Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Tailoring Ti3C2Tx MXene Flake Sizes for Modified Electrochemical Performance: A Top-down Approach

Author(s): Yuchao Fan, Xu Mei, Li Ye*, Qingyong Tian, Renqi Zhang, Yingjiu Zhang and Xinjian Li

Volume 1, 2024

Published on: 24 January, 2024

Article ID: e250124226106 Pages: 10

DOI: 10.2174/0127723348268837231206095532

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Two-dimensional (2D) materials, such as MXene (Ti3C2Tx), have garnered extensive attention in recent years due to their exceptional performance across various domains. The flake size of Ti3C2Tx notably influences its specific surface area, a pivotal factor in interfacial interactions within electrochemistry.

Method: Presently, modifying the flake size of bulk Ti3C2Tx typically involves complex and costly processes, like ultrasonic treatment and isolation. Leveraging the specific preparation principle of MXenes, which involves etching the A layers in precursor MAX phases, a topdown strategy for producing Ti3C2Tx flakes of desired sizes, has been proposed in this work. In this approach, precursor Ti3AlC2 particles undergo ball-milling to adjust their size.

Result: Through this innovative strategy, dispersions of Ti3C2Tx flakes with varying average lateral sizes are generated, enabling an investigation into the impact of lateral size on the electrochemical properties of Ti3C2Tx flakes. By controlling the ball milling time for Ti3AlC2 powders, the resulting average sizes of Ti3C2Tx (0, 2, 4) are 6.34 μm, 2.16 μm, and 0.96 μm, respectively. Particularly, the Ti3C2Tx (2) electrode, composed of 2.16 μm sheets, demonstrates remarkable performance metrics. It exhibits a high areal capacitance of 845.0 mF/cm2 at a scan rate of 5 mV/s, along with a gravimetric capacitance of 244.0 F/g at a current density of 1 A/g.

Conclusion: This study presents a facile method to enable mass production of Ti3C2Tx with sheets of varying sizes, addressing both small and large dimensions.

Keywords: Mxene, Ti3C2Tx, supercapacitors, size, large-scale, ball milling, gravimetric capacitance, hydrophilic surface.

[1]
Wan, S.; Li, X.; Chen, Y.; Liu, N.; Du, Y.; Dou, S.; Jiang, L.; Cheng, Q. High-strength scalable MXene films through bridging-induced densification. Science, 2021, 374(6563), 96-99.
[http://dx.doi.org/10.1126/science.abg2026] [PMID: 34591632]
[2]
Nemani, S.K.; Zhang, B.; Wyatt, B.C.; Hood, Z.D.; Manna, S.; Khaledialidusti, R.; Hong, W.; Sternberg, M.G.; Sankaranarayanan, S.K.R.S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC 3 and TiVCrMoC 3. ACS Nano, 2021, 15(8), 12815-12825.
[http://dx.doi.org/10.1021/acsnano.1c02775] [PMID: 34128649]
[3]
Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, 2(2), 16098.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[4]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37), 4248-4253.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[5]
VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of twodimensional carbides and nitrides (MXenes). Science, 2021, 372(6547), eabf1581.
[http://dx.doi.org/10.1126/science.abf1581]
[6]
Xia, Y.; Mathis, T.S.; Zhao, M.Q.; Anasori, B.; Dang, A.; Zhou, Z.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557(7705), 409-412.
[http://dx.doi.org/10.1038/s41586-018-0109-z] [PMID: 29769673]
[7]
Huang, X.; Wu, P. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater., 2020, 30(12), 1910048.
[http://dx.doi.org/10.1002/adfm.201910048]
[8]
Fan, Y.; Ye, L.; Zhang, R.; Guo, F.; Tian, Q.; Zhang, Y.; Li, X. Effects of 2D Ti3C2TX (Mxene) on mechanical properties of ZK61 alloy. J. Alloys Compd., 2021, 862, 158480.
[http://dx.doi.org/10.1016/j.jallcom.2020.158480]
[9]
Zhou, Y.; Maleski, K.; Anasori, B.; Thostenson, J.O.; Pang, Y.; Feng, Y.; Zeng, K.; Parker, C.B.; Zauscher, S.; Gogotsi, Y.; Glass, J.T.; Cao, C. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano, 2020, 14(3), 3576-3586.
[http://dx.doi.org/10.1021/acsnano.9b10066] [PMID: 32049485]
[10]
Cheng, W.; Fu, J.; Hu, H.; Ho, D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci., 2021, 8(16), 2100775.
[http://dx.doi.org/10.1002/advs.202100775] [PMID: 34137521]
[11]
Wang, X.; Wang, Y.; Jiang, Y.; Li, X.; Liu, Y.; Xiao, H.; Ma, Y.; Huang, Y.; Yuan, G. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries. Adv. Funct. Mater., 2021, 31(35), 2103210.
[http://dx.doi.org/10.1002/adfm.202103210]
[12]
Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater., 2021, 41, 343-353.
[http://dx.doi.org/10.1016/j.ensm.2021.06.019]
[13]
Wu, X.; Tu, T.; Dai, Y.; Tang, P.; Zhang, Y.; Deng, Z.; Li, L.; Zhang, H.B.; Yu, Z.Z. Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett., 2021, 13(1), 148.
[http://dx.doi.org/10.1007/s40820-021-00665-9] [PMID: 34156564]
[14]
Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304), 1137-1140.
[http://dx.doi.org/10.1126/science.aag2421] [PMID: 27609888]
[15]
Du, C.F.; Dinh, K.N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan, Q. Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater., 2018, 8(26), 1801127.
[http://dx.doi.org/10.1002/aenm.201801127]
[16]
Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy, 2018, 44, 181-190.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.003]
[17]
Zhang, Z.; Yan, Q.; Liu, Z.; Zhao, X.; Wang, Z.; Sun, J.; Wang, Z.L.; Wang, R.; Li, L. Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy, 2021, 88, 106257.
[http://dx.doi.org/10.1016/j.nanoen.2021.106257]
[18]
Wang, X.; Zhang, D.; Zhang, H.; Gong, L.; Yang, Y.; Zhao, W.; Yu, S.; Yin, Y.; Sun, D. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator. Nano Energy, 2021, 88, 106242.
[http://dx.doi.org/10.1016/j.nanoen.2021.106242]
[19]
Ye, L.; Fan, Y.; Zhang, R.; Guo, F.; Tian, Q.; Zhang, Y.; Li, X. Interface design of Ti3C2TX/ZK61 composites by thermal reduction. Mater. Sci. Eng. A, 2022, 831, 142142.
[http://dx.doi.org/10.1016/j.msea.2021.142142]
[20]
Zhong, Q.; Li, Y.; Zhang, G. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J., 2021, 409, 128099.
[http://dx.doi.org/10.1016/j.cej.2020.128099]
[21]
Liang, K.; Matsumoto, R.A.; Zhao, W.; Osti, N.C.; Popov, I.; Thapaliya, B.P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M.; Mamontov, E.; Augustyn, V.; Unocic, R.R.; Sokolov, A.P.; Dai, S.; Cummings, P.T.; Naguib, M. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021, 31(33), 2104007.
[http://dx.doi.org/10.1002/adfm.202104007]
[22]
Maleski, K.; Ren, C.E.; Zhao, M.Q.; Anasori, B.; Gogotsi, Y. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces, 2018, 10(29), 24491-24498.
[http://dx.doi.org/10.1021/acsami.8b04662] [PMID: 29956920]
[23]
Yi, M.; Shen, Z.G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem., 2015, 2015, 11700-11715.
[http://dx.doi.org/10.1039/C5TA00252D]
[24]
Malaki, M.; Maleki, A.; Varma, R.S. MXenes and ultrasonication. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(18), 10843-10857.
[http://dx.doi.org/10.1039/C9TA01850F]
[25]
Hu, T.; Wang, J.M.; Zhang, H.; Li, Z.J.; Hu, M.M.; Wang, X.H. Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: A comparative study. Phys. Chem. Chem. Phys., 2015, 17(15), 9997-10003.
[http://dx.doi.org/10.1039/C4CP05666C]
[26]
Sarycheva, A.; Makaryan, T.; Maleski, K.; Satheeshkumar, E.; Melikyan, A.; Minassian, H.; Yoshimura, M.; Gogotsi, Y. Two-dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate. J. Phys. Chem. C, 2017, 121, 19983-19988.
[http://dx.doi.org/10.1021/acs.jpcc.7b08180]
[27]
Gouadec, G.; Colomban, P. Raman spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Ch., 2007, 53, 1-56.
[http://dx.doi.org/10.1016/j.pcrysgrow.2007.01.001]
[28]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29, 7633-7644.
[http://dx.doi.org/10.1021/acs.chemmater.7b02847]
[29]
Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Electronic properties and environmental stability of individual monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater., 2016, 2, 1600255.
[http://dx.doi.org/10.1002/aelm.201600255]
[30]
Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater., 2019, 9(39), 1902007.
[http://dx.doi.org/10.1002/aenm.201902007]
[31]
Huang, Y.L.; Bian, S.W. Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO2 all-in-one supercapacitors. J. Mater. Chem. A, 2021, 9, 21347-21356.
[http://dx.doi.org/10.1039/D1TA06089A]
[32]
Hu, Y.; Wang, L.; Lin, T.; Zhao, N.; Shi, M.; Peng, J.; Li, J.; Shi, W.; Zhai, M. Radiation-induced self-assembly of Ti3C2Tx with improved electrochemical performance for supercapacitor. Adv. Mater. Interfaces, 2020, 7(6), 1901839.
[http://dx.doi.org/10.1002/admi.201901839]
[33]
Liu, J.; Zhang, H.B.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z.Z. Multifunctional, superelastic, and lightweight MXene/Polyimide aerogels. Small, 2018, 14(45), 1802479.
[http://dx.doi.org/10.1002/smll.201802479] [PMID: 30295015]
[34]
Xu, S.; Wei, G.; Li, J.; Han, W.; Gogotsi, Y. Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(33), 17442-17451.
[http://dx.doi.org/10.1039/C7TA05721K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy