Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Review Article

Recent Advances in Therapeutic Approaches Against Ebola Virus Infection

Author(s): Molisha Soni, Kartik Tulsian, Parv Barot and Vivek Kumar Vyas*

Volume 19, Issue 4, 2024

Published on: 24 January, 2024

Page: [276 - 299] Pages: 24

DOI: 10.2174/0127724344267452231206061944

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection.

Objective: EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable.

Methods: In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD).

Discussion: The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine’s success against the virus across the world.

Conclusion: Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.

Keywords: Ebola virus, structure of EBOV, vaccines, drug molecules, antibodies, biologics.

Graphical Abstract
[1]
Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M. Human viruses: Discovery and emergence. Philos Trans R Soc Lond B Biol Sci 2012; 367(1604): 2864-71.
[http://dx.doi.org/10.1098/rstb.2011.0354] [PMID: 22966141]
[2]
Ka D, Fall G, Diallo V, et al. Ebola virus imported from guinea to senegal, 2014. Emerg Infect Dis 2017; 23(6): 1026-8.
[http://dx.doi.org/10.3201/eid2306.161092]
[3]
Rajak H, Jain DK, Singh A, Sharma AK, Dixit A. Ebola virus disease: Past, present and future. Asian Pac J Trop Biomed 2015; 5(5): 337-43.
[http://dx.doi.org/10.1016/S2221-1691(15)30365-8]
[4]
Formenty P, Hatz C, Le Guenno B, Stoll A, Rogenmoser P, Widmer A. Human infection due to Ebola virus, subtype Côte d’Ivoire: Clinical and biologic presentation. J Infect Dis 1999; 179(s1): S48-53.
[http://dx.doi.org/10.1086/514285] [PMID: 9988164]
[5]
Formenty P, Boesch C, Wyers M, et al. Ebola virus outbreak among wild chimpanzees living in a rain forest of Côte d’Ivoire. J Infect Dis 1999; 179(s1): S120-6.
[http://dx.doi.org/10.1086/514296] [PMID: 9988175]
[6]
Muyembe-Tamfum JJ, Mulangu S, Masumu J, Kayembe JM, Kemp A, Paweska JT. Ebola virus outbreaks in Africa: Past and present. Onderstepoort J Vet Res 2012; 79(2): 451.
[http://dx.doi.org/10.4102/ojvr.v79i2.451] [PMID: 23327370]
[7]
Chakraborty C. Therapeutics development for Ebola virus disease: A recent scenario. Curr Opin Pharmacol 2021; 60: 208-15.
[http://dx.doi.org/10.1016/j.coph.2021.07.020] [PMID: 34464933]
[8]
Zawilińska B, Kosz-Vnenchak M. General introduction into the Ebola virus biology and disease. Folia Med Cracov 2014; 54(3): 57-65.
[PMID: 25694096]
[9]
Luthra P, Liang J, Pietzsch CA, et al. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antiviral Res 2018; 150: 193-201.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.019] [PMID: 29294299]
[10]
Batra S, Ochani RK, Diwan MN, et al. Clinical aspects of Ebola virus disease: A review. Infez Med 2020; 28(2): 212-22.
[PMID: 32487785]
[11]
Marcinkiewicz J, Bryniarski K, Nazimek K. Ebola haemorrhagic fever virus: Pathogenesis, immune responses, potential prevention. Folia Med Cracov 2014; 54(3): 39-48.
[PMID: 25694094]
[12]
Matua GA, Van der Wal DM, Locsin RC. Ebola hemorrhagic fever outbreaks: Strategies for effective epidemic management, containment and control. Braz J Infect Dis 2015; 19(3): 308-13.
[http://dx.doi.org/10.1016/j.bjid.2015.02.004] [PMID: 25892315]
[14]
Matua GA, Van der Wal DM, Locsin RC. Ebolavirus and haemorrhagic syndrome. Sultan Qaboos Univ Med J 2015; 15(2): e171-6.
[PMID: 26052448]
[15]
Coltart CEM, Lindsey B, Ghinai I, Johnson AM, Heymann DL. The Ebola outbreak, 2013-2016: Old lessons for new epidemics. Philos Trans R Soc Lond B Biol Sci 2017-2016; 372(1721): 20160297.
[http://dx.doi.org/10.1098/rstb.2016.0297] [PMID: 28396469]
[16]
Burnett MW. Ebola hemorrhagic fever. J SOF Med Prof 2014; 14: 93-4.
[17]
Hartman AL, Towner JS, Nichol ST. Ebola and marburg hemorrhagic fever. Clin Lab Med 2010; 30(1): 161-77.
[http://dx.doi.org/10.1016/j.cll.2009.12.001] [PMID: 20513546]
[18]
Wang Y, Li J, Hu Y, Liang Q, Wei M, Zhu F. Ebola vaccines in clinical trial: The promising candidates. Hum Vaccin Immunother 2017; 13(1): 153-68.
[http://dx.doi.org/10.1080/21645515.2016.1225637] [PMID: 27764560]
[19]
Mwanatambwe M, Yamada N, Arai S, Shimizu M, Shichinohe K, Asano G. Ebola hemorrhagic fever (EHF): Mechanism of transmission and pathog-enicity. J Nippon Med Sch 2001; 68(5): 370-5.
[http://dx.doi.org/10.1272/jnms.68.370] [PMID: 11598619]
[20]
Kwilas AR, Donahue RN, Tsang KY, Hodge JW. Extraction of neonatal rat myocardium. Cancer Cell 2015; 2: 1-17.
[21]
Nicastri E, Kobinger G, Vairo F, et al. Ebola virus disease. Infect Dis Clin North Am 2019; 33(4): 953-76.
[http://dx.doi.org/10.1016/j.idc.2019.08.005] [PMID: 31668200]
[22]
Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: Insights from Ebola virus and Marburg virus. Nat Rev Microbiol 2015; 13(11): 663-76.
[http://dx.doi.org/10.1038/nrmicro3524] [PMID: 26439085]
[23]
Furuyama W, Marzi A. Ebola virus: Pathogenesis and countermeasure development. Annu Rev Virol 2019; 6(1): 435-58.
[http://dx.doi.org/10.1146/annurev-virology-092818-015708] [PMID: 31567063]
[24]
Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011; 377(9768): 849-62.
[http://dx.doi.org/10.1016/S0140-6736(10)60667-8] [PMID: 21084112]
[25]
Arwady MA, Bawo L, Hunter JC, et al. Evolution of ebola virus disease from exotic infection to global health priority, Liberia, mid-2014. Emerg Infect Dis 2015; 21(4): 578-84.
[http://dx.doi.org/10.3201/eid2104.141940] [PMID: 25811176]
[26]
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of ebola virus disease. Annu Rev Pathol 2017; 12(1): 387-418.
[http://dx.doi.org/10.1146/annurev-pathol-052016-100506] [PMID: 27959626]
[27]
Malvy D, McElroy AK, de Clerck H, Günther S, van Griensven J. Ebola virus disease. Lancet 2019; 393(10174): 936-48.
[http://dx.doi.org/10.1016/S0140-6736(18)33132-5] [PMID: 30777297]
[29]
Jacob ST, Crozier I, Fischer WA II, et al. Ebola virus disease. Nat Rev Dis Primers 2020; 6(1): 13.
[http://dx.doi.org/10.1038/s41572-020-0147-3] [PMID: 32080199]
[30]
Kilgore PE, Grabenstein JD, Salim AM, Rybak M. Treatment of ebola virus disease. Pharmacotherapy 2015; 35(1): 43-53.
[http://dx.doi.org/10.1002/phar.1545] [PMID: 25630412]
[31]
Geisbert TW, Hensley LE, Jahrling PB, et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: A study in rhesus monkeys. Lancet 2003; 362(9400): 1953-8.
[http://dx.doi.org/10.1016/S0140-6736(03)15012-X] [PMID: 14683653]
[32]
Rivera A, Messaoudi I. Molecular mechanisms of Ebola pathogenesis. J Leukoc Biol 2016; 100(5): 889-904.
[http://dx.doi.org/10.1189/jlb.4RI0316-099RR] [PMID: 27587404]
[33]
Goeijenbier M, van Kampen JJA, Reusken CBEM, Koopmans MPG, van Gorp ECM. Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis. Neth J Med 2014; 72(9): 442-8.
[PMID: 25387613]
[34]
Maganga GD, Kapetshi J, Berthet N, et al. Ebola virus disease in the democratic republic of Congo. N Engl J Med 2014; 371(22): 2083-91.
[http://dx.doi.org/10.1056/NEJMoa1411099] [PMID: 25317743]
[35]
Licata JM, Johnson RF, Han Z, Harty RN. Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 2004; 78(14): 7344-51.
[http://dx.doi.org/10.1128/JVI.78.14.7344-7351.2004] [PMID: 15220407]
[36]
Rojas M, Monsalve DM, Pacheco Y, et al. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2020; 106: 102375.
[http://dx.doi.org/10.1016/j.jaut.2019.102375] [PMID: 31806422]
[37]
Gałas A. The evolution of Ebola virus disease outbreaks. Folia Med Cracov 2014; 54(3): 27-32.
[PMID: 25694092]
[38]
Gałas A. The determinants of spread of Ebola virus disease - An evidence from the past outbreak experiences. Folia Med Cracov 2014; 54(3): 17-25.
[PMID: 25694091]
[39]
Iampietro M, Younan P, Nishida A, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog 2017; 13(5): e1006397.
[http://dx.doi.org/10.1371/journal.ppat.1006397] [PMID: 28542576]
[40]
Versteeg K, Menicucci AR, Woolsey C, et al. Infection with the Makona variant results in a delayed and distinct host immune response compared to previous Ebola virus variants. Sci Rep 2017; 7(1): 9730.
[http://dx.doi.org/10.1038/s41598-017-09963-y] [PMID: 28852031]
[41]
McMullan LK, Flint M, Dyall J, et al. The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus. Antiviral Res 2016; 125: 71-8.
[http://dx.doi.org/10.1016/j.antiviral.2015.10.010] [PMID: 26526586]
[42]
Hartman AL, Ling L, Nichol ST, Hibberd ML. Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 2008; 82(11): 5348-58.
[http://dx.doi.org/10.1128/JVI.00215-08] [PMID: 18353943]
[43]
Messaoudi I, Basler CF. Immunological features underlying viral hemorrhagic fevers. Curr Opin Immunol 2015; 36: 38-46.
[http://dx.doi.org/10.1016/j.coi.2015.06.003] [PMID: 26163194]
[44]
Simpson JC, Joggerst B, Laketa V, et al. Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat Cell Biol 2012; 14(7): 764-74.
[http://dx.doi.org/10.1038/ncb2510] [PMID: 22660414]
[45]
Jankeel A, Menicucci AR, Woolsey C, et al. Early transcriptional changes within liver, adrenal gland, and lymphoid tissues significantly contribute to ebola virus pathogenesis in cynomolgus macaques. J Virol 2020; 94(11): e00250-20.
[http://dx.doi.org/10.1128/JVI.00250-20] [PMID: 32213610]
[46]
Iversen P, Warren T, Wells J, et al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and marburg virus infections. Viruses 2012; 4(11): 2806-30.
[http://dx.doi.org/10.3390/v4112806] [PMID: 23202506]
[47]
Pinski A, Woolsey C, Jankeel A, et al. Transcriptional analysis of lymphoid tissues from infected nonhuman primates reveals the basis for attenuation and immunogenicity of an ebola virus encoding a mutant VP35 protein. J Virol 2021; 95(6): e01995-20.
[http://dx.doi.org/10.1128/JVI.01995-20] [PMID: 33408171]
[48]
Burgt N, Kaletsky R, Bates P. Requirements within the ebola viral glycoprotein for tetherin antagonism. Viruses 2015; 7(10): 5587-602.
[http://dx.doi.org/10.3390/v7102888] [PMID: 26516900]
[49]
Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol 2017; 39(5): 551-61.
[http://dx.doi.org/10.1007/s00281-017-0637-x] [PMID: 28555386]
[50]
Mahanty S, Bray M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 2004; 4(8): 487-98.
[http://dx.doi.org/10.1016/S1473-3099(04)01103-X] [PMID: 15288821]
[51]
Aleksandrowicz P, Wolf K, Falzarano D, Feldmann H, Seebach J, Schnittler H. Viral haemorrhagic fever and vascular alterations. Hamostaseologie 2008; 28(01/02): 77-84.
[http://dx.doi.org/10.1055/s-0037-1616926] [PMID: 18278167]
[52]
Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 2003; 188(11): 1618-29.
[http://dx.doi.org/10.1086/379724] [PMID: 14639531]
[53]
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial cells in emerging viral infections. Front Cardiovasc Med 2021; 8: 619690.
[http://dx.doi.org/10.3389/fcvm.2021.619690] [PMID: 33718448]
[54]
Rowe AK, Bertolli J, Khan AS, et al. Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. Commission de Lutte contre les Epidémies à Kikwit. J Infect Dis 1999; 179(s1): S28-35.
[http://dx.doi.org/10.1086/514318] [PMID: 9988162]
[55]
Gourronc FA, Rebagliati MR, Kramer-Riesberg B, et al. Adipocytes are susceptible to Ebola Virus infection. Virology 2022; 573: 12-22.
[http://dx.doi.org/10.1016/j.virol.2022.05.007] [PMID: 35690007]
[56]
Kaushik A, Tiwari S, Jayant R, Marty A, Nair M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron 2016; 75: 254-72.
[http://dx.doi.org/10.1016/j.bios.2015.08.040] [PMID: 26319169]
[57]
Cross RW, Boisen ML, Millett MM, et al. Analytical validation of the reebov antigen rapid test for point-of-care diagnosis of ebola virus infection. J Infect Dis 2016; 214 (Suppl. 3): S210-7.
[http://dx.doi.org/10.1093/infdis/jiw293] [PMID: 27587634]
[58]
DeMers HL, He S, Pandit SG, et al. Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Negl Trop Dis 2020; 14(11): e0008817.
[http://dx.doi.org/10.1371/journal.pntd.0008817] [PMID: 33141837]
[59]
Dowell SF, Mukunu R, Ksiazek TG, Khan AS, Rollin PE, Peters CJ. Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Epidémies à Kikwit. J Infect Dis 1999; 179(s1): S87-91.
[http://dx.doi.org/10.1086/514284] [PMID: 9988169]
[60]
de La Vega MA, Bello A, Chaillet P, Kobinger GP. Diagnosis and management of Ebola samples in the laboratory. Expert Rev Anti Infect Ther 2016; 14(6): 557-67.
[http://dx.doi.org/10.1080/14787210.2016.1176912] [PMID: 27176909]
[61]
Diakou KI, Mitsis T, Pierouli K, et al. Ebola virus disease and current therapeutic strategies: A review. Adv Exp Med Biol 2021; 1339: 131-7.
[http://dx.doi.org/10.1007/978-3-030-78787-5_18] [PMID: 35023100]
[62]
Martin B, Hoenen T, Canard B, Decroly E. Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135: 1-14.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.001] [PMID: 27640102]
[63]
Jain S, Martynova E, Rizvanov A, Khaiboullina S, Baranwal M. Structural and functional aspects of ebola virus proteins. Pathogens 2021; 10(10): 1330.
[http://dx.doi.org/10.3390/pathogens10101330] [PMID: 34684279]
[64]
Hussein HA. Brief review on ebola virus disease and one health approach. Heliyon 2023; 9(8): e19036.
[http://dx.doi.org/10.1016/j.heliyon.2023.e19036] [PMID: 37600424]
[65]
Mehedi M, Falzarano D, Seebach J, et al. A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J Virol 2011; 85(11): 5406-14.
[http://dx.doi.org/10.1128/JVI.02190-10] [PMID: 21411529]
[66]
Arslan A, van Noort V. Evolutionary conservation of Ebola virus proteins predicts important functions at residue level. Bioinformatics 2017; 33(2): 151-4.
[http://dx.doi.org/10.1093/bioinformatics/btw610] [PMID: 27659453]
[67]
Pavadai E, Bhattarai N, Baral P, Stahelin RV, Chapagain PP, Gerstman BS. Conformational flexibility of the protein-protein interfaces of the ebola virus VP40 structural matrix filament. J Phys Chem B 2019; 123(43): 9045-53.
[http://dx.doi.org/10.1021/acs.jpcb.9b04674] [PMID: 31576755]
[68]
Manicassamy B, Wang J, Jiang H, Rong L. Comprehensive analysis of ebola virus GP1 in viral entry. J Virol 2005; 79(8): 4793-805.
[http://dx.doi.org/10.1128/JVI.79.8.4793-4805.2005] [PMID: 15795265]
[69]
Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc Natl Acad Sci 1999; 96(6): 2662-7.
[http://dx.doi.org/10.1073/pnas.96.6.2662] [PMID: 10077567]
[70]
Kimberlin CR, Bornholdt ZA, Li S, Woods VL Jr, MacRae IJ, Saphire EO. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc Natl Acad Sci 2010; 107(1): 314-9.
[http://dx.doi.org/10.1073/pnas.0910547107] [PMID: 20018665]
[71]
Wang H, Shi Y, Song J, et al. Ebola viral glycoprotein bound to its endosomal receptor niemann-pick C1. Cell 2016; 164(1-2): 258-68.
[http://dx.doi.org/10.1016/j.cell.2015.12.044] [PMID: 26771495]
[72]
Ohimain EI. Recent advances in the development of vaccines for Ebola virus disease. Virus Res 2016; 211: 174-85.
[http://dx.doi.org/10.1016/j.virusres.2015.10.021] [PMID: 26596227]
[73]
Bornholdt ZA, Noda T, Abelson DM, et al. Structural rearrangement of ebola virus VP40 begets multiple functions in the virus life cycle. Cell 2013; 154(4): 763-74.
[http://dx.doi.org/10.1016/j.cell.2013.07.015] [PMID: 23953110]
[74]
Leung DW, Ginder ND, Fulton DB, et al. Structure of the Ebola VP35 interferon inhibitory domain. Proc Natl Acad Sci USA 2009; 106(2): 411-6.
[http://dx.doi.org/10.1073/pnas.0807854106] [PMID: 19122151]
[75]
Lee JE, Saphire EO. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol 2009; 4(6): 621-35.
[http://dx.doi.org/10.2217/fvl.09.56] [PMID: 20198110]
[76]
Saphire E. A vaccine against ebola virus. Cell 2020; 181(1): 6.
[http://dx.doi.org/10.1016/j.cell.2020.03.011] [PMID: 32243796]
[77]
Hoenen T, Groseth A, Feldmann H. Current ebola vaccines. Expert Opin Biol Ther 2012; 12(7): 859-72.
[http://dx.doi.org/10.1517/14712598.2012.685152] [PMID: 22559078]
[78]
Fausther-Bovendo H, Kobinger G. Vaccine innovation spurred by the long wait for an Ebola virus vaccine. Lancet Infect Dis 2021; 21(4): 440-1.
[http://dx.doi.org/10.1016/S1473-3099(20)30515-6] [PMID: 33217364]
[79]
Herder M, Graham JE, Gold R. From discovery to delivery: Public sector development of the r VSV-ZEBOV Ebola vaccine. J Law Biosci 2020; 7(1): lsz019.
[http://dx.doi.org/10.1093/jlb/lsz019] [PMID: 34221434]
[80]
Huttner A, Siegrist CA. Durability of single-dose rVSV-ZEBOV vaccine responses: What do we know? Expert Rev Vaccines 2018; 17(12): 1105-10.
[http://dx.doi.org/10.1080/14760584.2018.1546582] [PMID: 30422031]
[81]
Metzger WG, Vivas-Martínez S. Questionable efficacy of the rVSV-ZEBOV Ebola vaccine. Lancet 2018; 391(10125): 1021.
[http://dx.doi.org/10.1016/S0140-6736(18)30560-9] [PMID: 29565013]
[82]
Cross RW, Bornholdt ZA, Prasad AN, et al. Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nat Commun 2020; 11(1): 3736.
[http://dx.doi.org/10.1038/s41467-020-17446-4] [PMID: 32719371]
[83]
Wellcome Trust–CIDRAP Ebola Vaccine Team B. Completing the Development of Ebola Vaccines. 2017. Available from: https://www.cidrap.umn.edu/sites/default/files/downloads/ebola_team_b_report_3-011717-final_0.pdf
[84]
Medaglini D, Siegrist CA. Immunomonitoring of human responses to the rVSV-ZEBOV Ebola vaccine. Curr Opin Virol 2017; 23: 88-94.
[http://dx.doi.org/10.1016/j.coviro.2017.03.008] [PMID: 28460340]
[85]
Carnino L, Vetter P, Peyraud N, et al. Feasibility and safety of rVSV-ZEBOV vaccination of humanitarian health workers against Ebola virus disease: An observational study. J Travel Med 2021; 28(8): taab086.
[http://dx.doi.org/10.1093/jtm/taab086] [PMID: 34128975]
[86]
Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017; 389(10068): 505-18.
[http://dx.doi.org/10.1016/S0140-6736(16)32621-6] [PMID: 28017403]
[87]
Rechtien A, Richert L, Lorenzo H, et al. Systems vaccinology identifies an early innate immune signature as a correlate of antibody responses to the ebola vaccine rVSV-ZEBOV. Cell Rep 2017; 20(9): 2251-61.
[http://dx.doi.org/10.1016/j.celrep.2017.08.023] [PMID: 28854372]
[88]
Agnolon V, Kiseljak D, Wurm MJ, et al. Designs and characterization of subunit ebola GP vaccine candidates: implications for immunogenicity. Front Immunol 2020; 11: 586595.
[http://dx.doi.org/10.3389/fimmu.2020.586595] [PMID: 33250896]
[89]
Medaglini D, Santoro F, Siegrist CA. Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol 2018; 39: 65-72.
[http://dx.doi.org/10.1016/j.smim.2018.07.003] [PMID: 30041831]
[90]
Hrycak CP, Windmann S, Bayer W. Comparative evaluation of the vaccine efficacies of three adenovirus-based vector types in the friend retrovirus infection model. J Virol 2019; 93(21): e01155-19.
[http://dx.doi.org/10.1128/JVI.01155-19] [PMID: 31375593]
[91]
Tomori O, Kolawole MO. Ebola virus disease: Current vaccine solutions. Curr Opin Immunol 2021; 71: 27-33.
[http://dx.doi.org/10.1016/j.coi.2021.03.008] [PMID: 33873076]
[92]
Alizadeh M, Amini-Khoei H, Tahmasebian S, et al. Designing a novel multi epitope vaccine against Ebola virus using reverse vaccinology approach. Sci Rep 2022; 12(1): 7757.
[http://dx.doi.org/10.1038/s41598-022-11851-z] [PMID: 35545650]
[93]
European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Mvabea Assessment report: EMA/323668/2020 (procedure No. EMEA/H/C/005343/0000). Available from: https://www.ema.europa.eu/en/documents/assessment-report/mvabea-epar-public-assessment-report_en.pdf (Accessed May 18, 2023)
[94]
Geisbert TW, Bausch DG, Feldmann H. Prospects for immunisation against marburg and ebola viruses. Rev Med Virol 2010; 20(6): 344-57.
[http://dx.doi.org/10.1002/rmv.661] [PMID: 20658513]
[95]
McCoy K, Tatsis N, Korioth-Schmitz B, et al. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J Virol 2007; 81(12): 6594-604.
[http://dx.doi.org/10.1128/JVI.02497-06] [PMID: 17428852]
[96]
Geisbert TW, Bailey M, Hensley L, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol 2011; 85(9): 4222-33.
[http://dx.doi.org/10.1128/JVI.02407-10] [PMID: 21325402]
[97]
Matz KM, Marzi A, Feldmann H. Ebola vaccine trials: Progress in vaccine safety and immunogenicity. Expert Rev Vaccines 2019; 18(12): 1229-42.
[http://dx.doi.org/10.1080/14760584.2019.1698952] [PMID: 31779496]
[98]
Milligan ID, Gibani MM, Sewell R, et al. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia ankara-vectored ebola vaccines. JAMA 2016; 315(15): 1610-23.
[http://dx.doi.org/10.1001/jama.2016.4218] [PMID: 27092831]
[99]
Custers J, Kim D, Leyssen M, et al. Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2021; 39(22): 3081-101.
[http://dx.doi.org/10.1016/j.vaccine.2020.09.018] [PMID: 33676782]
[100]
World Health Organization. Ebola Virus Disease Democratic Republic of Congo: External Situation Report 73 / 2019. 2019. Available from: https://www.who.int/publications/i/item/ebola-virus-disease-democratic-republic-of-congo-external-situation-report-73-2019
[101]
Nanbo A, Imai M, Watanabe S, et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 2010; 6(9): e1001121.
[http://dx.doi.org/10.1371/journal.ppat.1001121] [PMID: 20886108]
[102]
Moekotte AL, Huson MAM, van der Ende AJ, et al. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin Investig Drugs 2016; 25(11): 1325-35.
[http://dx.doi.org/10.1080/13543784.2016.1240785] [PMID: 27676206]
[103]
Sivapalasingam S, Kamal M, Slim R, et al. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect Dis 2018; 18(8): 884-93.
[http://dx.doi.org/10.1016/S1473-3099(18)30397-9] [PMID: 29929783]
[104]
Markham A. REGN-EB3: First approval. Drugs 2021; 81(1): 175-8.
[http://dx.doi.org/10.1007/s40265-020-01452-3] [PMID: 33432551]
[105]
Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic strategies against ebola virus infection. Viruses 2022; 14(3): 579.
[http://dx.doi.org/10.3390/v14030579] [PMID: 35336986]
[106]
Pascal KE, Dudgeon D, Trefry JC, et al. Development of clinical-stage human monoclonal antibodies that treat advanced ebola virus disease in nonhuman primates. J Infect Dis 2018; 218 (Suppl. 5): S612-26.
[http://dx.doi.org/10.1093/infdis/jiy285] [PMID: 29860496]
[107]
Mulangu S, Dodd LE, Davey RT Jr, et al. A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med 2019; 381(24): 2293-303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[108]
Roach A, Chikwe J, Catarino P, et al. Lung transplantation for COVID-19-related respiratory failure in the united states. N Engl J Med 2022; 386(12): 1187-8.
[http://dx.doi.org/10.1056/NEJMc2117024] [PMID: 35081299]
[109]
Zhang Y, Li D, Jin X, Huang Z. Fighting Ebola with ZMapp: Spotlight on plant-made antibody. Sci China Life Sci 2014; 57(10): 987-8.
[http://dx.doi.org/10.1007/s11427-014-4746-7] [PMID: 25218825]
[110]
Henao-Restrepo AM, Preziosi MP, Wood D, Moorthy V, Kieny MP. On a path to accelerate access to Ebola vaccines: The WHO’s research and development efforts during the 2014–2016 Ebola epidemic in West Africa. Curr Opin Virol 2016; 17: 138-44.
[http://dx.doi.org/10.1016/j.coviro.2016.03.008] [PMID: 27180074]
[111]
Qiu X, Wong G, Fernando L, et al. mAbs and Ad-vectored IFN-α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci Transl Med 2013; 5(207): 207ra143.
[http://dx.doi.org/10.1126/scitranslmed.3006605] [PMID: 24132638]
[112]
Strategic Response Plan for the Ebola Virus Disease Outbreak. 2018. Available from: https://clinicaltrials.gov/ct2/results?cond=Melanoma&term=SiRNA&cntry=&state=&city=&dist=
[113]
Bavari S, Bosio CM, Wiegand E, et al. Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002; 195(5): 593-602.
[http://dx.doi.org/10.1084/jem.20011500] [PMID: 11877482]
[114]
Feldmann H, Sprecher A, Geisbert TW. Ebola. N Engl J Med 2020; 382(19): 1832-42.
[http://dx.doi.org/10.1056/NEJMra1901594] [PMID: 32441897]
[115]
Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci 1998; 95(10): 5762-7.
[http://dx.doi.org/10.1073/pnas.95.10.5762] [PMID: 9576958]
[116]
Marzi A, Reinheckel T, Feldmann H, Cathepsin B. Cathepsin B & L are not required for ebola virus replication. PLoS Negl Trop Dis 2012; 6(12): e1923.
[http://dx.doi.org/10.1371/journal.pntd.0001923] [PMID: 23236527]
[117]
Ho M, Kaufmann SV, Fischer C, Maurer W. Inhibitor of Cysteine Cathepsins 2019.
[118]
Elshabrawy HA, Fan J, Haddad CS, et al. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J Virol 2014; 88(8): 4353-65.
[http://dx.doi.org/10.1128/JVI.03050-13] [PMID: 24501399]
[119]
Zhou Y, Vedantham P, Lu K, et al. Since January 2020 elsevier has created a COVID-19 resource centre with free information in english and mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on elsevier connect, the company ’ s public news and information. Antiviral Res 2020.
[120]
Nishimura H, Yamaya M. A synthetic serine protease inhibitor, nafamostat mesilate, is a drug potentially applicable to the treatment of ebola virus disease. Tohoku J Exp Med 2015; 237(1): 45-50.
[http://dx.doi.org/10.1620/tjem.237.45] [PMID: 26346967]
[121]
Chang J, Warren TK, Zhao X, et al. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses. Antiviral Res 2013; 98(3): 432-40.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.023] [PMID: 23578725]
[122]
Warren TK, Warfield KL, Wells J, et al. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother 2010; 54(5): 2152-9.
[http://dx.doi.org/10.1128/AAC.01315-09] [PMID: 20211898]
[123]
Donahoe. Genetic changes. Mol Cell Biochem 2012; 23: 1-7.
[124]
Côté M, Misasi J, Ren T, et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 2011; 477(7364): 344-8.
[http://dx.doi.org/10.1038/nature10380] [PMID: 21866101]
[125]
Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014; 508(7496): 402-5.
[http://dx.doi.org/10.1038/nature13027] [PMID: 24590073]
[126]
Bantia S, Miller PJ, Parker CD, et al. Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H)—a novel potent and orally active immunosuppressive agent. Int Immunopharmacol 2001; 1(6): 1199-210.
[http://dx.doi.org/10.1016/S1567-5769(01)00056-X] [PMID: 11407314]
[127]
Gehring G, Rohrmann K, Atenchong N, et al. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother 2014; 69(8): 2123-31.
[http://dx.doi.org/10.1093/jac/dku091] [PMID: 24710028]
[128]
Selaković Ž, Opsenica D, Eaton B, et al. A limited structural modification results in a significantly more efficacious diazachrysene-based filovirus inhibitor. Viruses 2012; 4(8): 1279-88.
[http://dx.doi.org/10.3390/v4081279] [PMID: 23012625]
[129]
Selaković Ž, Tran JP, Kota KP, et al. Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action. Eur J Med Chem 2019; 162: 32-50.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.061] [PMID: 30408747]
[130]
Aman MJ, Kinch MS, Warfield K, et al. Development of a broad-spectrum antiviral with activity against Ebola virus. Antiviral Res 2009; 83(3): 245-51.
[http://dx.doi.org/10.1016/j.antiviral.2009.06.001] [PMID: 19523489]
[131]
Panchal RG, Reid SP, Tran JP, et al. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 2012; 93(1): 23-9.
[http://dx.doi.org/10.1016/j.antiviral.2011.10.011] [PMID: 22027648]
[132]
Mudhasani R, Kota KP, Retterer C, Tran JP, Whitehouse CA, Bavari S. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses. PLoS Negl Trop Dis 2014; 8(8): e3095.
[http://dx.doi.org/10.1371/journal.pntd.0003095] [PMID: 25144302]
[133]
Ito E, Sweterlitsch LA, Tran PB, Rauscher FJ III, Narayanan R. Inhibition of PC-12 cell differentiation by the immediate early gene fra-1. Oncogene 1990; 5(12): 1755-60.
[PMID: 2178237]
[134]
WHO. Update with the Development of Ebola Vaccines and Implications to Inform Future Policy Recommendations. 2017. Available from: https://www.who.int/publications/m/item/ebola-vaccine-background-do
[135]
Wang L, Liu J, Kong Y, Hou L, Li Y. Immunogenicity of recombinant adenovirus type 5 vector-based ebola vaccine expressing glycoprotein from the 2014 epidemic strain in Mice. Hum Gene Ther 2018; 29(1): 87-95.
[http://dx.doi.org/10.1089/hum.2017.018] [PMID: 28795602]
[136]
Prasad AN, Ronk AJ, Widen SG. Ebola virus produces discrete small noncoding RNAs independently of the host microrna pathway which lack 2020; 94: 1-33.
[137]
Thi EP, Mire CE, Lee ACH, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 2015; 521(7552): 362-5.
[http://dx.doi.org/10.1038/nature14442] [PMID: 25901685]
[138]
Kolykhalov AA, Graham MW, Suhy DA, et al. Development of an siRNA Based therapy for ebola virus infection. Mol Ther 2005; 11: S385.
[http://dx.doi.org/10.1016/j.ymthe.2005.07.543]
[139]
van Griensven J, De Weiggheleire A, Delamou A, et al. The use of ebola convalescent plasma to treat ebola virus disease in resource-constrained settings: A perspective from the field. Clin Infect Dis 2016; 62(1): 69-74.
[http://dx.doi.org/10.1093/cid/civ680] [PMID: 26261205]
[140]
Wang B, Wang Y, Frabutt DA, et al. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function. J Biol Chem 2017; 292(14): 5860-70.
[http://dx.doi.org/10.1074/jbc.M116.768168] [PMID: 28196864]
[141]
Konde MK, Baker DP, Traore FA, et al. Interferon β-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS One 2017; 12(2): e0169255.
[http://dx.doi.org/10.1371/journal.pone.0169255] [PMID: 28225767]
[142]
Bixler SL, Duplantier AJ, Bavari S. Discovering drugs for the treatment of ebola virus. Curr Treat Options Infect Dis 2017; 9(3): 299-317.
[http://dx.doi.org/10.1007/s40506-017-0130-z] [PMID: 28890666]
[143]
Tambunan USF, Alkaff AH, Nasution MAF, Parikesit AA, Kerami D. Screening of commercial cyclic peptide conjugated to HIV-1 Tat peptide as inhibitor of N-terminal heptad repeat glycoprotein-2 ectodomain Ebola virus through in silico analysis. J Mol Graph Model 2017; 74: 366-78.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.001] [PMID: 28482272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy