10.1007/s13365-016-0489-5] [PMID: 27787806]
[42]
Tembhurne SJ, Nirwan KR, Lade UB. A comperhensive on anti viral drug used in the skin infection 2021.
[43]
Croxtall JD, Lyseng-Williamson KA, Perry CM. Raltegravir. Drugs 2008; 68(1): 131-8.
[http://dx.doi.org/10.2165/00003495-200868010-00009] [PMID: 18081377]
[44]
Ramanathan S, Mathias AA, German P, Kearney BP. Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet 2011; 50(4): 229-44.
[http://dx.doi.org/10.2165/11584570-000000000-00000] [PMID: 21348537]
[45]
Holmes EC, Hurt AC, Dobbie Z, Clinch B, Oxford JS, Piedra PA. Understanding the impact of resistance to influenza antivirals. Clin Microbiol Rev 2021; 34(2): e00224-20.
[http://dx.doi.org/10.1128/CMR.00224-20] [PMID: 33568554]
[46]
Gavrilova NS, Gavrilov LA. Patterns of mortality during pandemic: An example of Spanish flu pandemic of 1918. Popul Econ 2020; 4(2): 56-64.
[http://dx.doi.org/10.3897/popecon.4.e53492]
[47]
Chalotra R, Gupta T, Chib S, Amanat M, Kumar P, Singh R. Treatment of diabetic complications: Do flavonoids holds the keys? Crit Rev Food Sci Nutr 2023; 1-22.
[http://dx.doi.org/10.1080/10408398.2023.2232868] [PMID: 37435788]
[48]
Pardo J, Shukla AM, Chamarthi G, Gupte A. The journey of remdesivir: From Ebola to COVID-19. Drugs Context 2020; 9: 1-9.
[http://dx.doi.org/10.7573/dic.2020-4-14] [PMID: 32547625]
[49]
Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021; 384(8): 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[50]
Akhtar J, Shukla D. Viral entry mechanisms: Cellular and viral mediators of herpes simplex virus entry. FEBS J 2009; 276(24): 7228-36.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07402.x] [PMID: 19878306]
[51]
Milovanovic M. Nanoparticles in antiviral therapy. In: Antimicrobial nanoarchitectonics. Elsevier 2017; pp. 383-410.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00014-8]
[52]
Institute NHGR. National Human Genome Research Institute, genome.gov. Online 2022.
[53]
Filip R, Gheorghita Puscaselu R, Anchidin-Norocel L, Dimian M, Savage WK. Global challenges to public health care systems during the COVID-19 pandemic: A review of pandemic measures and problems. J Pers Med 2022; 12(8): 1295.
[http://dx.doi.org/10.3390/jpm12081295] [PMID: 36013244]
[54]
Chaudhary R, Chalotra R, Singh R. Sources and occurrence of pharmaceuticals residue in the aquatic environment. In: Pharmaceuticals in Aquatic Environments. 13-29.
[http://dx.doi.org/10.1201/9781003361091-2]
[55]
Organization WH. Naming the coronavirus disease (COVID-19) and the virus that causes it. Brazi J Implantol Health Sci 2020; 2(3)
[56]
Tyrrell DAJ, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet 1966; 287(7428): 76-7.
[http://dx.doi.org/10.1016/S0140-6736(66)92364-6] [PMID: 4158999]
[57]
Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health 2020; 25(3): 278-80.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[58]
WHO Tracking SARS-CoV-2 variants. 2022. Available from: https://who.int/activities/tracking-SARS-CoV-2-variants
[59]
Looi MK. Covid-19: WHO adds JN. 1 as new variant of interest
[60]
Ramandeep Kaur RC. Research and development in pharmaceutical science. Bhumi Publishing 2021.
[61]
Chalotra R, Dhanawat M, Maivagna CH, Gupta S. Traditional drugs originating from selected medicinal plants: An intervention for anaemia. Curr Tradit Med 2023; 9(6): e050123212400.
[http://dx.doi.org/10.2174/2215083809666230105161143]
[62]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[63]
Svanström H, Pasternak B, Hviid A. Use of azithromycin and death from cardiovascular causes. N Engl J Med 2013; 368(18): 1704-12.
[http://dx.doi.org/10.1056/NEJMoa1300799] [PMID: 23635050]
[64]
Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med 2020; 383(6): 517-25.
[http://dx.doi.org/10.1056/NEJMoa2016638] [PMID: 32492293]
[65]
Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 1996; 31(4): 257-74.
[http://dx.doi.org/10.2165/00003088-199631040-00003] [PMID: 8896943]
[66]
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6(2): 67-9.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[67]
Stein M, Bell MJ, Ang L-C. Hydroxychloroquine neuromyotoxicity. J Rheumatol 2000; 27(12): 2927-31.
[PMID: 11128688]
[68]
Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J 2020; 96(1139): 550-5.
[http://dx.doi.org/10.1136/postgradmedj-2020-137785] [PMID: 32295814]
[69]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[70]
Cvetkovic RS, Goa KL. Lopinavir/Ritonavir. Drugs 2003; 63(8): 769-802.
[http://dx.doi.org/10.2165/00003495-200363080-00004] [PMID: 12662125]
[71]
Şi̇mşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci 2020; 50(SI-1): 611-9.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[72]
Fox LM, Saravolatz LD. Nitazoxanide: A new thiazolide antiparasitic agent. Clin Infect Dis 2005; 40(8): 1173-80.
[http://dx.doi.org/10.1086/428839] [PMID: 15791519]
[73]
Abaza H, El-Zayadi AR, Kabil SM, Rizk H. Nitazoxanide in the treatment of patients with intestinal protozoan and helminthic infections: A report on 546 patients in egypt. Curr Ther Res Clin Exp 1998; 59(2): 116-21.
[http://dx.doi.org/10.1016/S0011-393X(98)85006-6]
[74]
Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016; 9(3): 227-30.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[75]
Al-kuraishy HM, Batiha GES, Faidah H, Al-Gareeb AI, Saad HM, Simal-Gandara J. Pirfenidone and post-COVID-19 pulmonary fibrosis: Invoked again for realistic goals. Inflammopharmacology 2022; 30(6): 2017-26.
[http://dx.doi.org/10.1007/s10787-022-01027-6] [PMID: 36044102]
[76]
Carter NJ. Pirfenidone. Drugs 2011; 71(13): 1721-32.
[http://dx.doi.org/10.2165/11207710-000000000-00000] [PMID: 21902295]
[77]
Hanta I, Cilli A, Sevinc C. The effectiveness, safety, and tolerability of Pirfenidone in idiopathic pulmonary fibrosis: A retrospective study. Adv Ther 2019; 36(5): 1126-31.
[http://dx.doi.org/10.1007/s12325-019-00928-3] [PMID: 30900199]
[78]
Mohammad Zadeh N, Mashinchi Asl NS, Forouharnejad K, et al. Mechanism and adverse effects of COVID-19 drugs: A basic review. Int J Physiol Pathophysiol Pharmacol 2021; 13(4): 102-9.
[PMID: 34540130]
[79]
Abbass S, Kamal E, Salama M, et al. Efficacy and safety of sofosbuvir plus daclatasvir or ravidasvir in patients with COVID-19: A randomized controlled trial. J Med Virol 2021; 93(12): 6750-9.
[http://dx.doi.org/10.1002/jmv.27264] [PMID: 34379337]
[80]
Pol S, Bourliere M, Lucier S, et al. Safety and efficacy of daclatasvir-sofosbuvir in HCV genotype 1-mono-infected patients. J Hepatol 2017; 66(1): 39-47.
[http://dx.doi.org/10.1016/j.jhep.2016.08.021] [PMID: 27622858]
[81]
Simmons B, Wentzel H, Mobarak S, et al. Sofosbuvir/daclatasvir regimens for the treatment of COVID-19: an individual patient data meta-analysis. J Antimicrob Chemother 2021; 76(2): 286-91.
[http://dx.doi.org/10.1093/jac/dkaa418] [PMID: 33063117]
[82]
Group RC. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021; 397(10285): 1637-45.
[http://dx.doi.org/10.1016/S0140-6736(21)00676-0] [PMID: 33933206]
[83]
Oldfield V, Dhillon S, Plosker GL. Tocilizumab. Drugs 2009; 69(5): 609-32.
[http://dx.doi.org/10.2165/00003495-200969050-00007] [PMID: 19368420]
[84]
Amanat M. Zingiber roseum Roscoe(Zingiberaceae): Current and future perspective 2023; 100258.
[85]
DeSimone DC. COVID-19 variants: What’s the concern?. 2022. Available from: https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/covid-variant/faq-20505779
[86]
Oshikoya KA. Ogunleye, Lawal, Senbanjo S, Oreagba. Clinically significant interactions between antiretroviral and co-prescribed drugs for HIV-infected children: Profiling and comparison of two drug databases. Ther Clin Risk Manag 2013; 9: 215-21.
[http://dx.doi.org/10.2147/TCRM.S44205] [PMID: 23700368]
[87]
Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 2021; 11(3): 748-87.
[http://dx.doi.org/10.1007/s13346-020-00818-0] [PMID: 32748035]
[88]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[89]
Vyas SP, Subhedar R, Jain S. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J Pharm Pharmacol 2010; 58(3): 321-6.
[http://dx.doi.org/10.1211/jpp.58.3.0005] [PMID: 16536898]
[90]
De Clercq E. Antivirals: Past, present and future. Biochem Pharmacol 2013; 85(6): 727-44.
[http://dx.doi.org/10.1016/j.bcp.2012.12.011] [PMID: 23270991]
[91]
Adalja A, Inglesby T. Broad-spectrum antiviral agents: A crucial pandemic tool. Expert Rev Anti Infect Ther 2019; 17(7): 467-70.
[http://dx.doi.org/10.1080/14787210.2019.1635009] [PMID: 31216912]
[92]
Chauhan S. Current approaches in healing of wounds in diabetes and diabetic foot ulcers. Curr Bioact Compd 2023; 19(3): 104-21.
[93]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[94]
Thangadurai D, Islam S, Adetunji CO. Viral and Antiviral Nanomaterials: Synthesis, Properties, Characterization, and Application. CRC Press 2022.
[95]
Rishabh Chalotra MD. Samrat chauhan, somdutt mujwar, sumeet gupta, evaluation of iris kashmiriana baker plant extracts against nociception and rheumatoid arthritis in experimental rats: A concept proof by in silico model. J Ethnopharmacol 2023.
[96]
Chalotra R, Dhanawat M, Maqbool M, Lamba N, Bibi A, Gupta S. Phytochemistry and pharmacology of iris kashmiriana. Pharmacognosy Res 2022; 14(4): 350-5.
[http://dx.doi.org/10.5530/pres.14.4.52]
[97]
Xu K, Liang ZC, Ding X, et al. Nanomaterials in the prevention, diagnosis, and treatment of mycobacterium tuberculosis infections. Adv Healthc Mater 2018; 7(1): 1700509.
[http://dx.doi.org/10.1002/adhm.201700509] [PMID: 28941042]
[98]
Amini Pouya M, Afshani SM, Maghsoudi AS, Hassani S, Mirnia K. Classification of the present pharmaceutical agents based on the possible effective mechanism on the COVID-19 infection. Daru 2020; 28(2): 745-64.
[http://dx.doi.org/10.1007/s40199-020-00359-4] [PMID: 32734518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy