Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Glucose-Water Synergy: An Organocatalytic System Driven synthesis of Benzimidazolo[2,3-b]quinazolinone and Benzothiazolo[2,3-b]quinazolinone Derivatives

Author(s): Jyoti Baranwal, Swastika Singh, Smriti Kushwaha and Archana Jyoti*

Volume 11, Issue 3, 2024

Published on: 24 January, 2024

Page: [205 - 213] Pages: 9

DOI: 10.2174/0122133372274183231218063119

Price: $65

conference banner
Abstract

Introduction: A simple and efficient one-pot synthesis of quinazolinone derivatives has been developed via a multicomponent reaction (MCR) involving the condensation of dimedone, benzaldehyde, and 2-aminobenzimidazole/2-aminobenzothiazole.

Method: In this work, glucose water is used as a green, reusable, environmentally benign organocatalytic solvent system to synthesize desired products.

Result: The main benefits of this one-pot method include its excellent yields, less time, cost-effectiveness, atom economy, environment benign, and easy workup.

Conclusion: In conclusion, we successfully developed a green protocol for the environmentally benign synthesis of benzimidazo/benzothiazolo quinazolinones using glucose water as an organocatalytic medium.

Keywords: Benzimidazolo[2, 3-b]quinazolinone, benzothiazolo[ 2, 3 - b ]quinazolinone, green organocatalytic system, heterocyclic compounds, glucose-water synergy, multicomponent reaction (MCR).

Graphical Abstract
Animated Abstract
[1]
Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in inert c–h bond functionalization. Chem. Rev., 2017, 117(13), 9433-9520.
[http://dx.doi.org/10.1021/acs.chemrev.6b00657] [PMID: 28697602]
[2]
(a) Bukhryakov, K.V.; Desyatkin, V.G.; Rodionov, V.O. Cooperative organocatalysis of Mukaiyama-type aldol reactions by thioureas and nitro compounds. ChemComm., 2016, 52(48), 7576-7579.;
(b) Maltsev, O.V.; Chizhov, A.O.; Zlotin, S.G. Chiral ionic liquid/ESI-MS methodology as an efficient tool for the study of transformations of supported organocatalysts: Deactivation pathways of Jørgensen-Hayashi-type catalysts in asymmetric Michael reactions. Chemistry, 2011, 17(22), 6109-6117.
[http://dx.doi.org/10.1002/chem.201100388] [PMID: 21557357];
(c) Buckley, B.R.; Neary, S.P. Annual Reports. Sect. B: Org. Chem., 2010, 106, 120-135.;
(d) Bertelsen, S.; Jørgensen, K.A. Organocatalysis—after the gold rush. Chem. Soc. Rev., 2009, 38(8), 2178-2189.
[http://dx.doi.org/10.1039/b903816g] [PMID: 19623342];
(e) MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
[http://dx.doi.org/10.1038/nature07367] [PMID: 18800128];
(f) Brahmachari, G. In Green synthetic approaches for biologically relevant heterocycles; Elsevier, 2015, pp. 185-208.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00008-6]
[3]
Ferré, M.; Pleixats, R.; Wong Chi Man, M.; Cattoën, X. Recyclable organocatalysts based on hybrid silicas. Green Chem., 2016, 18(4), 881-922.
[http://dx.doi.org/10.1039/C5GC02579F]
[4]
(a) Kim, S.M.; Kim, Y.S.; Kim, D.W.; Rios, R.; Yang, J.W. Acetaldehyde: A small organic molecule with big impact on organocatalytic reactions. Chemistry, 2016, 22(7), 2214-2234.
[http://dx.doi.org/10.1002/chem.201503960] [PMID: 26667963];
(b) Upadhyay, P.; Srivastava, V. Proline based organocatalysis: Supported and unsupported approach. Curr. Organocatal., 2016, 3(3), 243-269.
[http://dx.doi.org/10.2174/2213337202666150812230640];
(c) Lin, B.; Waymouth, R.M. Urea anions: Simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc., 2017, 139(4), 1645-1652.
[http://dx.doi.org/10.1021/jacs.6b11864] [PMID: 28105810];
(d) Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-Amino-3-cyano-4 H -pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2(3), 411-422.
[http://dx.doi.org/10.1021/sc400312n];
(e) Jovanovic, P.; Petkovic, M.; Simic, M.; Ivkovic, B.; Savic, V. A novel thiourea type organocatalyst possessing a single NH functionality. Org. Biomol. Chem., 2016, 14(28), 6712-6719.
[http://dx.doi.org/10.1039/C6OB00387G] [PMID: 27314255];
(f) Verma, S.; Kumar, S.; Jain, S.L.; Sain, B. Thiourea dioxide promoted efficient organocatalytic one-pot synthesis of a library of novel heterocyclic compounds. Org. Biomol. Chem., 2011, 9(20), 6943-6948.
[http://dx.doi.org/10.1039/c1ob05818e] [PMID: 21881671];
(g) Verma, S.; Jain, S.L.; Sain, B.; Sain, B. PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4-dihydropyrimidinones. Tetrahedron Lett., 2010, 51(52), 6897-6900.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.124]
[5]
Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Singh, M.; Singh, J.; Singh, J. Bioorganopromoted green Friedländer synthesis: A versatile new malic acid promoted solvent free approach to multisubstituted quinolines. New J. Chem., 2017, 41(4), 1618-1624.
[http://dx.doi.org/10.1039/C6NJ03907C]
[6]
Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Dixit, P.; Singh, J.; Singh, J. A practical green approach to diversified spirochromene/spiropyran scaffolds via a glucose–water synergy driven organocatalytic system. New J. Chem., 2018, 42(21), 17279-17290.
[http://dx.doi.org/10.1039/C8NJ03028F]
[7]
Guo, X.; Hu, W. Novel multicomponent reactions via trapping of protic onium ylides with electrophiles. Acc. Chem. Res., 2013, 46(11), 2427-2440.
[http://dx.doi.org/10.1021/ar300340k] [PMID: 24246000]
[8]
(a) Witt, A.; Bergman, J. Recent developments in the field of quinazoline chemistry. Curr. Org. Chem., 2003, 7, 659-677.
[http://dx.doi.org/10.2174/1385272033486738];
(b) Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron, 2005, 61(43), 10153-10202.
[http://dx.doi.org/10.1016/j.tet.2005.07.010];
(c) Mohanta, P.P.; Pati, H.N.; Behera, A.K. The construction of fluorophoric thiazolo-[2,3- b ]quinazolinone derivatives: A multicomponent domino synthetic approach. RSC Adv., 2020, 10(26), 15354-15359.
[http://dx.doi.org/10.1039/D0RA01066A] [PMID: 35495457];
(d) Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 2002, 19(6), 742-760.
[http://dx.doi.org/10.1039/b104971m] [PMID: 12521267];
(e) Michael, J.P. Quinoline, quinazoline and acridone alkaloids.. Nat. Prod. Rep., 2003, 20, 476-493.
[http://dx.doi.org/10.1039/b208140g] [PMID: 14620843]
[9]
Grasso, S.; Micale, N.; Monforte, A.M.; Monforte, P.; Polimeni, S.; Zappalà, M. Synthesis and in vitro antitumour activity evaluation of 1-aryl-1H,3H-thiazolo[4,3-b]quinazolines. Eur. J. Med. Chem., 2000, 35(12), 1115-1119.
[http://dx.doi.org/10.1016/S0223-5234(00)01195-8] [PMID: 11248410]
[10]
(a) Testard, A.; Picot, L.; Lozach, O.; Blairvacq, M.; Meijer, L.; Murillo, L.; Piot, J.M.; Thiéry, V.; Besson, T. Synthesis and evaluation of the antiproliferative activity of novel thiazoloquinazolinone kinases inhibitors. J. Enzyme Inhib. Med. Chem., 2005, 20(6), 557-568.
[http://dx.doi.org/10.1080/14756360500212399];
(b) Shaabani, A.; Farhangi, E.; Shaabani, S. A rapid combinatorial library synthesis of benzazolo[2,1-b]quinazolinones and Triazolo[2,1-b]quinazolinones. Iran. J. Chem. Chem. Eng., 2013, 32(1), 3-10.
[11]
Van Zandt, M.C.; Jones, M.L.; Gunn, D.E.; Geraci, L.S.; Jones, J.H.; Sawicki, D.R.; Sredy, J.; Jacot, J.L.; DiCioccio, A.T.; Petrova, T.; Mitschler, A.; Podjarny, A.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem., 2005, 48(9), 3141-3152.
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[12]
Henriksen, G.; Yousefi, B.H.; Drzezga, A.; Wester, H.J. Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(S1), 75-81.
[http://dx.doi.org/10.1007/s00259-007-0705-x]
[13]
Yoshida, M.; Hayakawa, I.; Hayashi, N.; Agatsuma, T.; Oda, Y.; Tanzawa, F.; Iwasaki, S.; Koyama, K.; Furukawa, H.; Kurakata, S.; Sugano, Y. Synthesis and biological evaluation of benzothiazole derivatives as potent antitumor agents. Bioorg. Med. Chem. Lett., 2005, 15(14), 3328-3332.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.077] [PMID: 15955697]
[14]
(a) Kamali, F.; Shirini, F. Introduction of Fe 3 O 4 @SiO 2 –ZrCl 2 -MNPs for the efficient promotion of some multi-component reactions under solvent-free conditions. New J. Chem., 2017, 41(20), 11778-11791.
[http://dx.doi.org/10.1039/C7NJ01863K];
(b) Maleki, A.; Aghaei, M. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell. Ultrason. Sonochem., 2017, 38, 585-589.
[http://dx.doi.org/10.1016/j.ultsonch.2016.08.024] [PMID: 27545571];
(c) Maleki, A.; Rahimi, J. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. J. Porous Mater., 2018, 25(6), 1789-1796.
[http://dx.doi.org/10.1007/s10934-018-0592-5];
(d) Gajaganti, S.; Kumari, S.; Kumar, D.; Allam, B.K.; Srivastava, V.; Singh, S. An efficient, green, and solvent‐free multi‐component synthesis of benzimidazolo/benzothiazolo quinazolinone derivatives using Sc (OTf) 3 catalyst under controlled microwave irradiation. J. Heterocycl. Chem., 2018, 55(11), 2578-2584.
[http://dx.doi.org/10.1002/jhet.3314]
[15]
(a) Fekri, L.Z.; Nikpassand, M.; Khakshoor, S.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@ -proline reusable catalyst in aqueous media. J. Organomet. Chem., 2019, 894, 18-27.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.004];
(b) Jiang, L.; Druzhinin, Z. Preparation, characterization, and use of novel Cu@Fe 3 O 4 MNPs in the synthesis of tetrahydrobenzimidazo[2,1- b ]quinazolin-1(2 H )-ones and 2 H -indazolo[2,1- b ]phthalazine-triones under solvent-free conditions. RSC Advances, 2019, 9(26), 15061-15072.
[http://dx.doi.org/10.1039/C9RA01509D] [PMID: 35516299];
(c) Karimi, M.; Naimi-Jamal, M.R. Carboxymethyl cellulose as a green and biodegradable catalyst for the solvent-free synthesis of benzimidazoloquinazolinone derivatives. J. Saudi Chem. Soc., 2019, 23(2), 182-187.
[http://dx.doi.org/10.1016/j.jscs.2018.06.007];
(d) Daraie, M.; Mirsafaei, R.; Heravi, M.M. Acid-functionalized mesoporous silicate (KIT-5-Pr-SO3H) synthesized as an efficient and nanocatalyst for green multicomponent. Curr. Org. Synth., 2019, 16(1), 145-153.
[http://dx.doi.org/10.2174/1570179415666181005110543] [PMID: 31965928]
[16]
(a) Damghani, F.K.; Pourmousavi, S.A.; Kiyani, H. Sulfonic acid-functionalized magnetic nanoparticles as an efficient catalyst for the synthesis of benzo[4, 5]imidazo[1, 2-a]pyrimidine derivatives, 2-aminobenzothia zolomethylnaphthols and 1-amidoalkyl-2-naphthols. Curr. Org. Synth., 2019, 16(7), 1040-1054.
[http://dx.doi.org/10.2174/1570179416666190725101422] [PMID: 31984885];
(b) Malamiri, F.; Khaksar, S.; Badri, R.; Tahanpesar, E. Solvent-mediated highly efficient synthesis of [1,2,4]triazolo/benzimidazoloquinazolinone derivatives. Curr. Org. Synth., 2020, 16(8), 1185-1190.
[http://dx.doi.org/10.2174/1570179416666191018145142] [PMID: 31984925];
(c) Javanmiri, K.; Karimian, R. Green synthesis of benzimidazoloquinazolines and 1,4-dihydropyridines using magnetic cyanoguanidine-modified chitosan as an efficient heterogeneous nanocatalyst under various conditions. Monatsh. Chem., 2020, 151(2), 199-212.
[http://dx.doi.org/10.1007/s00706-019-02542-z];
(d) Krishnamurthy, G.; Jagannath, K.V. Microwave-assisted silica-promoted solvent-free synthesis of triazoloquinazolinone and benzimidazoquinazolinones. J. Chem. Sci., 2013, 125(4), 807-811.
[http://dx.doi.org/10.1007/s12039-013-0398-6]
[17]
(a) Akbari, A.; Dekamin, M.G.; Yaghoubi, A.; Naimi-Jamal, M.R. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci. Rep., 2020, 10(1), 10646.
[http://dx.doi.org/10.1038/s41598-020-67592-4];
(b) Verma, P.; Pal, S.; Chauhan, S.; Mishra, A.; Sinha, I.; Singh, S.; Srivastava, V. Starch functionalized magnetite nanoparticles: A green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation. J. Mol. Struct., 2020, 1203, 127410.
[http://dx.doi.org/10.1016/j.molstruc.2019.127410];
(c) Kamali, F.; Shirini, F.; Ardaki, M.S. Fe3O4@SiO2-supported ionic liquid as an efficient catalyst for the one-pot synthesis of benzimidazolo- quinazolinone derivatives under solvent-free conditions. Polycycl. Aromat. Compd., 2022, 1-16.
[http://dx.doi.org/10.1080/10406638.2022.2094970];
(d) Wang, Y.; Li, W.; Du, C. One-pot Synthesis of Tetrahydrobenzo[4,5]imidazo[2, 1- b ]quinazolin-1(2 H )-ones Using β -Cyclodextrin-SO 3 H as a biocompatible and recoverable catalyst in water. Org. Prep. Proced. Int., 2022, 54(1), 40-48.
[http://dx.doi.org/10.1080/00304948.2021.1994816];
(e) Throat, V.V.; Katariya, M.V.; Tekale, S.U.; Magar, R.L.; Mashele, S.; Kendrekar, P.S.; Pawar, R.P. Silica supported perchloric acid: An efficient and recyclable catalyst for synthesis of benzimidazolo[2,3-b]quinazolinones. Eur. Chem. Bull., 2019, 8(9), 313-317.
[http://dx.doi.org/10.17628/ecb.2019.8.313-317]
[18]
(a) Dehghan, M.; Davoodnia, A.; Bozorgmehr, M.R.; Bamoharram, F.F. Fast synthesis and antibacterial evaluation of benzimidazo[2,1- b ]quinazolin-1-ones: Another successful application of newly prepared SO 3 H-functionalized ionic liquids as catalysts. Org. Prep. Proced. Int., 2017, 49(3), 236-248.
[http://dx.doi.org/10.1080/00304948.2017.1320905];
(b) Shirini, F.; Seddighi, M.; Goli-Jolodar, O. Facile and efficient synthesis of pyrimido[1,2-a]benzimidazole and tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-one derivatives using Brönsted acidic ionic liquid supported on rice husk ash (RHA-[pmim]HSO4). J. Indian Chem. Soc., 2016, 13(11), 2013-2018.
[http://dx.doi.org/10.1007/s13738-016-0918-7];
(c) Maleki, A.; Aghaei, M.; Ghamari, N. Synthesis of benzimidazolo[2,3- b ]quinazolinone derivatives via a one-pot multicomponent reaction promoted by a chitosan-based composite magnetic nanocatalyst. Chem. Lett., 2015, 44(3), 259-261.
[http://dx.doi.org/10.1246/cl.141074];
(d) Shaabani, A.; Farhangi, E.; Rahmati, A. Synthesis of tetrahydrobenzimidazo[1,2-b]quinazolin-1(2H)-one and Tetrahydro-1,2,4-triazolo[5,1-b]quinazolin-8(4H)-one ring systems under solvent-free conditions. Comb. Chem. High Throughput Screen., 2006, 9(10), 771-776.
[http://dx.doi.org/10.2174/138620706779026060] [PMID: 17168682];
(e) Atar, A.B.; Jeong, Y.S.; Jeong, Y.T. Iron fluoride: The most efficient catalyst for one-pot synthesis of 4H-pyrimido[2,1-b]benzothiazoles under solvent-free conditions. Tetrahedron, 2014, 70(34), 5207-5213.
[http://dx.doi.org/10.1016/j.tet.2014.05.094]
[19]
Sangshetti, J.N.; Lokwani, D.K.; Chouthe, R.S.; Ganure, A.; Raval, B.; Khan, F.A.K.; Shinde, D.B. Green synthesis and biological evaluation of some new benzothiazolo [2,3-b] quinazolin-1-ones as anticancer agents. Med. Chem. Res., 2014, 23(11), 4893-4900.
[http://dx.doi.org/10.1007/s00044-014-1044-7]
[20]
(a) Baranwal, J.; Kushwaha, S.; Singh, S.; Jyoti, A. Synergistic effect of Ethyl lactate/Glycerol: A new route for the synthesis of Hexahydro- 4H-indazol-4-one and its derivatives. Heterocycl. Lett., 2022, 12(3), 621-630.;
(b) Baranwal, J.; Kushwaha, S.; Singh, S.; Jyoti, A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr. Phys. Chem., 2023, 13(1), 2-19.
[http://dx.doi.org/10.2174/1877946813666221021144829];
(c) Baranwal, J.; Singh, S.; Kushwaha, S.; Jyoti, A. Acemannan from aloe vera extract: A catalyst-free, approach for the access of imidazole-fused nitrogen-bridgehead heterocycles. Lett. Org. Chem., 2023, 20(5), 446-456.
[http://dx.doi.org/10.2174/1570178620666221116093457];
(d) Kushwaha, S.; Baranwal, J.; Singh, S.; Jyoti, A. A review on green synthesis of biologically active compounds. Curr. Green Chem., 2022, 9(3), 174-195.
[http://dx.doi.org/10.2174/2213346110666221213092734];
(e) Kushwaha, S.; Baranwal, J.; Singh, S.; Jyoti, A. Synergistic effect of Ethyl lactate/GVL: A new route for the synthesis of Spirooxindole-indazolones and its derivatives. Heterocycl. Lett., 2023, 13(2), 319-329.;
(f) Baranwal, J.; Singh, S.; Kushwaha, S.; Jyoti, A. Stepping into the World of Technology; Research Culture Society and Publication, 2023. ;
(g) Kushwaha, S.; Singh, S.; Baranwal, J.; Jyoti, A. Stepping into the World of Technology; Research Culture Society and Publication, 2023. ;
(h) Kushwaha, S.; Singh, S.; Baranwal, J.; Jyoti, A. Curr. Organocatal., 2023, 10(3), 215-224.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy