Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability?

Author(s): Carlo Maria Bellanca, Egle Augello, Alice Mariottini, Gabriele Bonaventura, Valentina La Cognata, Giulia Di Benedetto, Anna Flavia Cantone, Giuseppe Attaguile, Rosaria Di Mauro, Giuseppina Cantarella*, Luca Massacesi and Renato Bernardini

Volume 22, Issue 8, 2024

Published on: 24 January, 2024

Page: [1286 - 1326] Pages: 41

DOI: 10.2174/1570159X22666240124114126

open access plus

conference banner
Abstract

Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.

Keywords: Multiple sclerosis, disease-modifying therapies, clinical trials, approved drugs, off-label treatments, future perspective, stem cells.

Graphical Abstract
[1]
Didonna, A.; Oksenberg, J.R. The Genetics of Multiple Sclerosis.Codon Publications: Brisbane, 2017.
[http://dx.doi.org/10.15586/codon.multiplesclerosis.2017.ch1]
[2]
Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.A.; Tzoulaki, I. Environmental risk factors and multiple sclerosis : An umbrella review of systematic reviews and meta-analyses. Lancet Neurol., 2015, 14(3), 263-273.
[http://dx.doi.org/10.1016/S1474-4422(14)70267-4] [PMID: 25662901]
[3]
Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med., 2018, 378(2), 169-180.
[http://dx.doi.org/10.1056/NEJMra1401483] [PMID: 29320652]
[4]
Multiple Sclerosis: Facts, Statistics, and You. Available at: https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic
[5]
Adelman, G.; Rane, S.G.; Villa, K.F. The cost burden of multiple sclerosis in the United States : A systematic review of the literature. J. Med. Econ., 2013, 16(5), 639-647.
[http://dx.doi.org/10.3111/13696998.2013.778268] [PMID: 23425293]
[6]
Amato, M.P.; Derfuss, T.; Hemmer, B.; Liblau, R.; Montalban, X.; Soelberg, S.P.; Miller, D.H. 2016 ECTRIMS focused workshop group environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult. Scler., 2018, 24(5), 590-603.
[http://dx.doi.org/10.1177/1352458516686847] [PMID: 28671487]
[7]
Thormann, A.; Sørensen, P.S.; Koch-Henriksen, N.; Laursen, B.; Magyari, M. Comorbidity in multiple sclerosis is associated with diagnostic delays and increased mortality. Neurology, 2017, 89(16), 1668-1675.
[http://dx.doi.org/10.1212/WNL.0000000000004508] [PMID: 28931645]
[8]
Patsopoulos, N.A. Genetics of multiple sclerosis : An overview and new directions. Cold Spring Harb. Perspect. Med., 2018, 8(7), a028951.
[http://dx.doi.org/10.1101/cshperspect.a028951] [PMID: 29440325]
[9]
Moghbeli, M. Genetic and molecular biology of multiple sclerosis among iranian patients : An overview. Cell. Mol. Neurobiol., 2020, 40(1), 65-85.
[http://dx.doi.org/10.1007/s10571-019-00731-2] [PMID: 31482432]
[10]
Ascherio, A. Environmental factors in multiple sclerosis. Expert Rev. Neurother., 2013, 13(sup2), 3-9.
[http://dx.doi.org/10.1586/14737175.2013.865866] [PMID: 24289836]
[11]
Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and multiple sclerosis: A comprehensive review. Neurol. Ther., 2018, 7(1), 59-85.
[http://dx.doi.org/10.1007/s40120-017-0086-4] [PMID: 29243029]
[12]
Kim, W.; Patsopoulos, N.A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol., 2022, 44(1), 63-79.
[http://dx.doi.org/10.1007/s00281-021-00907-3] [PMID: 35022889]
[13]
Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol., 2015, 14(2), 183-193.
[http://dx.doi.org/10.1016/S1474-4422(14)70256-X] [PMID: 25772897]
[14]
Stadelmann, C. Multiple sclerosis as a neurodegenerative disease: Pathology, mechanisms and therapeutic implications. Curr. Opin. Neurol., 2011, 24(3), 224-229.
[http://dx.doi.org/10.1097/WCO.0b013e328346056f] [PMID: 21455066]
[15]
Hohlfeld, R.; Londei, M.; Massacesi, L.; Salvetti, M. T-cell autoimmunity in multiple sclerosis. Immunol. Today, 1995, 16(6), 259-261.
[http://dx.doi.org/10.1016/0167-5699(95)80176-6] [PMID: 7544976]
[16]
Gaitán, M.I.; Shea, C.D.; Evangelou, I.E.; Stone, R.D.; Fenton, K.M.; Bielekova, B.; Massacesi, L.; Reich, D.S. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann. Neurol., 2011, 70(1), 22-29.
[http://dx.doi.org/10.1002/ana.22472] [PMID: 21710622]
[17]
Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol., 2019, 9, 3116.
[http://dx.doi.org/10.3389/fimmu.2018.03116] [PMID: 30687321]
[18]
Wiendl, H.; Hohlfeld, R. Multiple sclerosis therapeutics: Unexpected outcomes clouding undisputed successes. Neurology, 2009, 72(11), 1008-1015.
[http://dx.doi.org/10.1212/01.wnl.0000344417.42972.54] [PMID: 19289741]
[19]
Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol., 2014, 10(4), 225-238.
[http://dx.doi.org/10.1038/nrneurol.2014.37] [PMID: 24638138]
[20]
Fazeli, A.S.; Nasrabadi, D.; Sanati, M.H.; Pouya, A.; Ibrahim, S.M.; Baharvand, H.; Salekdeh, G.H. Proteome analysis of brain in murine experimental autoimmune encephalomyelitis. Proteomics, 2010, 10(15), 2822-2832.
[http://dx.doi.org/10.1002/pmic.200900507] [PMID: 20540118]
[21]
Rajani, R.M.; Quick, S.; Ruigrok, S.R.; Graham, D.; Harris, S.E.; Verhaaren, B.F.J.; Fornage, M.; Seshadri, S.; Atanur, S.S.; Dominiczak, A.F.; Smith, C.; Wardlaw, J.M.; Williams, A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med., 2018, 10(448), eaam9507.
[http://dx.doi.org/10.1126/scitranslmed.aam9507] [PMID: 29973407]
[22]
Saab, A.S.; Nave, K.A. Myelin dynamics: Protecting and shaping neuronal functions. Curr. Opin. Neurobiol., 2017, 47, 104-112.
[http://dx.doi.org/10.1016/j.conb.2017.09.013] [PMID: 29065345]
[23]
Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic supporters of neurons. J. Clin. Invest., 2017, 127(9), 3271-3280.
[http://dx.doi.org/10.1172/JCI90610] [PMID: 28862639]
[24]
Dombrowski, Y.; O’Hagan, T.; Dittmer, M.; Penalva, R.; Mayoral, S.R.; Bankhead, P.; Fleville, S.; Eleftheriadis, G.; Zhao, C.; Naughton, M.; Hassan, R.; Moffat, J.; Falconer, J.; Boyd, A.; Hamilton, P.; Allen, I.V.; Kissenpfennig, A.; Moynagh, P.N.; Evergren, E.; Perbal, B.; Williams, A.C.; Ingram, R.J.; Chan, J.R.; Franklin, R.J.M.; Fitzgerald, D.C. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci., 2017, 20(5), 674-680.
[http://dx.doi.org/10.1038/nn.4528] [PMID: 28288125]
[25]
Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; Diaz, F.; Meijer, D.; Suter, U.; Hamprecht, B.; Sereda, M.W.; Moraes, C.T.; Frahm, J.; Goebbels, S.; Nave, K.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 2012, 485(7399), 517-521.
[http://dx.doi.org/10.1038/nature11007] [PMID: 22622581]
[26]
Craner, M.J.; Newcombe, J.; Black, J.A.; Hartle, C.; Cuzner, M.L.; Waxman, S.G. Molecular changes in neurons in multiple sclerosis: Altered axonal expression of Nav 1.2 and Nav 1.6 sodium channels and Na+ /Ca2+ exchanger. Proc. Natl. Acad. Sci., 2004, 101(21), 8168-8173.
[http://dx.doi.org/10.1073/pnas.0402765101] [PMID: 15148385]
[27]
Waxman, S.G.; Craner, M.J.; Black, J.A. Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol. Sci., 2004, 25(11), 584-591.
[http://dx.doi.org/10.1016/j.tips.2004.09.001] [PMID: 15491781]
[28]
Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology, 1996, 46(4), 907-911.
[http://dx.doi.org/10.1212/WNL.46.4.907] [PMID: 8780061]
[29]
Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; Bebo, B., Jr; Calabresi, P.A.; Clanet, M.; Comi, G.; Fox, R.J.; Freedman, M.S.; Goodman, A.D.; Inglese, M.; Kappos, L.; Kieseier, B.C.; Lincoln, J.A.; Lubetzki, C.; Miller, A.E.; Montalban, X.; O’Connor, P.W.; Petkau, J.; Pozzilli, C.; Rudick, R.A.; Sormani, M.P.; Stüve, O.; Waubant, E.; Polman, C.H. Defining the clinical course of multiple sclerosis : The 2013 revisions. Neurology, 2014, 83(3), 278-286.
[http://dx.doi.org/10.1212/WNL.0000000000000560] [PMID: 24871874]
[30]
Miller, D.; Barkhof, F.; Montalban, X.; Thompson, A.; Filippi, M. Clinically isolated syndromes suggestive of multiple sclerosis, part I : Natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol., 2005, 4(5), 281-288.
[http://dx.doi.org/10.1016/S1474-4422(05)70071-5] [PMID: 15847841]
[31]
Okuda, D.T.; Mowry, E.M.; Beheshtian, A.; Waubant, E.; Baranzini, S.E.; Goodin, D.S.; Hauser, S.L.; Pelletier, D. Incidental MRI anomalies suggestive of multiple sclerosis : The radiologically isolated syndrome. Neurology, 2009, 72(9), 800-805.
[http://dx.doi.org/10.1212/01.wnl.0000335764.14513.1a] [PMID: 19073949]
[32]
Klineova, S.; Lublin, F.D. Clinical course of multiple sclerosis. Cold Spring Harb. Perspect. Med., 2018, 8(9), a028928.
[http://dx.doi.org/10.1101/cshperspect.a028928] [PMID: 29358317]
[33]
Alroughani, R.; Yamout, B. Multiple Sclerosis. Semin. Neurol., 2018, 38(2), 212-225.
[http://dx.doi.org/10.1055/s-0038-1649502] [PMID: 29791948]
[34]
Rovaris, M.; Confavreux, C.; Furlan, R.; Kappos, L.; Comi, G.; Filippi, M. Secondary progressive multiple sclerosis : Current knowledge and future challenges. Lancet Neurol., 2006, 5(4), 343-354.
[http://dx.doi.org/10.1016/S1474-4422(06)70410-0] [PMID: 16545751]
[35]
Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; Hauser, S.L. Contribution of relapseindependent progression vs relapseassociated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol., 2020, 77(9), 1132-1140.
[http://dx.doi.org/10.1001/jamaneurol.2020.1568] [PMID: 32511687]
[36]
Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol., 2015, 28(3), 193-205.
[http://dx.doi.org/10.1097/WCO.0000000000000206] [PMID: 25887774]
[37]
Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol., 2018, 31(6), 752-759.
[http://dx.doi.org/10.1097/WCO.0000000000000622] [PMID: 30300239]
[38]
Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; Stern, W.A.; Bevan, C.; Romeo, A.; Goodin, D.S.; Gelfand, J.M.; Graves, J.; Green, A.J.; Wilson, M.R.; Zamvil, S.S.; Zhao, C.; Gomez, R.; Ragan, N.R.; Rush, G.Q.; Barba, P.; Santaniello, A.; Baranzini, S.E.; Oksenberg, J.R.; Henry, R.G.; Hauser, S.L. Silent progression in disease activityfree relapsing multiple sclerosis. Ann. Neurol., 2019, 85(5), 653-666.
[http://dx.doi.org/10.1002/ana.25463] [PMID: 30851128]
[39]
Portaccio, E.; Bellinvia, A.; Fonderico, M.; Pastò, L.; Razzolini, L.; Totaro, R.; Spitaleri, D.; Lugaresi, A.; Cocco, E.; Onofrj, M.; Di Palma, F.; Patti, F.; Maimone, D.; Valentino, P.; Confalonieri, P.; Protti, A.; Sola, P.; Lus, G.; Maniscalco, G.T.; Brescia Morra, V.; Salemi, G.; Granella, F.; Pesci, I.; Bergamaschi, R.; Aguglia, U.; Vianello, M.; Simone, M.; Lepore, V.; Iaffaldano, P.; Filippi, M.; Trojano, M.; Amato, M.P. Progression is independent of relapse activity in early multiple sclerosis: A real-life cohort study. Brain, 2022, 145(8), 2796-2805.
[http://dx.doi.org/10.1093/brain/awac111] [PMID: 35325059]
[40]
Vollmer, T.L.; Nair, K.V.; Williams, I.M.; Alvarez, E. Multiple sclerosis phenotypes as a continuum. Neurol. Clin. Pract., 2021, 11(4), 342-351.
[http://dx.doi.org/10.1212/CPJ.0000000000001045] [PMID: 34476126]
[41]
’t Hart, B.A.; Bauer, J.; Muller, H.J.; Melchers, B.; Nicolay, K.; Brok, H.; Bontrop, R.E.; Lassmann, H.; Massacesi, L. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: A correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am. J. Pathol., 1998, 153(2), 649-663.
[http://dx.doi.org/10.1016/S0002-9440(10)65606-4] [PMID: 9708823]
[42]
’t Hart, B.A.; Massacesi, L. Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J. Neuropathol. Exp. Neurol., 2009, 68(4), 341-355.
[http://dx.doi.org/10.1097/NEN.0b013e31819f1d24] [PMID: 19337065]
[43]
Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; Lassmann, H.; Lucchinetti, C.F. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol., 2015, 78(5), 710-721.
[http://dx.doi.org/10.1002/ana.24497] [PMID: 26239536]
[44]
Massacesi, L. Compartmentalization of the immune response in the central nervous system and natural history of multiple sclerosis. implications for therapy. Clin. Neurol. Neurosurg., 2002, 104(3), 177-181.
[http://dx.doi.org/10.1016/S0303-8467(02)00035-5] [PMID: 12127651]
[45]
Machado-Santos, J.; Saji, E.; Tröscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.; Lassmann, H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain, 2018, 141(7), 2066-2082.
[http://dx.doi.org/10.1093/brain/awy151] [PMID: 29873694]
[46]
Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol., 2004, 14(2), 164-174.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00049.x] [PMID: 15193029]
[47]
Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130(4), 1089-1104.
[http://dx.doi.org/10.1093/brain/awm038] [PMID: 17438020]
[48]
Absinta, M.; Vuolo, L.; Rao, A.; Nair, G.; Sati, P.; Cortese, I.C.M.; Ohayon, J.; Fenton, K.; Reyes-Mantilla, M.I.; Maric, D.; Calabresi, P.A.; Butman, J.A.; Pardo, C.A.; Reich, D.S. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology, 2015, 85(1), 18-28.
[http://dx.doi.org/10.1212/WNL.0000000000001587] [PMID: 25888557]
[49]
Brownlee, W.J.; Swanton, J.K.; Altmann, D.R.; Ciccarelli, O.; Miller, D.H. Earlier and more frequent diagnosis of multiple sclerosis using the McDonald criteria: Figure 1. J. Neurol. Neurosurg. Psychiatry, 2015, 86(5), 584-585.
[http://dx.doi.org/10.1136/jnnp-2014-308675] [PMID: 25412872]
[50]
McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; Sandberg-Wollheim, M.; Sibley, W.; Thompson, A.; Van Den Noort, S.; Weinshenker, B.Y.; Wolinsky, J.S. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol., 2001, 50(1), 121-127.
[http://dx.doi.org/10.1002/ana.1032] [PMID: 11456302]
[51]
Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; Sandberg-Wollheim, M.; Thompson, A.J.; Weinshenker, B.G.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2005 Revisions to the “McDonald Criteria”. Ann. Neurol., 2005, 58(6), 840-846.
[http://dx.doi.org/10.1002/ana.20703] [PMID: 16283615]
[52]
Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Lublin, F.D.; Montalban, X.; O’Connor, P.; Sandberg-Wollheim, M.; Thompson, A.J.; Waubant, E.; Weinshenker, B.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol., 2011, 69(2), 292-302.
[http://dx.doi.org/10.1002/ana.22366] [PMID: 21387374]
[53]
Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; Fujihara, K.; Galetta, S.L.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Marrie, R.A.; Miller, A.E.; Miller, D.H.; Montalban, X.; Mowry, E.M.; Sorensen, P.S.; Tintoré, M.; Traboulsee, A.L.; Trojano, M.; Uitdehaag, B.M.J.; Vukusic, S.; Waubant, E.; Weinshenker, B.G.; Reingold, S.C.; Cohen, J.A. Diagnosis of multiple sclerosis: 2017 Revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173.
[http://dx.doi.org/10.1016/S1474-4422(17)30470-2] [PMID: 29275977]
[54]
Montalban, X.; Tintoré, M.; Swanton, J.; Barkhof, F.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Kappos, L.; Palace, J.; Polman, C.; Rovaris, M.; de Stefano, N.; Thompson, A.; Yousry, T.; Rovira, A.; Miller, D.H. MRI criteria for MS in patients with clinically isolated syndromes. Neurology, 2010, 74(5), 427-434.
[http://dx.doi.org/10.1212/WNL.0b013e3181cec45c] [PMID: 20054006]
[55]
Solomon, A.J.; Bourdette, D.N.; Cross, A.H.; Applebee, A.; Skidd, P.M.; Howard, D.B.; Spain, R.I.; Cameron, M.H.; Kim, E.; Mass, M.K.; Yadav, V.; Whitham, R.H.; Longbrake, E.E.; Naismith, R.T.; Wu, G.F.; Parks, B.J.; Wingerchuk, D.M.; Rabin, B.L.; Toledano, M.; Tobin, W.O.; Kantarci, O.H.; Carter, J.L.; Keegan, B.M.; Weinshenker, B.G. The contemporary spectrum of multiple sclerosis misdiagnosis. Neurology, 2016, 87(13), 1393-1399.
[http://dx.doi.org/10.1212/WNL.0000000000003152] [PMID: 27581217]
[56]
Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of multiple sclerosis: Progress and challenges. Lancet, 2017, 389(10076), 1336-1346.
[http://dx.doi.org/10.1016/S0140-6736(16)30959-X] [PMID: 27889190]
[57]
Solomon, A.J.; Naismith, R.T.; Cross, A.H. Misdiagnosis of multiple sclerosis. Neurology, 2019, 92(1), 26-33.
[http://dx.doi.org/10.1212/WNL.0000000000006583] [PMID: 30381369]
[58]
Filippi, M.; Danesi, R.; Derfuss, T.; Duddy, M.; Gallo, P.; Gold, R.; Havrdová, E.K.; Kornek, B.; Saccà, F.; Tintoré, M.; Weber, J.; Trojano, M. Early and unrestricted access to high-efficacy disease-modifying therapies: A consensus to optimize benefits for people living with multiple sclerosis. J. Neurol., 2022, 269(3), 1670-1677.
[http://dx.doi.org/10.1007/s00415-021-10836-8] [PMID: 34626224]
[59]
Dawson, J.W. The histology of disseminated sclerosis. Edinburgh Med. J., 1916, 17(4), 229-241.
[60]
Banwell, B.; Giovannoni, G.; Hawkes, C.; Lublin, F. Editors’ welcome and a working definition for a multiple sclerosis cure. Mult. Scler. Relat. Disord., 2013, 2(2), 65-67.
[http://dx.doi.org/10.1016/j.msard.2012.12.001] [PMID: 25877624]
[61]
Giovannoni, G.; Turner, B.; Gnanapavan, S.; Offiah, C.; Schmierer, K.; Marta, M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult. Scler. Relat. Disord., 2015, 4(4), 329-333.
[http://dx.doi.org/10.1016/j.msard.2015.04.006] [PMID: 26195051]
[62]
Laurson-Doube, J.; Rijke, N.; Helme, A.; Baneke, P.; Banwell, B.; Viswanathan, S.; Hemmer, B.; Yamout, B. Ethical use of off-label disease-modifying therapies for multiple sclerosis. Mult. Scler., 2021, 27(9), 1403-1410.
[http://dx.doi.org/10.1177/13524585211030207] [PMID: 34304636]
[63]
Marjolein, W.; Lisman, J.; Hoebert, J.; Moltó Puigmarti, C.; Dijk, L.; Langedijk, J.; Marchange, S.; Damen, N.; Vervloet, M. Directorate- general for health and food safety (European Commission); study on off-label use of medicinal products in the European union: Report: Publications office of the European union: LU, 2019.
[http://dx.doi.org/10.2875/464022]
[64]
Mcgeown, M.; Donaldson, R.A.; Kennedy, J.A.; Douglas, J.F.; Hill, C.M.; Loughridge, W.G.G.; Middleton, D. Ten-year results of renal transplantation with azathioprine and prednisolone as only immunosuppression. Lancet, 1988, 331(8592), 983-985.
[http://dx.doi.org/10.1016/S0140-6736(88)91792-8] [PMID: 2896839]
[65]
Andreone, P.A.; Olivari, M.T.; Elick, B.; Arentzen, C.E.; Sibley, R.K.; Bolman, R.M.; Simmons, R.L.; Ring, W.S. Reduction of infectious complications following heart transplantation with triple-drug immunotherapy. J. Heart Transplant., 1986, 5(1), 13-19.
[PMID: 3302153]
[66]
British and Dutch Multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet, 1988, 2(8604), 179-183.
[PMID: 2899660]
[67]
De Silva, M.; Hazleman, B.L. Long-term azathioprine in rheumatoid arthritis: A double-blind study. Ann. Rheum. Dis., 1981, 40(6), 560-563.
[http://dx.doi.org/10.1136/ard.40.6.560] [PMID: 7036921]
[68]
Ginzler, E.; Sharon, E.; Diamond, H.; Kaplan, D. Long-term maintenance therapy with azathioprine in systemic lupus erythematosus. Arthritis Rheum., 1975, 18(1), 27-34.
[http://dx.doi.org/10.1002/art.1780180106] [PMID: 1115745]
[69]
Christensen, E.; Neuberger, J.; Crowe, J.; Altman, D.G.; Popper, H.; Portmann, B.; Doniach, D.; Ranek, L.; Tygstrup, N.; Williams, R. Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Gastroenterology, 1985, 89(5), 1084-1091.
[http://dx.doi.org/10.1016/0016-5085(85)90213-6] [PMID: 3899841]
[70]
Candy, S.; Wright, J.; Gerber, M.; Adams, G.; Gerig, M.; Goodman, R. A controlled double blind study of azathioprine in the management of crohn’s disease. Gut, 1995, 37(5), 674-678.
[http://dx.doi.org/10.1136/gut.37.5.674] [PMID: 8549944]
[71]
Bouhnik, Y.; Scemama, G.; Taï, R.; Matuchansky, C.; Rambaud, J-C.; Lémann, M.; Modigliani, R.; Mary, J-Y. Long-term followup of patients with crohn’s disease treated with azathioprine or 6-mercaptopurine. Lancet, 1996, 347(8996), 215-219.
[http://dx.doi.org/10.1016/S0140-6736(96)90402-X] [PMID: 8551879]
[72]
Lewis, J.D.; Schwartz, J.S.; Lichtenstein, G.R. Azathioprine for maintenance of remission in crohn’s disease: Benefits outweigh the risk of lymphoma. Gastroenterology, 2000, 118(6), 1018-1024.
[http://dx.doi.org/10.1016/S0016-5085(00)70353-2] [PMID: 10833475]
[73]
Present, D.H.; Korelitz, B.I.; Wisch, N.; Glass, J.L.; Sachar, D.B.; Pasternack, B.S. Treatment of crohn’s disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N. Engl. J. Med., 1980, 302(18), 981-987.
[http://dx.doi.org/10.1056/NEJM198005013021801] [PMID: 6102739]
[74]
Dimitriu, A.; Fauci, A.S. Activation of human B lymphocytes. XI. Differential effects of azathioprine on B lymphocytes and lymphocyte subpopulations regulating B cell function. J. Immunol., 1978, 121(6), 2335-2339.
[http://dx.doi.org/10.4049/jimmunol.121.6.2335] [PMID: 363943]
[75]
Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol., 1992, 43(4), 329-339.
[http://dx.doi.org/10.1007/BF02220605] [PMID: 1451710]
[76]
Röllinghoff, M.; Schrader, J.; Wagner, H. Effect of azathioprine and cytosine arabinoside on humoral and cellular immunity in vitro. Clin. Exp. Immunol., 1973, 15(2), 261-269.
[PMID: 4543428]
[77]
Abdou, N.I.; Zweiman, B.; Casella, S.R. Effects of azathioprine therapy on bone marrow-dependent and thymus-dependent cells in man. Clin. Exp. Immunol., 1973, 13(1), 55-64.
[PMID: 4271771]
[78]
Bach, M.A.; Bach, J.F. Activities of immunosuppressive agents in vitro. II. Different timing of azathioprine and methotrexate in inhibition and stimulation of mixed lymphocyte reaction. Clin. Exp. Immunol., 1972, 11(1), 89-98.
[PMID: 5038773]
[79]
Maltzman, J.S.; Koretzky, G.A. Azathioprine: Old drug, new actions. J. Clin. Invest., 2003, 111(8), 1122-1124.
[http://dx.doi.org/10.1172/JCI200318384] [PMID: 12697731]
[80]
Ellison, G.W.; Myers, L.W.; Mickey, M.R.; Graves, M.C.; Tourtellotte, W.W.; Syndulko, K.; Holevoet-Howson, M.I.; Lerner, C.D.; Frane, M.V.; Pettier-Jennings, P. A placebo‐controlled, randomized, double‐masked, variable dosage, clinical trial of azathioprine with and without methylprednisolone in multiple sclerosis. Neurology, 1989, 39(8), 1018-1026.
[http://dx.doi.org/10.1212/WNL.39.8.1018] [PMID: 2668784]
[81]
Goodkin, D.E.; Bailly, R.C.; Teetzen, M.L.; Hertsgaard, D.; Beatty, W.W. The efficacy of azathioprine in relapsing : Remitting multiple sclerosis. Neurology, 1991, 41(1), 20-25.
[http://dx.doi.org/10.1212/WNL.41.1.20] [PMID: 1985289]
[82]
Milanese, C.; La Mantia, L.; Salmaggi, A.; Eoli, M. A double blind study on azathioprine efficacy in multiple sclerosis: Final report. J. Neurol., 1993, 240(5), 295-298.
[http://dx.doi.org/10.1007/BF00838165] [PMID: 8326334]
[83]
Clegg, A.; Bryant, J.; Milne, R. Disease-modifying drugs for multiple sclerosis: A rapid and systematic review. Health Technol. Assess., 2000, 4(9), i-iv, 1-101.
[http://dx.doi.org/10.3310/hta4090] [PMID: 10944743]
[84]
Yudkin, P.L.; Ellison, G.W.; Ghezzi, A.; Goodkin, D.E.; Hughes, R.A.C.; McPherson, K.; Mertin, J.; Milanese, C. Overview of azathioprine treatment in multiple sclerosis. Lancet, 1991, 338(8774), 1051-1055.
[http://dx.doi.org/10.1016/0140-6736(91)91909-E] [PMID: 1681364]
[85]
Goodin, D.S.; Frohman, E.M.; Garmany, G.P., Jr; Halper, J.; Likosky, W.H.; Lublin, F.D.; Silberberg, D.H.; Stuart, W.H.; van den Noort, S. Disease modifying therapies in multiple sclerosis: Report of the therapeutics and technology assessment subcommittee of the american academy of neurology and the ms council for clinical practice guidelines. Neurology, 2002, 58(2), 169-178.
[http://dx.doi.org/10.1212/WNL.58.2.169] [PMID: 11805241]
[86]
Casetta, I.; Iuliano, G.; Filippini, G. Azathioprine for multiple sclerosis. Cochrane Libr., 2007, 2007(4), CD003982.
[http://dx.doi.org/10.1002/14651858.CD003982.pub2] [PMID: 17943809]
[87]
Filippini, G.; Munari, L.; Incorvaia, B.; Ebers, G.C.; Polman, C.; D’Amico, R.; Rice, G.P.A. Interferons in relapsing remitting multiple sclerosis: A systematic review. Lancet, 2003, 361(9357), 545-552.
[http://dx.doi.org/10.1016/S0140-6736(03)12512-3] [PMID: 12598138]
[88]
Palace, J.; Rothwell, P. New treatments and azathioprine in multiple sclerosis. Lancet, 1997, 350(9073), 261.
[http://dx.doi.org/10.1016/S0140-6736(97)24030-4] [PMID: 9242805]
[89]
Etemadifar, M.; Janghorbani, M.; Shaygannejad, V. Comparison of interferon beta products and azathioprine in the treatment of relapsing-remitting multiple sclerosis. J. Neurol., 2007, 254(12), 1723-1728.
[http://dx.doi.org/10.1007/s00415-007-0637-1] [PMID: 18074075]
[90]
Milanese, C.; La Mantia, L.; Salmaggi, A.; Caputo, D. Azathioprine and interferon beta-1b treatment in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2001, 70(3), 413-414.
[http://dx.doi.org/10.1136/jnnp.70.3.413] [PMID: 11181879]
[91]
Cavazzuti, M.; Merelli, E.; Tassone, G.; Mavilla, L. Lesion load quantification in serial MR of early relapsing multiple sclerosis patients in azathioprine treatment. A retrospective study. Eur. Neurol., 1997, 38(4), 284-290.
[http://dx.doi.org/10.1159/000113395] [PMID: 9434087]
[92]
Massacesi, L.; Parigi, A.; Barilaro, A.; Repice, A.M.; Pellicanò, G.; Konze, A.; Siracusa, G.; Taiuti, R.; Amaducci, L. Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch. Neurol., 2005, 62(12), 1843-1847.
[http://dx.doi.org/10.1001/archneur.62.12.1843] [PMID: 16344342]
[93]
Massacesi, L.; Tramacere, I.; Amoroso, S.; Battaglia, M.A.; Benedetti, M.D.; Filippini, G.; La Mantia, L.; Repice, A.; Solari, A.; Tedeschi, G.; Milanese, C. Azathioprine versus beta interferons for relapsing-remitting multiple sclerosis: A multicentre randomized non-inferiority trial. PLoS One, 2014, 9(11), e113371.
[http://dx.doi.org/10.1371/journal.pone.0113371] [PMID: 25402490]
[94]
Confavreux, C.; Saddier, P.; Grimaud, J.; Moreau, T.; Adeleine, P.; Aimard, G. Risk of cancer from azathioprine therapy in multiple sclerosis. Neurology, 1996, 46(6), 1607-1612.
[http://dx.doi.org/10.1212/WNL.46.6.1607] [PMID: 8649558]
[95]
La Mantia, L.; Benedetti, M.D.; Sant, M.; d’Arma, A.; Di Tella, S.; Lillini, R.; Mendozzi, L.; Marangi, A.; Turatti, M.; Caputo, D.; Rovaris, M. Cancer risk for multiple sclerosis patients treated with azathioprine and disease-modifying therapies: an Italian observational study. Neurol. Sci., 2021, 42(12), 5157-5163.
[http://dx.doi.org/10.1007/s10072-021-05216-z] [PMID: 33791892]
[97]
Ali, R.; Nicholas, R.S.J.; Muraro, P.A. Drugs in development for relapsing multiple sclerosis. Drugs, 2013, 73(7), 625-650.
[http://dx.doi.org/10.1007/s40265-013-0030-6] [PMID: 23609782]
[98]
Muraro, P.A.; Leist, T.; Bielekova, B.; McFarland, H.F. VLA-4/CD49d downregulated on primed T lymphocytes during interferon-β therapy in multiple sclerosis. J. Neuroimmunol., 2000, 111(1-2), 186-194.
[http://dx.doi.org/10.1016/S0165-5728(00)00362-3] [PMID: 11063837]
[99]
Jiang, H.; Milo, R.; Swoveland, P.; Johnson, K.P.; Panitch, H.; Dhib-Jalbut, S. Interferon β-lb reduces Interferon γ-induced antigen-presenting capacity of human glial and B cells. J. Neuroimmunol., 1995, 61(1), 17-25.
[http://dx.doi.org/10.1016/0165-5728(95)00072-A] [PMID: 7560008]
[100]
Kieseier, B.C. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs, 2011, 25(6), 491-502.
[http://dx.doi.org/10.2165/11591110-000000000-00000] [PMID: 21649449]
[101]
Durelli, L.; Verdun, E.; Barbero, P.; Bergui, M.; Versino, E.; Ghezzi, A.; Montanari, E.; Zaffaroni, M. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: Results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet, 2002, 359(9316), 1453-1460.
[http://dx.doi.org/10.1016/S0140-6736(02)08430-1] [PMID: 11988242]
[102]
Panitch, H.; Goodin, D.S.; Francis, G.; Chang, P.; Coyle, P.K.; O’Connor, P.; Monaghan, E.; Li, D.; Weinshenker, B. Randomized, comparative study of interferon -1a treatment regimens in MS: The EVIDENCE trial. Neurology, 2002, 59(10), 1496-1506.
[http://dx.doi.org/10.1212/01.WNL.0000034080.43681.DA] [PMID: 12451188]
[103]
A study to evaluate the safety, tolerability, and efficacy of BIIB017 (peginterferon beta-1a) in pediatric participants for the treatment of relapsing-remitting multiple sclerosis. NCT03958877, 2014.
[104]
Harris, J.M.; Martin, N.E.; Modi, M. Pegylation. Clin. Pharmacokinet., 2001, 40(7), 539-551.
[http://dx.doi.org/10.2165/00003088-200140070-00005] [PMID: 11510630]
[105]
Dhib-Jalbut, S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology, 2002, 58(8, Supplement 4)(4), S3-S9.
[http://dx.doi.org/10.1212/WNL.58.8_suppl_4.S3] [PMID: 11971121]
[106]
Fridkis-Hareli, M.; Teitelbaum, D.; Gurevich, E.; Pecht, I.; Brautbar, C.; Kwon, O.J.; Brenner, T.; Arnon, R.; Sela, M. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells : Specificity and promiscuity. Proc. Natl. Acad. Sci., 1994, 91(11), 4872-4876.
[http://dx.doi.org/10.1073/pnas.91.11.4872] [PMID: 7515181]
[107]
Rommer, P.S.; Milo, R.; Han, M.H.; Satyanarayan, S.; Sellner, J.; Hauer, L.; Illes, Z.; Warnke, C.; Laurent, S.; Weber, M.S.; Zhang, Y.; Stuve, O. Immunological aspects of approved ms therapeutics. Front. Immunol., 2019, 10, 1564.
[http://dx.doi.org/10.3389/fimmu.2019.01564] [PMID: 31354720]
[108]
Ziemssen, T.; Kümpfel, T.; Klinkert, W.E.F.; Neuhaus, O.; Hohlfeld, R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: Implications for multiple sclerosis therapy. Brain, 2002, 125(11), 2381-2391.
[http://dx.doi.org/10.1093/brain/awf252] [PMID: 12390966]
[109]
Kuerten, S.; Jackson, L.J.; Kaye, J.; Vollmer, T.L. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs, 2018, 32(11), 1039-1051.
[http://dx.doi.org/10.1007/s40263-018-0567-8] [PMID: 30315499]
[110]
In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. 2018 Mar 14.https://pubmed.ncbi.nlm.nih.gov/31644036/
[PMID: 31644036]
[111]
Phase III Randomized. Double-Blind, Placebo-Controlled Study of Copolymer 1 for Relapsing-Remitting Multiple Sclerosis. Available from: https://clinicaltrials.gov/ct2/show/NCT00004814
[112]
Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; Vollmer, T.; Weiner, L.P.; Wolinsky, J.S. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology, 1995, 45(7), 1268-1276.
[http://dx.doi.org/10.1212/WNL.45.7.1268] [PMID: 7617181]
[113]
Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; Vollmer, T.; Weiner, L.P.; Wolinsky, J.S. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology, 1998, 50(3), 701-708.
[http://dx.doi.org/10.1212/WNL.50.3.701] [PMID: 9521260]
[114]
Bell, C.; Anderson, J.; Ganguly, T.; Prescott, J.; Capila, I.; Lansing, J.C.; Sachleben, R.; Iyer, M.; Fier, I.; Roach, J.; Storey, K.; Miller, P.; Hall, S.; Kantor, D.; Greenberg, B.M.; Nair, K.; Glajch, J. Development of glatopa® (glatiramer acetate): The first fda-approved generic disease-modifying therapy for relapsing forms of multiple sclerosis. J. Pharm. Pract., 2018, 31(5), 481-488.
[http://dx.doi.org/10.1177/0897190017725984] [PMID: 28847230]
[115]
Teva branded pharmaceutical products RD, inc. A multinational, multicenter, randomized, parallel-group study performed in subjects with relapsing-remitting multiple sclerosis (RRMS) to assess the efficacy, safety and tolerability of glatiramer acetate (GA) injection 40 mg administered three times a week compared to placebo in a double-blind design; clinicaltrials.gov. NCT01067521, 2021.
[116]
Constantinescu, C.; Tanasescu; Evangelou Role of oral teriflunomide in the management of multiple sclerosis. Neuropsychiatr. Dis. Treat., 2013, 9, 539-553.
[http://dx.doi.org/10.2147/NDT.S31248] [PMID: 23637535]
[117]
Xu, X.; Williams, J.W.; Bremer, E.G.; Finnegan, A.; Chong, A.S.F. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J. Biol. Chem., 1995, 270(21), 12398-12403.
[http://dx.doi.org/10.1074/jbc.270.21.12398] [PMID: 7759480]
[118]
Siemasko, K.; Chong, A.S.F.; Jäck, H.M.; Gong, H.; Williams, J.W.; Finnegan, A. Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J. Immunol., 1998, 160(4), 1581-1588.
[http://dx.doi.org/10.4049/jimmunol.160.4.1581] [PMID: 9469413]
[119]
Dimitrova, P.; Skapenko, A.; Herrmann, M.L.; Schleyerbach, R.; Kalden, J.R.; Schulze-Koops, H. Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J. Immunol., 2002, 169(6), 3392-3399.
[http://dx.doi.org/10.4049/jimmunol.169.6.3392] [PMID: 12218161]
[120]
Claussen, M.C.; Korn, T. Immune mechanisms of new therapeutic strategies in MS Teriflunomide. Clin. Immunol., 2012, 142(1), 49-56.
[http://dx.doi.org/10.1016/j.clim.2011.02.011] [PMID: 21367665]
[121]
Comi, G.; Freedman, M.S.; Kappos, L.; Olsson, T.P.; Miller, A.E.; Wolinsky, J.S.; O’Connor, P.W.; Benamor, M.; Dukovic, D.; Truffinet, P.; Leist, T.P. Pooled safety and tolerability data from four placebocontrolled teriflunomide studies and extensions. Mult. Scler. Relat. Disord., 2016, 5, 97-104.
[http://dx.doi.org/10.1016/j.msard.2015.11.006] [PMID: 26856952]
[123]
Sanofi a randomized, double-blind, placebo-controlled, parallel group design study to evaluate the efficacy and safety of teriflunomide in reducing the frequency of relapses and delaying the accumulation of physical disability in subjects with multiple sclerosis with relapses; clinicaltrials.gov. NCT01252355, 2013.
[124]
O’Connor, P.; Wolinsky, J.S.; Confavreux, C.; Comi, G.; Kappos, L.; Olsson, T.P.; Benzerdjeb, H.; Truffinet, P.; Wang, L.; Miller, A.; Freedman, M.S. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med., 2011, 365(14), 1293-1303.
[http://dx.doi.org/10.1056/NEJMoa1014656] [PMID: 21991951]
[125]
Sanofi a multi-center double-blind parallel-group placebo-controlled study of the efficacy and safety of teriflunomide in patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT01252355, 2016.
[126]
Confavreux, C.; O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Olsson, T.P.; Wolinsky, J.S.; Bagulho, T.; Delhay, J.L.; Dukovic, D.; Truffinet, P.; Kappos, L. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol., 2014, 13(3), 247-256.
[http://dx.doi.org/10.1016/S1474-4422(13)70308-9] [PMID: 24461574]
[127]
Scannevin, R.H.; Chollate, S.; Jung, M.; Shackett, M.; Patel, H.; Bista, P.; Zeng, W.; Ryan, S.; Yamamoto, M.; Lukashev, M.; Rhodes, K.J. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther., 2012, 341(1), 274-284.
[http://dx.doi.org/10.1124/jpet.111.190132] [PMID: 22267202]
[128]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[129]
Hammer, A.; Waschbisch, A.; Kuhbandner, K.; Bayas, A.; Lee, D.H.; Duscha, A.; Haghikia, A.; Gold, R.; Linker, R.A. The NRF 2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol., 2018, 5(6), 668-676.
[http://dx.doi.org/10.1002/acn3.553] [PMID: 29928650]
[130]
Havrdova, E.; Hutchinson, M.; Kurukulasuriya, N.C.; Raghupathi, K.; Sweetser, M.T.; Dawson, K.T.; Gold, R. Oral BG-12 (dimethyl fumarate) for relapsing-remitting multiple sclerosis: A review of define and confirm. evaluation of: Gold R, Kappos L, Arnold D, et al. placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367:1098-107; and Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367:1087-97. Expert Opin. Pharmacother., 2013, 14(15), 2145-2156.
[http://dx.doi.org/10.1517/14656566.2013.826190] [PMID: 23971970]
[131]
Biogen a randomized, multicenter, double-blind, placebo-controlled, dose-comparison study to determine the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00451451, 2015.
[132]
Gold, R.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Giovannoni, G.; Selmaj, K.; Tornatore, C.; Sweetser, M.T.; Yang, M.; Sheikh, S.I.; Dawson, K.T. Placebocontrolled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med., 2012, 367(12), 1098-1107.
[http://dx.doi.org/10.1056/NEJMoa1114287] [PMID: 22992073]
[133]
Biogen a randomized, multicenter, placebo-controlled and active reference (Glatiramer Acetate) comparison study to evaluate the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00451451, 2015.
[134]
Fox, R.J.; Miller, D.H.; Phillips, J.T.; Hutchinson, M.; Havrdova, E.; Kita, M.; Yang, M.; Raghupathi, K.; Novas, M.; Sweetser, M.T.; Viglietta, V.; Dawson, K.T. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med., 2012, 367(12), 1087-1097.
[http://dx.doi.org/10.1056/NEJMoa1206328] [PMID: 22992072]
[135]
Aktas, O.; Küry, P.; Kieseier, B.; Hartung, H.P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat. Rev. Neurol., 2010, 6(7), 373-382.
[http://dx.doi.org/10.1038/nrneurol.2010.76] [PMID: 20551946]
[136]
Brinkmann, V.; Davis, M.D.; Heise, C.E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C.A.; Zollinger, M.; Lynch, K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 2002, 277(24), 21453-21457.
[http://dx.doi.org/10.1074/jbc.C200176200] [PMID: 11967257]
[138]
Novartis a 24-month, double-blind, randomized, multicenter, placebo-controlled, parallel-group study comparing the efficacy and safety of fingolimod 1.25 mg and 0.5 mg administered orally once daily versus placebo in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00731692, 2012.
[139]
Novartis a 12-month double-blind, randomized, multicenter, active-controlled, parallel-group study comparing the efficacy and safety of 0.5 mg and 1.25 mg fingolimod (FTY720) administered orally once daily versus interferon ß-1a (avonex) administered im once weekly in patients with relapsing-remitting multiple sclerosis with optional extension phase; clinicaltrials.gov. NCT00670449, 2017.
[140]
Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; Burtin, P. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med., 2010, 362(5), 387-401.
[http://dx.doi.org/10.1056/NEJMoa0909494] [PMID: 20089952]
[141]
Novartis double-blind, randomized, placebo-controlled, parallel-group, multicenter study evaluating the safety,tolerability and effect on MRI lesion parameters of FTY720 vs placebo in patients with relapsing multiple sclerosis including 18 month extension phase. clinicaltrials.gov. 2017.
[142]
Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 355(11), 1124-1140.
[http://dx.doi.org/10.1056/NEJMoa052643] [PMID: 16971719]
[143]
Gergely, P.; Nuesslein-Hildesheim, B.; Guerini, D.; Brinkmann, V.; Traebert, M.; Bruns, C.; Pan, S.; Gray, N.S.; Hinterding, K.; Cooke, N.G.; Groenewegen, A.; Vitaliti, A.; Sing, T.; Luttringer, O.; Yang, J.; Gardin, A.; Wang, N.; Crumb, W.J., Jr; Saltzman, M.; Rosenberg, M.; Wallström, E. The selective sphingosine 1‐phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species‐specific effects on heart rate. Br. J. Pharmacol., 2012, 167(5), 1035-1047.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02061.x] [PMID: 22646698]
[144]
Chun, J.; Hartung, H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 2010, 33(2), 91-101.
[http://dx.doi.org/10.1097/WNF.0b013e3181cbf825] [PMID: 20061941]
[145]
Tavares, A.; Barret, O.; Alagille, D.; Morley, T.; Papin, C.; Maguire, R.; Briard, E.; Auberson, Y.; Tamagnan, G. Brain distribution of MS565, an imaging analogue of siponimod (BAF312), in nonhuman primates (P1.168). Neurology, 2014, 82.
[146]
Brana, C.; Frossard, M.J.; Pescini Gobert, R.; Martinier, N.; Boschert, U.; Seabrook, T.J. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol. Appl. Neurobiol., 2014, 40(5), 564-578.
[http://dx.doi.org/10.1111/nan.12048] [PMID: 23551178]
[147]
Kappos, L.; Li, D.K.B.; Stüve, O.; Hartung, H.P.; Freedman, M.S.; Hemmer, B.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; Hunter, B.; Arnould, S.; Wallström, E.; Selmaj, K. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis. JAMA Neurol., 2016, 73(9), 1089-1098.
[http://dx.doi.org/10.1001/jamaneurol.2016.1451] [PMID: 27380540]
[149]
Novartis Pharmaceuticals. Novartis pharmaceuticals a dose blinded extension study to the CBAF312A2201 study to evaluate long-term safety, tolerability and efficacy of BAF312 given orally once daily in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00879658, 2018.
[150]
Novartis Pharmaceuticals. Novartis pharmaceuticals a multicenter, randomized, double-blind, parallel-group, placebo-controlled variable treatment duration study evaluating the efficacy and safety of siponimod (BAF312) in patients with secondary progressive multiple sclerosis followed by extended treatment with open-label BAF312.; clinicaltrials.gov. NCT01665144, 2022.
[151]
Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; Wolf, C.; Wallström, E.; Dahlke, F.; Achiron, A.; Achtnichts, L.; Agan, K.; Akman-Demir, G.; Allen, A.B.; Antel, J.P.; Antiguedad, A.R.; Apperson, M.; Applebee, A.M.; Ayuso, G.I.; Baba, M.; Bajenaru, O.; Balasa, R.; Balci, B.P.; Barnett, M.; Bass, A.; Becker, V.U.; Bejinariu, M.; Bergh, F.T.; Bergmann, A.; Bernitsas, E.; Berthele, A.; Bhan, V.; Bischof, F.; Bjork, R.J.; Blevins, G.; Boehringer, M.; Boerner, T.; Bonek, R.; Bowen, J.D.; Bowling, A.; Boyko, A.N.; Boz, C.; Bracknies, V.; Braune, S.; Brescia Morra, V.; Brochet, B.; Brola, W.; Brownstone, P.K.; Brozman, M.; Brunet, D.; Buraga, I.; Burnett, M.; Buttmann, M.; Butzkueven, H.; Cahill, J.; Calkwood, J.C.; Camu, W.; Cascione, M.; Castelnovo, G.; Centonze, D.; Cerqueira, J.; Chan, A.; Cimprichova, A.; Cohan, S.; Comi, G.; Conway, J.; Cooper, J.A.; Corboy, J.; Correale, J.; Costell, B.; Cottrell, D.A.; Coyle, P.K.; Craner, M.; Cui, L.; Cunha, L.; Czlonkowska, A.; da Silva, A.M.; de Sa, J.; de Seze, J.; Debouverie, M.; Debruyne, J.; Decoo, D.; Defer, G.; Derfuss, T.; Deri, N.H.; Dihenia, B.; Dioszeghy, P.; Donath, V.; Dubois, B.; Duddy, M.; Duquette, P.; Edan, G.; Efendi, H.; Elias, S.; Emrich, P.J.; Estruch, B.C.; Evdoshenko, E.P.; Faiss, J.; Fedyanin, A.S.; Feneberg, W.; Fermont, J.; Fernandez, O.F.; Ferrer, F.C.; Fink, K.; Ford, H.; Ford, C.; Francia, A.; Freedman, M.; Frishberg, B.; Galgani, S.; Garmany, G.P.; Gehring, K.; Gitt, J.; Gobbi, C.; Goldstick, L.P.; Gonzalez, R.A.; Grandmaison, F.; Grigoriadis, N.; Grigorova, O.; Grimaldi, L.M.E.; Gross, J.; Gross-Paju, K.; Gudesblatt, M.; Guillaume, D.; Haas, J.; Hancinova, V.; Hancu, A.; Hardiman, O.; Harmjanz, A.; Heidenreich, F.R.; Hengstman, G.J.D.; Herbert, J.; Herring, M.; Hodgkinson, S.; Hoffmann, O.M.; Hofmann, W.E.; Honeycutt, W.D.; Hua, L.H.; Huang, D.; Huang, Y.; Huang, D.R.; Hupperts, R.; Imre, P.; Jacobs, A.K.; Jakab, G.; Jasinska, E.; Kaida, K.; Kalnina, J.; Kaprelyan, A.; Karelis, G.; Karussis, D.; Katz, A.; Khabirov, F.A.; Khatri, B.; Kimura, T.; Kister, I.; Kizlaitiene, R.; Klimova, E.; Koehler, J.; Komatineni, A.; Kornhuber, A.; Kovacs, K.; Koves, A.; Kozubski, W.; Krastev, G.; Krupp, L.B.; Kurca, E.; Lassek, C.; Laureys, G.; Lee, L.; Lensch, E.; Leutmezer, F.; Li, H.; Linker, R.A.; Linnebank, M.; Liskova, P.; Llanera, C.; Lu, J.; Lutterotti, A.; Lycke, J.; Macdonell, R.; Maciejowski, M.; Maeurer, M.; Magzhanov, R.V.; Maida, E-M.; Malciene, L.; Mao-Draayer, Y.; Marfia, G.A.; Markowitz, C.; Mastorodimos, V.; Matyas, K.; Meca-Lallana, J.; Merino, J.A.G.; Mihetiu, I.G.; Milanov, I.; Miller, A.E.; Millers, A.; Mirabella, M.; Mizuno, M.; Montalban, X.; Montoya, L.; Mori, M.; Mueller, S.; Nakahara, J.; Nakatsuji, Y.; Newsome, S.; Nicholas, R.; Nielsen, A.S.; Nikfekr, E.; Nocentini, U.; Nohara, C.; Nomura, K.; Odinak, M.M.; Olsson, T.; van Oosten, B.W.; Oreja-Guevara, C.; Oschmann, P.; Overell, J.; Pachner, A.; Panczel, G.; Pandolfo, M.; Papeix, C.; Patrucco, L.; Pelletier, J.; Piedrabuena, R.; Pless, M.; Polzer, U.; Pozsegovits, K.; Rastenyte, D.; Rauer, S.; Reifschneider, G.; Rey, R.; Rizvi, S.A.; Robertson, D.; Rodriguez, J.M.; Rog, D.; Roshanisefat, H.; Rowe, V.; Rozsa, C.; Rubin, S.; Rusek, S.; Saccà, F.; Saida, T.; Salgado, A.V.; Sanchez, V.E.F.; Sanders, K.; Satori, M.; Sazonov, D.V.; Scarpini, E.A.; Schlegel, E.; Schluep, M.; Schmidt, S.; Scholz, E.; Schrijver, H.M.; Schwab, M.; Schwartz, R.; Scott, J.; Selmaj, K.; Shafer, S.; Sharrack, B.; Shchukin, I.A.; Shimizu, Y.; Shotekov, P.; Siever, A.; Sigel, K-O.; Silliman, S.; Simo, M.; Simu, M.; Sinay, V.; Siquier, A.E.; Siva, A.; Skoda, O.; Solomon, A.; Stangel, M.; Stefoski, D.; Steingo, B.; Stolyarov, I.D.; Stourac, P.; Strassburger-Krogias, K.; Strauss, E.; Stuve, O.; Tarnev, I.; Tavernarakis, A.; Tello, C.R.; Terzi, M.; Ticha, V.; Ticmeanu, M.; Tiel-Wilck, K.; Toomsoo, T.; Tubridy, N.; Tullman, M.J.; Tumani, H.; Turcani, P.; Turner, B.; Uccelli, A.; Urtaza, F.J.O.; Vachova, M.; Valikovics, A.; Walter, S.; Van Wijmeersch, B.; Vanopdenbosch, L.; Weber, J.R.; Weiss, S.; Weissert, R.; Vermersch, P.; West, T.; Wiendl, H.; Wiertlewski, S.; Wildemann, B.; Willekens, B.; Visser, L.H.; Vorobeychik, G.; Xu, X.; Yamamura, T.; Yang, Y.N.; Yelamos, S.M.; Yeung, M.; Zacharias, A.; Zelkowitz, M.; Zettl, U.; Zhang, M.; Zhou, H.; Zieman, U.; Ziemssen, T. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet, 2018, 391(10127), 1263-1273.
[http://dx.doi.org/10.1016/S0140-6736(18)30475-6] [PMID: 29576505]
[152]
Lassiter, G.; Melancon, C.; Rooney, T.; Murat, A.M.; Kaye, J.S.; Kaye, A.M.; Kaye, R.J.; Cornett, E.M.; Kaye, A.D.; Shah, R.J.; Viswanath, O.; Urits, I. Ozanimod to treat relapsing forms of multiple sclerosis: A comprehensive review of disease, drug efficacy and side effects. Neurol. Int., 2020, 12(3), 89-108.
[http://dx.doi.org/10.3390/neurolint12030016] [PMID: 33287177]
[153]
Scott, F.L.; Clemons, B.; Brooks, J.; Brahmachary, E.; Powell, R.; Dedman, H.; Desale, H.G.; Timony, G.A.; Martinborough, E.; Rosen, H.; Roberts, E.; Boehm, M.F.; Peach, R.J. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol., 2016, 173(11), 1778-1792.
[http://dx.doi.org/10.1111/bph.13476] [PMID: 26990079]
[154]
Tran, J.Q.; Hartung, J.P.; Peach, R.J.; Boehm, M.F.; Rosen, H.; Smith, H.; Brooks, J.L.; Timony, G.A.; Olson, A.D.; Gujrathi, S.; Frohna, P.A. Results from the firstinhuman study with ozanimod, a Novel, selective sphingosine-1-phosphate receptor modulator. J. Clin. Pharmacol., 2017, 57(8), 988-996.
[http://dx.doi.org/10.1002/jcph.887] [PMID: 28398597]
[155]
Lamb, Y.N. Ozanimod: First Approval. Drugs, 2020, 80(8), 841-848.
[http://dx.doi.org/10.1007/s40265-020-01319-7] [PMID: 32385738]
[157]
Celgene a phase 2/3, multi-center, randomized, double-blind, placebo-controlled (Part A) and double-blind, double-dummy, active-controlled (Part B), parallel group study to evaluate the efficacy and safety of RPC1063 administered orally to relapsing multiple sclerosis patients; clinicaltrials.gov. 2021.
[158]
Celgene a phase 3, multi-center, randomized, double-blind, double-dummy, active controlled, parallel group study to evaluate the efficacy and safety of RPC1063 administered orally to relapsing multiple sclerosis patients; clinicaltrials.gov. NCT01628393, 2020.
[159]
Cohen, J.A.; Comi, G.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; Sheffield, J.K.; Minton, N.; Raghupathi, K.; Huang, V.; Kappos, L. Safety and efficacy of ozanimod versus interferon beta1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol., 2019, 18(11), 1021-1033.
[http://dx.doi.org/10.1016/S1474-4422(19)30238-8] [PMID: 31492652]
[160]
Cohen, J.A.; Comi, G.; Arnold, D.L.; Bar-Or, A.; Selmaj, K.W.; Steinman, L.; Havrdová, E.K.; Cree, B.A.C.; Montalbán, X.; Hartung, H.P.; Huang, V.; Frohna, P.; Skolnick, B.E.; Kappos, L. Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Mult. Scler., 2019, 25(9), 1255-1262.
[http://dx.doi.org/10.1177/1352458518789884] [PMID: 30043658]
[161]
Comi, G.; Kappos, L.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; Sheffield, J.K.; Minton, N.; Raghupathi, K.; Ding, N.; Cohen, J.A. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM) : A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol., 2019, 18(11), 1009-1020.
[http://dx.doi.org/10.1016/S1474-4422(19)30239-X] [PMID: 31492651]
[162]
Baldin, E.; Lugaresi, A. Ponesimod for the treatment of relapsing multiple sclerosis. Expert Opin. Pharmacother., 2020, 21(16), 1955-1964.
[http://dx.doi.org/10.1080/14656566.2020.1799977] [PMID: 32808832]
[163]
D’Ambrosio, D.; Steinmann, J.; Brossard, P.; Dingemanse, J. Differential effects of ponesimod, a selective S1P 1 receptor modulator, on blood-circulating human T cell subpopulations. Immunopharmacol. Immunotoxicol., 2015, 37(1), 103-109.
[http://dx.doi.org/10.3109/08923973.2014.993084] [PMID: 25519470]
[165]
Markham, A. Ponesimod: First approval. Drugs, 2021, 81(8), 957-962.
[http://dx.doi.org/10.1007/s40265-021-01523-z] [PMID: 33939119]
[166]
Olsson, T.; Boster, A.; Fernández, O.; Freedman, M.S.; Pozzilli, C.; Bach, D.; Berkani, O.; Mueller, M.S.; Sidorenko, T.; Radue, E.W.; Melanson, M. Oral ponesimod in relapsingremitting multiple sclerosis: A randomised phase II trial. J. Neurol. Neurosurg. Psychiatry., 2014, 85(11), 1198-1208.
[http://dx.doi.org/10.1136/jnnp-2013-307282] [PMID: 24659797]
[167]
Actelion multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-finding study to evaluate the efficacy, safety, and tolerability of three doses of ACT-128800, an oral s1p1 receptor agonist, administered for twenty-four weeks in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT01006265, 2022.
[168]
Kappos, L.; Fox, R.J.; Burcklen, M.; Freedman, M.S.; Havrdová, E.K.; Hennessy, B.; Hohlfeld, R.; Lublin, F.; Montalban, X.; Pozzilli, C.; Scherz, T.; D’Ambrosio, D.; Linscheid, P.; Vaclavkova, A.; Pirozek-Lawniczek, M.; Kracker, H.; Sprenger, T. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 optimum study. JAMA Neurol., 2021, 78(5), 558-567.
[http://dx.doi.org/10.1001/jamaneurol.2021.0405] [PMID: 33779698]
[169]
Actelion multicenter, randomized, double-blind, parallel-group, active-controlled, superiority study to compare the efficacy and safety of ponesimod to teriflunomide in subjects with relapsing multiple sclerosis; clinicaltrials.gov. NCT02425644, 2023.
[170]
Stüve, O.; Bennett, J.L. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS Drug Rev., 2007, 13(1), 79-95.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00003.x] [PMID: 17461891]
[171]
Sheremata, W.A.; Minagar, A.; Alexander, J.S.; Vollmer, T. The role of alpha-4 integrin in the aetiology of multiple sclerosis: Current knowledge and therapeutic implications. CNS Drugs, 2005, 19(11), 909-922.
[http://dx.doi.org/10.2165/00023210-200519110-00002] [PMID: 16268663]
[172]
Biogen a randomized, double-blind, placebo-controlled, parallel-group, multicenter study to determine the safety and efficacy of natalizumab in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT01440101, 2017.
[173]
Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; Toal, M.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. A randomized, placebocontrolled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 354(9), 899-910.
[http://dx.doi.org/10.1056/NEJMoa044397] [PMID: 16510744]
[174]
Miller, D.H.; Soon, D.; Fernando, K.T.; MacManus, D.G.; Barker, G.J.; Yousry, T.A.; Fisher, E.; O’Connor, P.W.; Phillips, J.T.; Polman, C.H.; Kappos, L.; Hutchinson, M.; Havrdova, E.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; Rudick, R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology, 2007, 68(17), 1390-1401.
[http://dx.doi.org/10.1212/01.wnl.0000260064.77700.fd] [PMID: 17452584]
[175]
Biogen a randomized, double-blind, placebo-controlled, parallel-group, multicenter study to determine the safety and efficacy of natalizumab, when added to avonex® (Interferon Beta-1a), in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00030966, 2009.
[176]
Rudick, R.A.; Stuart, W.H.; Calabresi, P.A.; Confavreux, C.; Galetta, S.L.; Radue, E.W.; Lublin, F.D.; Weinstock-Guttman, B.; Wynn, D.R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 354(9), 911-923.
[http://dx.doi.org/10.1056/NEJMoa044396] [PMID: 16510745]
[178]
Clerico, M.; Artusi, C.A.; Di Liberto, A.; Rolla, S.; Bardina, V.; Barbero, P.; De Mercanti, S.F.; Durelli, L. Long-term safety evaluation of natalizumab for the treatment of multiple sclerosis. Expert Opin. Drug Saf., 2017, 16(8), 963-972.
[http://dx.doi.org/10.1080/14740338.2017.1346082] [PMID: 28641055]
[179]
Major, E.O.; Yousry, T.A.; Clifford, D.B. Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: A decade of lessons learned. Lancet Neurol., 2018, 17(5), 467-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30040-1] [PMID: 29656742]
[180]
Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S. Alemtuzumab in multiple sclerosis: Mechanism of action and beyond. Int. J. Mol. Sci., 2015, 16(7), 16414-16439.
[http://dx.doi.org/10.3390/ijms160716414] [PMID: 26204829]
[181]
Hale, G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy, 2001, 3(3), 137-143.
[http://dx.doi.org/10.1080/146532401753174098] [PMID: 12171721]
[182]
Ginaldi, L.; De Martinis, M.; Matutes, E.; Farahat, N.; Morilla, R.; Dyer, M.J.S.; Catovsky, D. Levels of expression of CD52 in normal and leukemic B and T cells : Correlation with in vivo therapeutic responses to Campath-1H. Leuk. Res., 1998, 22(2), 185-191.
[http://dx.doi.org/10.1016/S0145-2126(97)00158-6] [PMID: 9593475]
[183]
Gribben, J.G.; Hallek, M. Rediscovering alemtuzumab: Current and emerging therapeutic roles. Br. J. Haematol., 2009, 144(6), 818-831.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07557.x] [PMID: 19183194]
[184]
Alireza, M.; J Steven, A.; Mohammad Ali, S.; Robert, Z. Alemtuzumab and multiple sclerosis: Therapeutic application. Expert Opin. Biol. Ther., 2010, 10(3), 421-429.
[http://dx.doi.org/10.1517/14712591003586806] [PMID: 20095876]
[185]
Watanabe, T.; Masuyama, J.; Sohma, Y.; Inazawa, H.; Horie, K.; Kojima, K.; Uemura, Y.; Aoki, Y.; Kaga, S.; Minota, S.; Tanaka, T.; Yamaguchi, Y.; Kobayashi, T.; Serizawa, I. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin. Immunol., 2006, 120(3), 247-259.
[http://dx.doi.org/10.1016/j.clim.2006.05.006] [PMID: 16797237]
[186]
Rao, S.P.; Sancho, J.; Campos-Rivera, J.; Boutin, P.M.; Severy, P.B.; Weeden, T.; Shankara, S.; Roberts, B.L.; Kaplan, J.M. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One, 2012, 7(6), e39416.
[http://dx.doi.org/10.1371/journal.pone.0039416] [PMID: 22761788]
[188]
Genzyme, a sanofi company a phase II, randomized, open-label, three-arm study comparing low- and high-dose alemtuzumab and high-dose subcutaneous interferon beta-1a (Rebif®) in patients with early, active relapsing-remitting multiple sclerosis; clinicaltrials.go. NCT00050778, 2015.
[189]
CAMMS223 Trial Investigators. Alemtuzumab vs. Interferon Beta-1a in early multiple sclerosis. N. Engl. J. Med., 2008, 359(17), 1786-1801.
[http://dx.doi.org/10.1056/NEJMoa0802670]
[190]
Coles, A.J.; Fox, E.; Vladic, A.; Gazda, S.K.; Brinar, V.; Selmaj, K.W.; Skoromets, A.; Stolyarov, I.; Bass, A.; Sullivan, H.; Margolin, D.H.; Lake, S.L.; Moran, S.; Palmer, J.; Smith, M.S.; Compston, D.A.S. Alemtuzumab more effective than interferon -1a at 5-year follow-up of CAMMS223 clinical Trial. Neurology, 2012, 78(14), 1069-1078.
[http://dx.doi.org/10.1212/WNL.0b013e31824e8ee7] [PMID: 22442431]
[191]
Genzyme, a sanofi company a phase 3 randomized, rater-blinded study comparing two annual cycles of intravenous alemtuzumab to three-times weekly subcutaneous interferon Beta-1a (Rebif®) in treatment-naïve patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00530348, 2014.
[192]
Genzyme, a sanofi company a phase 3, randomized, rater- and dose-blinded study comparing two annual cycles of intravenous low- and high-dose alemtuzumab to three-times weekly subcutaneous interferon beta 1a (Rebif®) in patients with relapsing remitting multiple sclerosis who have relapsed on therapy; clinicaltrials.gov. NCT00548405, 2017.
[193]
Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; Brinar, V.V.; Giovannoni, G.; Stojanovic, M.; Ertik, B.I.; Lake, S.L.; Margolin, D.H.; Panzara, M.A.; Compston, D.A.S. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet, 2012, 380(9856), 1819-1828.
[http://dx.doi.org/10.1016/S0140-6736(12)61769-3] [PMID: 23122652]
[194]
Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Miller, T.; Fisher, E.; Sandbrink, R.; Lake, S.L.; Margolin, D.H.; Oyuela, P.; Panzara, M.A.; Compston, D.A.S. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet, 2012, 380(9856), 1829-1839.
[http://dx.doi.org/10.1016/S0140-6736(12)61768-1] [PMID: 23122650]
[196]
Genentech, Inc.. Genentech, inc. a phase ii, randomized, double-blind, parallel-group, placebo-controlled, multicenter study to evaluate the safety and efficacy of rituximab (Mabthera/Rituxan) in adults with relapsing remitting multiple sclerosis; clinicaltrials.gov. NCT00097188, 2014.
[197]
Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; Langer-Gould, A.; Smith, C.H. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med., 2008, 358(7), 676-688.
[http://dx.doi.org/10.1056/NEJMoa0706383] [PMID: 18272891]
[198]
A Study to Evaluate the Safety and Efficacy of Rituximab in Adults With Primary Progressive Multiple Sclerosis (OLYMPUS), Available at: https://clinicaltrials.gov/study/NCT00087529
[199]
Hawker, K.; O’Connor, P.; Freedman, M.S.; Calabresi, P.A.; Antel, J.; Simon, J.; Hauser, S.; Waubant, E.; Vollmer, T.; Panitch, H.; Zhang, J.; Chin, P.; Smith, C.H. Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol., 2009, 66(4), 460-471.
[http://dx.doi.org/10.1002/ana.21867] [PMID: 19847908]
[200]
Sorensen, P.S.; Blinkenberg, M. The potential role for ocrelizumab in the treatment of multiple sclerosis: Current evidence and future prospects. Ther. Adv. Neurol. Disord., 2016, 9(1), 44-52.
[http://dx.doi.org/10.1177/1756285615601933] [PMID: 26788130]
[201]
Genovese, M.C.; Kaine, J.L.; Lowenstein, M.B.; Giudice, J.D.; Baldassare, A.; Schechtman, J.; Fudman, E.; Kohen, M.; Gujrathi, S.; Trapp, R.G.; Sweiss, N.J.; Spaniolo, G.; Dummer, W. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum., 2008, 58(9), 2652-2661.
[http://dx.doi.org/10.1002/art.23732] [PMID: 18759293]
[202]
Kausar, F.; Mustafa, K.; Sweis, G.; Sawaqed, R.; Alawneh, K.; Salloum, R.; Badaracco, M.; Niewold, T.B.; Sweiss, N.J. Ocrelizumab: A step forward in the evolution of B-cell therapy. Expert Opin. Biol. Ther., 2009, 9(7), 889-895.
[http://dx.doi.org/10.1517/14712590903018837] [PMID: 19463076]
[203]
Morschhauser, F.; Marlton, P.; Vitolo, U.; Lindén, O.; Seymour, J.F.; Crump, M.; Coiffier, B.; Foà, R.; Wassner, E.; Burger, H.U.; Brennan, B.; Mendila, M. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann. Oncol., 2010, 21(9), 1870-1876.
[http://dx.doi.org/10.1093/annonc/mdq027] [PMID: 20157180]
[204]
Li, R.; Patterson, K.R.; Bar-Or, A.; Reassessing, B. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol., 2018, 19(7), 696-707.
[http://dx.doi.org/10.1038/s41590-018-0135-x] [PMID: 29925992]
[205]
Sabatino, J.J., Jr; Pröbstel, A.K.; Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci., 2019, 20(12), 728-745.
[http://dx.doi.org/10.1038/s41583-019-0233-2] [PMID: 31712781]
[206]
Hoffmann-La Roche. Hoffmann-la roche a randomized, double-blind, double-dummy, parallel-group study to evaluate the efficacy and safety of ocrelizumab in comparison to interferon beta-1a (Rebif®) in patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT01412333, 2022.
[207]
Hoffmann-La Roche. A Randomized, double-blind, double-dummy, parallel-group study to evaluate the efficacy and safety of ocrelizumab in comparison to interferon beta-1a (Rebif) in patients with relapsing multiple sclerosis; clinicaltrials.gov NCT01412333, 2022.
[208]
Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Wolinsky, J.S.; Arnold, D.L.; Klingelschmitt, G.; Masterman, D.; Fontoura, P.; Belachew, S.; Chin, P.; Mairon, N.; Garren, H.; Kappos, L. Ocrelizumab versus Interferon Beta-1a in relapsing multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 221-234.
[http://dx.doi.org/10.1056/NEJMoa1601277] [PMID: 28002679]
[209]
Hoffmann-La Roche. A Phase III, Multicentre, Randomized, Parallel-Group, Double-Blind, Placebo Controlled Study to Evaluate the Efficacy and Safety of Ocrelizumab in Adults With Primary Progressive Multiple Sclerosis; clinicaltrials.gov NCT01194570, 2022.
[210]
Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Sauter, A.; Masterman, D.; Fontoura, P.; Belachew, S.; Garren, H.; Mairon, N.; Chin, P.; Wolinsky, J.S. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 209-220.
[http://dx.doi.org/10.1056/NEJMoa1606468] [PMID: 28002688]
[212]
Hoffmann-La Roche. Hoffmann-la roche an open-label, single-arm study to evaluate the effectiveness and safety of ocrelizumab in patients with early stage relapsing remitting multiple sclerosis; clinicaltrials.gov. NCT03085810, 2022.
[213]
Hartung, H-P.; Berger, T.; Bermel, R.A.; Brochet, B.; Carroll, W.M.; Holmøy, T.; Karabudak, R.; Killestein, J.; Nos, C.; Patti, F.; Ross, A.P.; Vanopdenbosch, L.; Vollmer, T.; Buffels, R.; Garas, M.; Kadner, K.; Manfrini, M.; Wang, Q.; Freedman, M.S. Shorter infusion time of ocrelizumab: Results from the randomized, double-blind ensemble plus substudy in patients with relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord., 2020, 46, 102492.
[http://dx.doi.org/10.1016/j.msard.2020.102492] [PMID: 33039944]
[214]
Hauser, S.L.; Cross, A.H.; Winthrop, K.; Wiendl, H.; Nicholas, J.; Meuth, S.G.; Giacomini, P.S.; Saccà, F.; Mancione, L.; Zielman, R.; Bagger, M.; Gupta, A.D.; Häring, D.A.; Jehl, V.; Kieseier, B.C.; Pingili, R.; Stoneman, D.; Su, W.; Willi, R.; Kappos, L. Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Mult Scler, 2022, 28(10), 1576-1590.
[http://dx.doi.org/10.1177/13524585221079731] [PMID: 35229668]
[215]
Sorensen, P.S.; Lisby, S.; Grove, R.; Derosier, F.; Shackelford, S.; Havrdova, E.; Drulovic, J.; Filippi, M. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: A phase 2 study. Neurology, 2014, 82(7), 573-581.
[http://dx.doi.org/10.1212/WNL.0000000000000125] [PMID: 24453078]
[217]
Novartis Pharmaceuticals. A randomized, double-blind, doubledummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis; clinicaltrials.gov NCT02792218, 2021.
[218]
Novartis Pharmaceuticals. A Randomized, double-blind, doubledummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis.; clinicaltrials.gov. NCT02792231, 2021.
[219]
Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; Selmaj, K.; Wiendl, H.; Kerloeguen, C.; Willi, R.; Li, B.; Kakarieka, A.; Tomic, D.; Goodyear, A.; Pingili, R.; Häring, D.A.; Ramanathan, K.; Merschhemke, M.; Kappos, L. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med., 2020, 383(6), 546-557.
[http://dx.doi.org/10.1056/NEJMoa1917246] [PMID: 32757523]
[220]
Kang, C.; Blair, H.A. Ofatumumab: A review in relapsing forms of multiple sclerosis. Drugs, 2022, 82(1), 55-62.
[http://dx.doi.org/10.1007/s40265-021-01650-7] [PMID: 34897575]
[221]
Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; Lankester, A.C.; Mohty, M.; Neven, B.; de Latour, R.P.; Pedrazzoli, P.; Peric, Z.; Yakoub-Agha, I.; Sureda, A.; Kröger, N. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant., 2022, 57(8), 1217-1239.
[http://dx.doi.org/10.1038/s41409-022-01691-w] [PMID: 35589997]
[222]
Sharrack, B.; Saccardi, R.; Alexander, T.; Badoglio, M.; Burman, J.; Farge, D.; Greco, R.; Jessop, H.; Kazmi, M.; Kirgizov, K.; Labopin, M.; Mancardi, G.; Martin, R.; Moore, J.; Muraro, P.A.; Rovira, M.; Sormani, M.P.; Snowden, J.A. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: Updated guidelines and recommendations from the EBMT autoimmune diseases working party (ADWP) and the joint accreditation committee of EBMT and ISCT (JACIE). Bone Marrow Transplant., 2020, 55(2), 283-306.
[http://dx.doi.org/10.1038/s41409-019-0684-0] [PMID: 31558790]
[223]
Muraro, P.A.; Martin, R.; Mancardi, G.L.; Nicholas, R.; Sormani, M.P.; Saccardi, R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol., 2017, 13(7), 391-405.
[http://dx.doi.org/10.1038/nrneurol.2017.81] [PMID: 28621766]
[224]
Cencioni, M.T.; Genchi, A.; Brittain, G.; de Silva, T.I.; Sharrack, B.; Snowden, J.A.; Alexander, T.; Greco, R.; Muraro, P.A. Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis: A review on behalf of the EBMT autoimmune diseases working party. Front. Immunol., 2022, 12, 813957.
[http://dx.doi.org/10.3389/fimmu.2021.813957] [PMID: 35178046]
[225]
Mariottini, A.; De Matteis, E.; Muraro, P.A. Haematopoietic stem cell transplantation for multiple sclerosis: Current status. BioDrugs, 2020, 34(3), 307-325.
[http://dx.doi.org/10.1007/s40259-020-00414-1] [PMID: 32166703]
[226]
Larsson, D.; Åkerfeldt, T.; Carlson, K.; Burman, J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler., 2020, 26(11), 1351-1359.
[http://dx.doi.org/10.1177/1352458519863983] [PMID: 31347948]
[227]
Tolf, A.; Fagius, J.; Carlson, K.; Åkerfeldt, T.; Granberg, T.; Larsson, E.M.; Burman, J. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol. Scand., 2019, 140(5), 320-327.
[http://dx.doi.org/10.1111/ane.13147] [PMID: 31297793]
[228]
Burt, R.K.; Muraro, P.A.; Farge, D.; Oliveira, M.C.; Snowden, J.A.; Saccardi, R.; Han, X.; Quigley, K.; Bueno, V.; Frasca, D.; Fedorenko, D.; Burman, J. New autoimmune diseases after autologous hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplant., 2021, 56(7), 1509-1517.
[http://dx.doi.org/10.1038/s41409-021-01277-y] [PMID: 33911200]
[229]
Daikeler, T.; Labopin, M.; Di Gioia, M.; Abinun, M.; Alexander, T.; Miniati, I.; Gualandi, F.; Fassas, A.; Martin, T.; Schwarze, C.P.; Wulffraat, N.; Buch, M.; Sampol, A.; Carreras, E.; Dubois, B.; Gruhn, B.; Güngör, T.; Pohlreich, D.; Schuerwegh, A.; Snarski, E.; Snowden, J.; Veys, P.; Fasth, A.; Lenhoff, S.; Messina, C.; Voswinkel, J.; Badoglio, M.; Henes, J.; Launay, D.; Tyndall, A.; Gluckman, E.; Farge, D. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: A retrospective study of the EBMT autoimmune disease working party. Blood, 2011, 118(6), 1693-1698.
[http://dx.doi.org/10.1182/blood-2011-02-336156] [PMID: 21596847]
[230]
Snarski, E.; Snowden, J.A.; Oliveira, M.C.; Simoes, B.; Badoglio, M.; Carlson, K.; Burman, J.; Moore, J.; Rovira, M.; Clark, R.E.; Saiz, A.; Hadj-Khelifa, S.; Tan, J.; Crescimanno, A.; Musso, M.; Martin, T.; Farge, D. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: A retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplant., 2015, 50(2), 216-220.
[http://dx.doi.org/10.1038/bmt.2014.248] [PMID: 25387098]
[231]
Massarotti, C.; Sbragia, E.; Boffa, G.; Vercelli, C.; Zimatore, G.B.; Cottone, S.; Frau, J.; Raiola, A.; Varaldo, R.; Mancardi, G.; Inglese, M.; Anserini, P. Menstrual cycle resumption and female fertility after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler., 2021, 27(13), 2103-2107.
[http://dx.doi.org/10.1177/13524585211000616] [PMID: 33709839]
[232]
Muraro, P.A.; Pasquini, M.; Atkins, H.L.; Bowen, J.D.; Farge, D.; Fassas, A.; Freedman, M.S.; Georges, G.E.; Gualandi, F.; Hamerschlak, N.; Havrdova, E.; Kimiskidis, V.K.; Kozak, T.; Mancardi, G.L.; Massacesi, L.; Moraes, D.A.; Nash, R.A.; Pavletic, S.; Ouyang, J.; Rovira, M.; Saiz, A.; Simoes, B.; Trnený, M.; Zhu, L.; Badoglio, M.; Zhong, X.; Sormani, M.P.; Saccardi, R. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol., 2017, 74(4), 459-469.
[http://dx.doi.org/10.1001/jamaneurol.2016.5867] [PMID: 28241268]
[233]
Atkins, H.L.; Bowman, M.; Allan, D.; Anstee, G.; Arnold, D.L.; Bar-Or, A.; Bence-Bruckler, I.; Birch, P.; Bredeson, C.; Chen, J.; Fergusson, D.; Halpenny, M.; Hamelin, L.; Huebsch, L.; Hutton, B.; Laneuville, P.; Lapierre, Y.; Lee, H.; Martin, L.; McDiarmid, S.; O’Connor, P.; Ramsay, T.; Sabloff, M.; Walker, L.; Freedman, M.S. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: A multicentre single-group phase 2 trial. Lancet, 2016, 388(10044), 576-585.
[http://dx.doi.org/10.1016/S0140-6736(16)30169-6] [PMID: 27291994]
[234]
Moore, J.J.; Massey, J.C.; Ford, C.D.; Khoo, M.L.; Zaunders, J.J.; Hendrawan, K.; Barnett, Y.; Barnett, M.H.; Kyle, K.A.; Zivadinov, R.; Ma, K.C.; Milliken, S.T.; Sutton, I.J.; Ma, D.D.F. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2019, 90(5), 514-521.
[http://dx.doi.org/10.1136/jnnp-2018-319446] [PMID: 30538138]
[235]
Nash, R.A.; Hutton, G.J.; Racke, M.K.; Popat, U.; Devine, S.M.; Steinmiller, K.C.; Griffith, L.M.; Muraro, P.A.; Openshaw, H.; Sayre, P.H.; Stuve, O.; Arnold, D.L.; Wener, M.H.; Georges, G.E.; Wundes, A.; Kraft, G.H.; Bowen, J.D. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology, 2017, 88(9), 842-852.
[http://dx.doi.org/10.1212/WNL.0000000000003660] [PMID: 28148635]
[236]
Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: The swedish experience cochrane library Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01771281/full
[237]
Burt, R.K.; Balabanov, R.; Han, X.; Sharrack, B.; Morgan, A.; Quigley, K.; Yaung, K.; Helenowski, I.B.; Jovanovic, B.; Spahovic, D.; Arnautovic, I.; Lee, D.C.; Benefield, B.C.; Futterer, S.; Oliveira, M.C.; Burman, J. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA, 2015, 313(3), 275-284.
[http://dx.doi.org/10.1001/jama.2014.17986] [PMID: 25602998]
[238]
Lee, H.; Nakamura, K.; Narayanan, S.; Brown, R.; Chen, J.; Atkins, H.L.; Freedman, M.S.; Arnold, D.L. Impact of immunoablation and autologous hematopoietic stem cell transplantation on gray and white matter atrophy in multiple sclerosis. Mult. Scler., 2018, 24(8), 1055-1066.
[http://dx.doi.org/10.1177/1352458517715811] [PMID: 28617152]
[239]
Mariottini, A.; Filippini, S.; Innocenti, C.; Forci, B.; Mechi, C.; Barilaro, A.; Fani, A.; Carlucci, G.; Saccardi, R.; Massacesi, L.; Repice, A.M. Impact of autologous haematopoietic stem cell transplantation on disability and brain atrophy in secondary progressive multiple sclerosis. Mult. Scler., 2021, 27(1), 61-70.
[http://dx.doi.org/10.1177/1352458520902392] [PMID: 32008439]
[240]
Burt, R.K.; Balabanov, R.; Burman, J.; Sharrack, B.; Snowden, J.A.; Oliveira, M.C.; Fagius, J.; Rose, J.; Nelson, F.; Barreira, A.A.; Carlson, K.; Han, X.; Moraes, D.; Morgan, A.; Quigley, K.; Yaung, K.; Buckley, R.; Alldredge, C.; Clendenan, A.; Calvario, M.A.; Henry, J.; Jovanovic, B.; Helenowski, I.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA, 2019, 321(2), 165-174.
[http://dx.doi.org/10.1001/jama.2018.18743] [PMID: 30644983]
[241]
Burt, R.K.; Han, X.; Quigley, K.; Helenowski, I.B.; Balabanov, R. Real-world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J. Neurol., 2022, 269(5), 2513-2526.
[http://dx.doi.org/10.1007/s00415-021-10820-2] [PMID: 34633525]
[242]
Cohen, J.A.; Baldassari, L.E.; Atkins, H.L.; Bowen, J.D.; Bredeson, C.; Carpenter, P.A.; Corboy, J.R.; Freedman, M.S.; Griffith, L.M.; Lowsky, R.; Majhail, N.S.; Muraro, P.A.; Nash, R.A.; Pasquini, M.C.; Sarantopoulos, S.; Savani, B.N.; Storek, J.; Sullivan, K.M.; Georges, G.E. Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: Position statement from the American society for blood and marrow transplantation. Biol. Blood Marrow Transplant., 2019, 25(5), 845-854.
[http://dx.doi.org/10.1016/j.bbmt.2019.02.014] [PMID: 30794930]
[243]
Kim, Y.H.; Choi, B.K.; Oh, H.S.; Kang, W.J.; Mittler, R.S.; Kwon, B.S. Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol. Cancer Ther., 2009, 8(2), 469-478.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0993] [PMID: 19190115]
[244]
Awad, A.; Stüve, O. Review: Cyclophosphamide in multiple sclerosis: Scientific rationale, history and novel treatment paradigms. Ther. Adv. Neurol. Disord., 2009, 2(6), 357-368.
[http://dx.doi.org/10.1177/1756285609344375] [PMID: 21180630]
[245]
Juma, F.D.; Rogers, H.J.; Trounce, J.R. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br. J. Clin. Pharmacol., 1979, 8(3), 209-217.
[http://dx.doi.org/10.1111/j.1365-2125.1979.tb01004.x] [PMID: 497087]
[246]
Bahr, U.; Schulten, H.R.; Hommes, O.R.; Aerts, F. Determination of cyclophosphamide in urine, serum and cerebrospinal fluid of multiple sclerosis patients by field desorption mass spectrometry. Clin. Chim. Acta, 1980, 103(2), 183-192.
[http://dx.doi.org/10.1016/0009-8981(80)90212-0] [PMID: 7371197]
[247]
Egorin, M.J.; Kaplan, R.S.; Salcman, M.; Aisner, J.; Colvin, M.; Wiernik, P.H.; Bachur, N.R. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin. Pharmacol. Ther., 1982, 32(1), 122-128.
[http://dx.doi.org/10.1038/clpt.1982.135] [PMID: 7083726]
[248]
Farmaci con uso consolidato nel trattamento di patologie neurologiche per indicazioni anche differenti da quelle previste dal provvedimento di autorizzazione all’immissione in commercio. 2021. Available at: Https://Www.Aifa.Gov
[249]
Aimard, G.; Girard, P.F.; Raveau, J. Multiple sclerosis and the autoimmunization process. Treatment by antimitotics. Lyon Med., 1966, 215(6), 345-352.
[PMID: 5906182]
[250]
Brochet, B.; Deloire, M.S.A.; Perez, P.; Loock, T.; Baschet, L.; Debouverie, M.; Pittion, S.; Ouallet, J.C.; Clavelou, P.; de Sèze, J.; Collongues, N.; Vermersch, P.; Zéphir, H.; Castelnovo, G.; Labauge, P.; Lebrun, C.; Cohen, M.; Ruet, A. Double-blind controlled randomized trial of cyclophosphamide versus methylprednisolone in secondary progressive multiple sclerosis. PLoS One, 2017, 12(1), e0168834.
[http://dx.doi.org/10.1371/journal.pone.0168834] [PMID: 28045953]
[251]
Zephir, H.; de Seze, J.; Duhamel, A.; Debouverie, M.; Hautecoeur, P.; Lebrun, C.; Malikova, I.; Pelletier, J.; Sénéchal, O.; Vermersch, P. Treatment of progressive forms of multiple sclerosis by cyclophosphamide: A cohort study of 490 patients. J. Neurol. Sci., 2004, 218(1-2), 73-77.
[http://dx.doi.org/10.1016/j.jns.2003.11.004] [PMID: 14759636]
[252]
Ab, B.; Ut, B.; M, T. Long-term remissions with use of high dose cyclophosphamide in multiple sclerosis. J. Mult. Scler., 2016, 3(4)
[http://dx.doi.org/10.4172/2376-0389.1000185]
[253]
The Canadian Cooperative Multiple Sclerosis Study Group. The canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. Lancet, 1991, 337(8739), 441-446.
[http://dx.doi.org/10.1016/0140-6736(91)93389-Q] [PMID: 1671468]
[254]
Perini, P.; Calabrese, M.; Tiberio, M.; Ranzato, F.; Battistin, L.; Gallo, P. Mitoxantrone versus cyclophosphamide in secondary-progressive multiple sclerosis. J. Neurol., 2006, 253(8), 1034-1040.
[http://dx.doi.org/10.1007/s00415-006-0154-7] [PMID: 16609811]
[255]
Hartung, H.P.; Gonsette, R.; König, N.; Kwiecinski, H.; Guseo, A.; Morrissey, S.P.; Krapf, H.; Zwingers, T. Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet, 2002, 360(9350), 2018-2025.
[http://dx.doi.org/10.1016/S0140-6736(02)12023-X] [PMID: 12504397]
[256]
Gómez-Figueroa, E.; Gutierrez-Lanz, E.; Alvarado-Bolaños, A.; Casallas-Vanegas, A.; Garcia-Estrada, C.; Zabala-Angeles, I.; Cadena-Fernandez, A.; Veronica, R.A.; Irene, T.F.; Flores-Rivera, J. Cyclophosphamide treatment in active multiple sclerosis. Neurol. Sci., 2021, 42(9), 3775-3780.
[http://dx.doi.org/10.1007/s10072-021-05052-1] [PMID: 33452657]
[257]
Rotstein, D.; Montalban, X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat. Rev. Neurol., 2019, 15(5), 287-300.
[http://dx.doi.org/10.1038/s41582-019-0170-8] [PMID: 30940920]
[258]
Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; Hartung, H.P.; Havrdova, E.; Hemmer, B.; Kappos, L.; Liblau, R.; Lubetzki, C.; Marcus, E.; Miller, D.H.; Olsson, T.; Pilling, S.; Selmaj, K.; Siva, A.; Sorensen, P.S.; Sormani, M.P.; Thalheim, C.; Wiendl, H.; Zipp, F. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler., 2018, 24(2), 96-120.
[http://dx.doi.org/10.1177/1352458517751049] [PMID: 29353550]
[259]
Rae-Grant, A.; Day, G.S.; Marrie, R.A.; Rabinstein, A.; Cree, B.A.C.; Gronseth, G.S.; Haboubi, M.; Halper, J.; Hosey, J.P.; Jones, D.E.; Lisak, R.; Pelletier, D.; Potrebic, S.; Sitcov, C.; Sommers, R.; Stachowiak, J.; Getchius, T.S.D.; Merillat, S.A.; Pringsheim, T. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology, 2018, 90(17), 777-788.
[http://dx.doi.org/10.1212/WNL.0000000000005347] [PMID: 29686116]
[260]
Prosperini, L.; Mancinelli, C.R.; Solaro, C.M.; Nociti, V.; Haggiag, S.; Cordioli, C.; De Giglio, L.; De Rossi, N.; Galgani, S.; Rasia, S.; Ruggieri, S.; Tortorella, C.; Capra, R.; Mirabella, M.; Gasperini, C. Induction versus escalation in multiple sclerosis: A 10-year real world study. Neurotherapeutics, 2020, 17(3), 994-1004.
[http://dx.doi.org/10.1007/s13311-020-00847-0] [PMID: 32236822]
[261]
Weideman, A.M.; Tapia-Maltos, M.A.; Johnson, K.; Greenwood, M.; Bielekova, B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol., 2017, 8, 577.
[http://dx.doi.org/10.3389/fneur.2017.00577] [PMID: 29176956]
[262]
Ms, F. Managing multiple sclerosis: Treatment initiation, modification, and sequencing. Can J Neurol Sci, 2018, 45(5), 489-503.
[http://dx.doi.org/10.1017/cjn.2018.17]
[263]
Freeman, L.; Longbrake, E.E.; Coyle, P.K.; Hendin, B.; Vollmer, T. High-efficacy therapies for treatment-naïve individuals with relapsing–remitting multiple sclerosis. CNS Drugs, 2022, 36(12), 1285-1299.
[http://dx.doi.org/10.1007/s40263-022-00965-7] [PMID: 36350491]
[264]
Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; Tallantyre, E. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol., 2019, 76(5), 536-541.
[http://dx.doi.org/10.1001/jamaneurol.2018.4905] [PMID: 30776055]
[265]
Pipek, L.Z.; Mahler, J.V.; Nascimento, R.F.V.; Apóstolos-Pereira, S.L.; Silva, G.D.; Callegaro, D. Cost, efficacy, and safety comparison between early intensive and escalating strategies for multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord., 2023, 71, 104581.
[http://dx.doi.org/10.1016/j.msard.2023.104581] [PMID: 36848839]
[266]
Iaffaldano, P.; Lucisano, G.; Caputo, F.; Paolicelli, D.; Patti, F.; Zaffaroni, M.; Brescia Morra, V.; Pozzilli, C.; De Luca, G.; Inglese, M.; Salemi, G.; Maniscalco, G.T.; Cocco, E.; Sola, P.; Lus, G.; Conte, A.; Amato, M.P.; Granella, F.; Gasperini, C.; Bellantonio, P.; Totaro, R.; Rovaris, M.; Salvetti, M.; Torri Clerici, V.L.A.; Bergamaschi, R.; Maimone, D.; Scarpini, E.; Capobianco, M.; Comi, G.; Filippi, M.; Trojano, M. Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Ther. Adv. Neurol. Disord., 2021, 14
[http://dx.doi.org/10.1177/17562864211019574] [PMID: 34104220]
[267]
Simpson, A.; Mowry, E.M.; Newsome, S.D. Early aggressive treatment approaches for multiple sclerosis. Curr. Treat. Options Neurol., 2021, 23(7), 19.
[http://dx.doi.org/10.1007/s11940-021-00677-1] [PMID: 34025110]
[268]
Le Page, E.; Edan, G. Induction or escalation therapy for patients with multiple sclerosis? Rev. Neurol., 2018, 174(6), 449-457.
[http://dx.doi.org/10.1016/j.neurol.2018.04.004] [PMID: 29799415]
[269]
Comi, G.; Radaelli, M.; Soelberg Sørensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet, 2017, 389(10076), 1347-1356.
[http://dx.doi.org/10.1016/S0140-6736(16)32388-1] [PMID: 27889192]
[270]
Corboy, J.R.; Weinshenker, B.G.; Wingerchuk, D.M. Comment on 2018 American academy of neurology guidelines on disease-modifying therapies in MS. Neurology, 2018, 90(24), 1106-1112.
[http://dx.doi.org/10.1212/WNL.0000000000005574] [PMID: 29685920]
[271]
Filippi, M.; Amato, M.P.; Centonze, D.; Gallo, P.; Gasperini, C.; Inglese, M.; Patti, F.; Pozzilli, C.; Preziosa, P.; Trojano, M. Early use of high-efficacy disease‑modifying therapies makes the difference in people with multiple sclerosis: An expert opinion. J. Neurol., 2022, 269(10), 5382-5394.
[http://dx.doi.org/10.1007/s00415-022-11193-w] [PMID: 35608658]
[272]
Linker, R.A.; Chan, A. Navigating choice in multiple sclerosis management. Neurol. Res. Pract., 2019, 1(1), 5.
[http://dx.doi.org/10.1186/s42466-019-0005-5] [PMID: 33324871]
[273]
Zhang, T.; Tremlett, H.; Leung, S.; Zhu, F.; Kingwell, E.; Fisk, J.D.; Bhan, V.; Campbell, T.L.; Stadnyk, K.; Yu, B.N.; Marrie, R.A. Examining the effects of comorbidities on disease-modifying therapy use in multiple sclerosis. Neurology, 2016, 86(14), 1287-1295.
[http://dx.doi.org/10.1212/WNL.0000000000002543] [PMID: 26944268]
[274]
Singer, B.A. Initiating oral fingolimod treatment in patients with multiple sclerosis. Ther. Adv. Neurol. Disord., 2013, 6(4), 269-275.
[http://dx.doi.org/10.1177/1756285613491520] [PMID: 23858329]
[275]
Magyari, M.; Sorensen, P.S. Comorbidity in multiple sclerosis. Front. Neurol., 2020, 11, 851.
[http://dx.doi.org/10.3389/fneur.2020.00851] [PMID: 32973654]
[276]
Dema, M.; Eixarch, H.; Villar, L.M.; Montalban, X.; Espejo, C. Immunosenescence in multiple sclerosis: The identification of new therapeutic targets. Autoimmun. Rev., 2021, 20(9), 102893.
[http://dx.doi.org/10.1016/j.autrev.2021.102893] [PMID: 34237417]
[277]
Vaughn, C.B.; Jakimovski, D.; Kavak, K.S.; Ramanathan, M.; Benedict, R.H.B.; Zivadinov, R.; Weinstock-Guttman, B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat. Rev. Neurol., 2019, 15(6), 329-342.
[http://dx.doi.org/10.1038/s41582-019-0183-3] [PMID: 31000816]
[278]
Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. N. Engl. J. Med., 1998, 339(5), 285-291.
[http://dx.doi.org/10.1056/NEJM199807303390501] [PMID: 9682040]
[279]
Houtchens, M.K.; Kolb, C.M. Multiple sclerosis and pregnancy: Therapeutic considerations. J. Neurol., 2013, 260(5), 1202-1214.
[http://dx.doi.org/10.1007/s00415-012-6653-9] [PMID: 22926165]
[280]
Voskuhl, R.; Momtazee, C. Pregnancy: Effect on multiple sclerosis, treatment considerations, and breastfeeding. Neurotherapeutics, 2017, 14(4), 974-984.
[http://dx.doi.org/10.1007/s13311-017-0562-7] [PMID: 28766273]
[281]
Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler, 2019, 25(14)
[http://dx.doi.org/10.1177/1352458518814117]
[282]
Altokhis, A.I.; Hibbert, A.M.; Allen, C.M.; Mougin, O.; Alotaibi, A.; Lim, S.Y.; Constantinescu, C.S.; Abdel-Fahim, R.; Evangelou, N. Longitudinal clinical study of patients with iron rim lesions in multiple sclerosis. Mult. Scler., 2022, 28(14), 2202-2211.
[http://dx.doi.org/10.1177/13524585221114750] [PMID: 36000485]
[283]
Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Höftberger, R.; Berger, T.; Auff, E.; Leutmezer, F.; Trattnig, S.; Lassmann, H.; Bagnato, F.; Hametner, S. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging. Acta Neuropathol., 2017, 133(1), 25-42.
[http://dx.doi.org/10.1007/s00401-016-1636-z] [PMID: 27796537]
[284]
Zhang, Y.; Gauthier, S.A.; Gupta, A.; Chen, W.; Comunale, J.; Chiang, G.C.Y.; Zhou, D.; Askin, G.; Zhu, W.; Pitt, D.; Wang, Y. Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: Myelin breakdown, myelin debris degradation and removal, and iron accumulation. AJNR Am. J. Neuroradiol., 2016, 37(9), 1629-1635.
[http://dx.doi.org/10.3174/ajnr.A4825] [PMID: 27256856]
[285]
Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of chronic active multiple sclerosis lesions with disability In Vivo. JAMA Neurol., 2019, 76(12), 1474-1483.
[http://dx.doi.org/10.1001/jamaneurol.2019.2399] [PMID: 31403674]
[286]
Calvi, A.; Carrasco, F.P.; Tur, C.; Chard, D.T.; Stutters, J.; De Angelis, F.; John, N.; Williams, T.; Doshi, A.; Samson, R.S.; MacManus, D.; Gandini Wheeler-Kingshott, C.A.; Ciccarelli, O.; Chataway, J.; Barkhof, F. Association of slowly expanding lesions on mri with disability in people with secondary progressive multiple sclerosis. Neurology, 2022, 98(17), e1783-e1793.
[http://dx.doi.org/10.1212/WNL.0000000000200144] [PMID: 35277438]
[287]
Maggi, P.; Kuhle, J.; Schädelin, S.; van der Meer, F.; Weigel, M.; Galbusera, R.; Mathias, A.; Lu, P.J.; Rahmanzadeh, R.; Benkert, P.; La Rosa, F.; Bach Cuadra, M.; Sati, P.; Théaudin, M.; Pot, C.; van Pesch, V.; Leppert, D.; Stadelmann, C.; Kappos, L.; Du Pasquier, R.; Reich, D.S.; Absinta, M.; Granziera, C. Chronic white matter inflammation and serum neurofilament levels in multiple sclerosis. Neurology, 2021, 97(6), e543-e553.
[http://dx.doi.org/10.1212/WNL.0000000000012326] [PMID: 34088875]
[288]
Elliott, C.; Belachew, S.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Fecker, J.; Model, F.; Wei, W.; Arnold, D.L. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain, 2019, 142(9), 2787-2799.
[http://dx.doi.org/10.1093/brain/awz212] [PMID: 31497864]
[289]
Beynon, V.; George, I.C.; Elliott, C.; Arnold, D.L.; Ke, J.; Chen, H.; Zhu, L.; Ke, C.; Giovannoni, G.; Scaramozza, M.; Campbell, N.; Bradley, D.P.; Franchimont, N.; Gafson, A.; Belachew, S. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurology Open, 2022, 4(1), e000240.
[http://dx.doi.org/10.1136/bmjno-2021-000240] [PMID: 35720980]
[290]
Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Kornek, B.; Kasprian, G.; Berger, T.; Leutmezer, F.; Rommer, P.S.; Trattnig, S.; Lassmann, H.; Hametner, S. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain, 2021, 144(3), 833-847.
[http://dx.doi.org/10.1093/brain/awaa436] [PMID: 33484118]
[291]
Zhang, S.; Nguyen, T.D.; Hurtado Rúa, S.M.; Kaunzner, U.W.; Pandya, S.; Kovanlikaya, I.; Spincemaille, P.; Wang, Y.; Gauthier, S.A. Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions. AJNR Am. J. Neuroradiol., 2019, 40(6), 987-993.
[http://dx.doi.org/10.3174/ajnr.A6071] [PMID: 31097429]
[292]
Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mareš, M.; Khabirov, F.A.; Traboulsee, A.; Grand’Maison, F.; Jacques, F.; Traboulsee, A.; Tyblova, M.; Meluzinova, E.; Ampapa, R.; Valis, M.; Hradilke, P.; Mareš, M.; Stourac, P.; Gross-Paju, K.; Laplaud, D.; Mathey, G.; Uitdehaag, B.; Evdoshenkoo, E.; Popova, E.; Zakharova, M.; Totolyan, N.; Litvinenko, I.; Khabirov, F.; Sivertseva, S.; Hancinova, V.; Kantorova, E.; Gines, M.L.M.; Montalban, X.; Maduano, S.E.; Meca-Lallana, J.; Ramió-Torrentà, L.; Nehrych, T.; Pashkovskyy, V.; Moskovko, S.; Kalbus, O.; Khavunka, M.; Pryshchepa, V.; Goloborodko, A.; Wynn, D.; Honeycutt, W.; Wray, S.; Steingo, B.; LaGanke, C.; Huang, D.; Hemphill, J.M.; Goldstick, L.; Robertson, D. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2021, 20(9), 729-738.
[http://dx.doi.org/10.1016/S1474-4422(21)00237-4] [PMID: 34418400]
[293]
Zinger, N.; Ponath, G.; Sweeney, E.; Nguyen, T.D.; Lo, C.H.; Diaz, I.; Dimov, A.; Teng, L.; Zexter, L.; Comunale, J.; Wang, Y.; Pitt, D.; Gauthier, S.A. Dimethyl fumarate reduces inflammation in chronic active multiple sclerosis lesions. Neurol. Neuroimmunol. Neuroinflamm., 2022, 9(2), e1138.
[http://dx.doi.org/10.1212/NXI.0000000000001138] [PMID: 35046083]
[294]
Preziosa, P.; Pagani, E.; Moiola, L.; Rodegher, M.; Filippi, M.; Rocca, M.A. Occurrence and microstructural features of slowly expanding lesions on fingolimod or natalizumab treatment in multiple sclerosis. Mult. Scler., 2021, 27(10), 1520-1532.
[http://dx.doi.org/10.1177/1352458520969105] [PMID: 33183125]
[295]
De Stefano, N.; Stromillo, M.L.; Giorgio, A.; Bartolozzi, M.L.; Battaglini, M.; Baldini, M.; Portaccio, E.; Amato, M.P.; Sormani, M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2015, 87(1), jnnp-2014-309903.
[http://dx.doi.org/10.1136/jnnp-2014-309903] [PMID: 25904813]
[296]
Fisher, E.; Rudick, R.A.; Cutter, G.; Baier, M.; Miller, D.; Weinstock-Guttman, B.; Mass, M.K.; Dougherty, D.S.; Simonian, N.A. Relationship between brain atrophy and disability: An 8-year follow-up study of multiple sclerosis patients. Mult. Scler., 2000, 6(6), 373-377.
[http://dx.doi.org/10.1177/135245850000600602] [PMID: 11212131]
[297]
Sormani, M.P.; Arnold, D.L.; De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol., 2014, 75(1), 43-49.
[http://dx.doi.org/10.1002/ana.24018] [PMID: 24006277]
[298]
Andravizou, A.; Dardiotis, E.; Artemiadis, A.; Sokratous, M.; Siokas, V.; Tsouris, Z.; Aloizou, A.M.; Nikolaidis, I.; Bakirtzis, C.; Tsivgoulis, G.; Deretzi, G.; Grigoriadis, N.; Bogdanos, D.P.; Hadjigeorgiou, G.M. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Auto Immun. Highlights, 2019, 10(1), 7.
[http://dx.doi.org/10.1186/s13317-019-0117-5] [PMID: 32257063]
[299]
Tsagkas, C.; Magon, S.; Gaetano, L.; Pezold, S.; Naegelin, Y.; Amann, M.; Stippich, C.; Cattin, P.; Wuerfel, J.; Bieri, O.; Sprenger, T.; Kappos, L.; Parmar, K. Spinal cord volume loss. Neurology, 2018, 91(4), e349-e358.
[http://dx.doi.org/10.1212/WNL.0000000000005853] [PMID: 29950437]
[300]
Casserly, C.; Seyman, E.E.; Alcaide-Leon, P.; Guenette, M.; Lyons, C.; Sankar, S.; Svendrovski, A.; Baral, S.; Oh, J. Spinal cord atrophy in multiple sclerosis: A systematic review and meta‐analysis. J. Neuroimaging, 2018, 28(6), 556-586.
[http://dx.doi.org/10.1111/jon.12553] [PMID: 30102003]
[301]
Sastre-Garriga, J.; Pareto, D.; Battaglini, M.; Rocca, M.A.; Ciccarelli, O.; Enzinger, C.; Wuerfel, J.; Sormani, M.P.; Barkhof, F.; Yousry, T.A.; De Stefano, N.; Tintoré, M.; Filippi, M.; Gasperini, C.; Kappos, L.; Río, J.; Frederiksen, J.; Palace, J.; Vrenken, H.; Montalban, X.; Rovira, À. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat. Rev. Neurol., 2020, 16(3), 171-182.
[http://dx.doi.org/10.1038/s41582-020-0314-x] [PMID: 32094485]
[302]
Le Garff-Tavernier, M.; Decocq, J.; de Romeuf, C.; Parizot, C.; Dutertre, C.A.; Chapiro, E.; Davi, F.; Debré, P.; Prost, J.F.; Teillaud, J.L.; Merle-Beral, H.; Vieillard, V. Analysis of CD16+CD56dim NK cells from CLL patients: evidence supporting a therapeutic strategy with optimized anti-CD20 monoclonal antibodies. Leukemia, 2011, 25(1), 101-109.
[http://dx.doi.org/10.1038/leu.2010.240] [PMID: 20975664]
[303]
Fox, E.; Lovett-Racke, A.E.; Gormley, M.; Liu, Y.; Petracca, M.; Cocozza, S.; Shubin, R.; Wray, S.; Weiss, M.S.; Bosco, J.A.; Power, S.A.; Mok, K.; Inglese, M. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult. Scler., 2021, 27(3), 420-429.
[http://dx.doi.org/10.1177/1352458520918375] [PMID: 32351164]
[304]
Babiker, H.M.; Glode, A.E.; Cooke, L.S.; Mahadevan, D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin. Investig. Drugs, 2018, 27(4), 407-412.
[http://dx.doi.org/10.1080/13543784.2018.1459560] [PMID: 29609506]
[305]
Le Garff-Tavernier, M.; Herbi, L.; de Romeuf, C.; Nguyen-Khac, F.; Davi, F.; Grelier, A.; Boudjoghra, M.; Maloum, K.; Choquet, S.; Urbain, R.; Vieillard, V.; Merle-Béral, H. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia, 2014, 28(1), 230-233.
[http://dx.doi.org/10.1038/leu.2013.240] [PMID: 23958919]
[306]
Steinman, L.; Fox, E.; Hartung, H.P.; Alvarez, E.; Qian, P.; Wray, S.; Robertson, D.; Huang, D.; Selmaj, K.; Wynn, D.; Cutter, G.; Mok, K.; Hsu, Y.; Xu, Y.; Weiss, M.S.; Bosco, J.A.; Power, S.A.; Lee, L.; Miskin, H.P.; Cree, B.A.C. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N. Engl. J. Med., 2022, 387(8), 704-714.
[http://dx.doi.org/10.1056/NEJMoa2201904] [PMID: 36001711]
[307]
TG Therapeutics, Inc. Phase III: UbLiTuximab In Multiple Sclerosis Treatment Effects (ULTIMATE I STUDY); clinicaltrials.gov. NCT03277261, 2021.
[308]
TG Therapeutics, Inc. Phase III: UbLiTuximab in Multiple Sclerosis Treatment Effects (ULTIMATE II STUDY); clinicaltrials.gov. NCT03277248, 2021.
[309]
Burger, J.A. Bruton tyrosine kinase inhibitors. Cancer J., 2019, 25(6), 386-393.
[http://dx.doi.org/10.1097/PPO.0000000000000412] [PMID: 31764119]
[310]
Piehl, F. Current and emerging disease‐modulatory therapies and treatment targets for multiple sclerosis. J. Intern. Med., 2021, 289(6), 771-791.
[http://dx.doi.org/10.1111/joim.13215] [PMID: 33258193]
[311]
Ní Gabhann, J.; Hams, E.; Smith, S.; Wynne, C.; Byrne, J.C.; Brennan, K.; Spence, S.; Kissenpfennig, A.; Johnston, J.A.; Fallon, P.G.; Jefferies, C.A. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One, 2014, 9(1), e85834.
[http://dx.doi.org/10.1371/journal.pone.0085834] [PMID: 24465735]
[312]
Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med., 2019, 380(25), 2406-2417.
[http://dx.doi.org/10.1056/NEJMoa1901981] [PMID: 31075187]
[313]
Akinleye, A.; Chen, Y.; Mukhi, N.; Song, Y.; Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol., 2013, 6(1), 59.
[http://dx.doi.org/10.1186/1756-8722-6-59] [PMID: 23958373]
[314]
Hartkamp, L.M.; Fine, J.S.; van Es, I.E.; Tang, M.W.; Smith, M.; Woods, J.; Narula, S.; DeMartino, J.; Tak, P.P.; Reedquist, K.A. Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann. Rheum. Dis., 2015, 74(8), 1603-1611.
[http://dx.doi.org/10.1136/annrheumdis-2013-204143] [PMID: 24764451]
[315]
Corneth, O.B.J.; Verstappen, G.M.P.; Paulissen, S.M.J.; de Bruijn, M.J.W.; Rip, J.; Lukkes, M.; van Hamburg, J.P.; Lubberts, E.; Bootsma, H.; Kroese, F.G.M.; Hendriks, R.W. Enhanced bruton’s tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol., 2017, 69(6), 1313-1324.
[http://dx.doi.org/10.1002/art.40059] [PMID: 28141917]
[316]
EMD Serono Research & Development Institute, Inc.. A randomized, double-blind, placebo-controlled phase II study of M2951 with a parallel, open-label, active control group (tecfidera), in patients with relapsing multiple sclerosis to evaluate efficacy, safety, tolerability, pharmacokinetics, and biological activity.; clinicaltrials.gov. NCT02975349, 2021.
[317]
EMD Serono Research & Development Institute, Inc.. A phase III, multicenter, randomized, parallel group, double blind, double dummy, active controlled study of evobrutinib compared with an interferon beta 1a (Avonex®), in participants with relapsing multiple sclerosis to evaluate efficacy and safety; clinicaltrials.gov. NCT04032158, 2021.
[318]
EMD Serono Research & Development Institute, Inc.. A phase III, multicenter, randomized, parallel group, double blind, double dummy, active controlled study of evobrutinib compared with an interferon beta 1a (Avonex®), in participants with RMS to evaluate efficacy and safety; clinicaltrials.gov. NCT04032171, 2021.
[319]
Sanofi. A Phase 2b Dose-Finding Study for SAR442168, a Bruton’s Tyrosine kinase inhibitor, in participants with relapsing Multiple sclerosis; clinicaltrials.gov. NCT03889639, 2022.
[320]
Sanofi. A Phase 3, Randomized, double-blind efficacy and safety study comparing SAR442168 to teriflunomide (Aubagio®) in participants with relapsing forms of multiple sclerosis; clinicaltrials.gov. NCT04410978, 2022.
[321]
Sanofi. A phase 3, randomized, double-blind efficacy and safety study comparing SAR442168 to teriflunomide (Aubagio®) in participants with relapsing forms of multiple sclerosis; clinicaltrials.gov. NCT04410991, 2022.
[322]
Sanofi. A phase 3, randomized, double-blind, efficacy and safety study comparing SAR442168 to placebo in participants with primary progressive multiple sclerosis (PERSEUS); clinicaltrials.gov. NCT04458051, 2022.
[323]
Sanofi. A phase 3, randomized, double-blind, efficacy and safety study comparing SAR442168 to placebo in participants with nonrelapsing secondary progressive multiple sclerosis; clinicaltrials.gov. NCT04180488, 2022.
[324]
American Academy of Neurology Abstract Website 2021. Available at:https://index.mirasmart.com/AAN2021/PDFfiles/AAN2021-004437.html
[325]
Hoffmann-La Roche. A phase iii multicenter, randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with ocrelizumab in adult patients with primary progressive multiple sclerosis.; clinicaltrials.gov. NCT04544449, 2022.
[326]
Hoffmann-La Roche. A phase III multicenter randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with teriflunomide in adult patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT04586023, 2022.
[327]
Hoffmann-La Roche. A phase III multicenter randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with teriflunomide in adult patients with relapsing multiple sclerosis; clinicaltrial.gov. NCT04586010, 2022.
[328]
Oh, J.; Cohen, S.; Isenberg, D.; Maurer, M.; Galanter, J.; Chu, T.; Teterina, A.; Goodyear, A.; Mandel, C.; Lee, C. The safety of fenebrutinib in a large population of patients with diverse autoimmune indications supports investigation in multiple sclerosis (MS) (4564). Neurology, 2021, 96.
[329]
Dhillon, S. Orelabrutinib: First approval. Drugs, 2021, 81(4), 503-507.
[http://dx.doi.org/10.1007/s40265-021-01482-5] [PMID: 33704654]
[330]
Beijing InnoCare Pharma Tech Co., Ltd. A randomized, doubleblind, placebo-controlled phase 2 study of orelabrutinib in patients with relapsing-remitting multiple sclerosis to evaluate efficacy, safety, tolerability, pharmacokinetics, and biological activity; clinicaltrials.gov. NCT04711148, 2022.
[331]
Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Castéran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; Voisset, E.; Arock, M.; Auclair, C.; Leventhal, P.S.; Mansfield, C.D.; Moussy, A.; Hermine, O. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One, 2009, 4(9), e7258.
[http://dx.doi.org/10.1371/journal.pone.0007258] [PMID: 19789626]
[332]
AB Science. A phase 2a, randomized, double-blind, placebocontrolled study to evaluate the activity of oral AB1010 administered at 2 dose levels to patients with primary progressive or relapse-free secondary progressive multiple sclerosis; clinicaltrials.gov. Astellas Pharma Global Development, Inc, 2018.
[333]
Vermersch, P.; Benrabah, R.; Schmidt, N.; Zéphir, H.; Clavelou, P.; Vongsouthi, C.; Dubreuil, P.; Moussy, A.; Hermine, O. Masitinib treatment in patients with progressive multiple sclerosis : A randomized pilot study. BMC Neurol., 2012, 12(1), 36.
[http://dx.doi.org/10.1186/1471-2377-12-36] [PMID: 22691628]
[334]
AB Science. A 96 week, prospective, multicentre, randomized, double-blind, placebo-controlled, 2 parallel-groups, phase 3 study to compare efficacy and safety of masitinib 4.5 mg/kg/day versus placebo in the treatment of patients with primary progressive or relapse-free secondary progressive multiple sclerosis; clinicaltrials.gov. FR0010557264AB, 2020.
[335]
Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; Johnson, K.; Lolis, E.J. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci., 2010, 107(25), 11313-11318.
[http://dx.doi.org/10.1073/pnas.1002716107] [PMID: 20534506]
[336]
Ruiz-Pérez, D.; Benito, J.; Polo, G.; Largo, C.; Aguado, D.; Sanz, L.; Gómez de Segura, I.A. The effects of the tolllike receptor 4 Antagonist, Ibudilast, on Sevoflurane’s minimum alveolar concentration and the delayed remifentanilinduced increase in the minimum alveolar concentration in rats. Anesth. Analg., 2016, 122(5), 1370-1376.
[http://dx.doi.org/10.1213/ANE.0000000000001171] [PMID: 26859874]
[337]
Su, Y.; Wang, Y.; Zhou, Y.; Zhu, Z.; Zhang, Q.; Zhang, X.; Wang, W.; Gu, X.; Guo, A.; Wang, Y. Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget, 2017, 8(2), 2719-2730.
[http://dx.doi.org/10.18632/oncotarget.13739] [PMID: 27926507]
[338]
Hagman, S.; Raunio, M.; Rossi, M.; Dastidar, P.; Elovaara, I. Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study. J. Neuroimmunol., 2011, 234(1-2), 141-147.
[http://dx.doi.org/10.1016/j.jneuroim.2011.02.009] [PMID: 21397339]
[339]
Barkhof, F.; Hulst, H.E.; Drulovic, J.; Uitdehaag, B.M.J.; Matsuda, K.; Landin, R. Ibudilast in relapsing-remitting multiple sclerosis: A neuroprotectant? Neurology, 2010, 74(13), 1033-1040.
[http://dx.doi.org/10.1212/WNL.0b013e3181d7d651] [PMID: 20200338]
[340]
MediciNova. A phase 2 randomized, double-blind, placebocontrolled study to evaluate the safety, tolerability and activity of ibudilast (MN-166) in subjects with progressive multiple sclerosis; clinicaltrials.gov. NCT01982942, 2020.
[341]
Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; Ashokkumar, A.; Barnes, J.; Ecklund, D.; Klingner, E.; Koepp, M.; Long, J.D.; Natarajan, S.; Thornell, B.; Yankey, J.; Bermel, R.A.; Debbins, J.P.; Huang, X.; Jagodnik, P.; Lowe, M.J.; Nakamura, K.; Narayanan, S.; Sakaie, K.E.; Thoomukuntla, B.; Zhou, X.; Krieger, S.; Alvarez, E.; Apperson, M.; Bashir, K.; Cohen, B.A.; Coyle, P.K.; Delgado, S.; Dewitt, L.D.; Flores, A.; Giesser, B.S.; Goldman, M.D.; Jubelt, B.; Lava, N.; Lynch, S.G.; Moses, H.; Ontaneda, D.; Perumal, J.S.; Racke, M.; Repovic, P.; Riley, C.S.; Severson, C.; Shinnar, S.; Suski, V.; Weinstock-Guttman, B.; Yadav, V.; Zabeti, A. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med., 2018, 379(9), 846-855.
[http://dx.doi.org/10.1056/NEJMoa1803583] [PMID: 30157388]
[342]
Mi, S.; Blake Pepinsky, R.; Cadavid, D. Blocking LINGO-1 as a therapy to promote CNS repair : From concept to the clinic. CNS Drugs, 2013, 27(7), 493-503.
[http://dx.doi.org/10.1007/s40263-013-0068-8] [PMID: 23681979]
[343]
Mi, S.; Miller, R.H.; Lee, X.; Scott, M.L.; Shulag-Morskaya, S.; Shao, Z.; Chang, J.; Thill, G.; Levesque, M.; Zhang, M.; Hession, C.; Sah, D.; Trapp, B.; He, Z.; Jung, V.; McCoy, J.M.; Pepinsky, R.B. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci., 2005, 8(6), 745-751.
[http://dx.doi.org/10.1038/nn1460] [PMID: 15895088]
[344]
Mi, S.; Miller, R.H.; Tang, W.; Lee, X.; Hu, B.; Wu, W.; Zhang, Y.; Shields, C.B.; Zhang, Y.; Miklasz, S.; Shea, D.; Mason, J.; Franklin, R.J.M.; Ji, B.; Shao, Z.; Chédotal, A.; Bernard, F.; Roulois, A.; Xu, J.; Jung, V.; Pepinsky, B. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol., 2009, 65(3), 304-315.
[http://dx.doi.org/10.1002/ana.21581] [PMID: 19334062]
[345]
Biogen. A randomized, double-blind, placebo-controlled, parallelgroup, dose-ranging study to assess the efficacy, safety, tolerability, and pharmacokinetics of BIIB033 in subjects with relapsing forms of multiple sclerosis when used concurrently with avonex; clinicaltrials.gov. NCT01864148, 2017.
[346]
Cadavid, D.; Mellion, M.; Hupperts, R.; Edwards, K.R.; Calabresi, P.A.; Drulović, J.; Giovannoni, G.; Hartung, H.P.; Arnold, D.L.; Fisher, E.; Rudick, R.; Mi, S.; Chai, Y.; Li, J.; Zhang, Y.; Cheng, W.; Xu, L.; Zhu, B.; Green, S.M.; Chang, I.; Deykin, A.; Sheikh, S.I.; Agüera Morales, E.; Al Khedr, A.; Ampapa, R.; Arroyo, R.; Belkin, M.; Bonek, R.; Boyko, A.; Capra, R.; Centonze, D.; Clavelou, P.; Debouverie, M.; Drulovic, J.; Edwards, K.; Evangelou, N.; Evdoshenko, E.; Fernández, O.; Fernández Sánchez, V.; Freedman, M.; Freedman, S.; Fryze, W.; Garcia-Merino, A.; Gavric-Kezic, M.; Ghezzi, A.; Gout, O.; Grimaldi, L.; Hendin, B.; Hertmanowska, H.; Hintzen, R.; Hradilek, P.; Hupperts, R.; Ilkowski, J.; Ivashinenkova, E.; Izquierdo, G.; Jacques, F.; Jakab, G.; Khabirov, F.; Klodowska-Duda, G.; Komoly, S.; Kostic, S.; Kovarova, I.; Kremenchuzky, M.; Laganke, C.; LaPierre, Y.; Maciejowski, M.; Maison, F.G.; Marfia, G.A.; Martínez Yélamos, S.; Meluzinova, E.; Montalban, X.; Murray, R.; Naismith, R.; Newsome, S.; Nguyen, V.; Oreja, D.; Pardo, G.; Pasechnik, E.; Patti, F.; Potemkowski, A.; Prokopenko, S.; Qian, P.; Rodríguez-Antigüedad, A.; Rossman, H.; Rozsa, C.; Sánchez López, F.; Selmaj, K.; Silber, E.; Stepien, A.; Stepniewska, A.; Swiat, M.; Toncev, G.; Tourbah, A.; Trushnikova, T.; Uccelli, A.; Vachova, M.; Valis, M.; Vecsei, L.; Wiertlewski, S.; Zaffaroni, M.; Zielinski, T. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY) : A randomised, placebo-controlled, phase 2 trial. Lancet Neurol., 2019, 18(9), 845-856.
[http://dx.doi.org/10.1016/S1474-4422(19)30137-1] [PMID: 31285147]
[347]
Biogen. A multicenter, randomized, double-blind, placebocontrolled study with optional open-label extension in subjects with relapsing multiple sclerosis to evaluate the efficacy and safety of BIIB033 as an add-on therapy to anti-inflammatory diseasemodifying therapies; clinicaltrials.gov. NCT03222973, 2022.
[348]
Biogen. A multicenter, double-blind, placebo-controlled, parallelgroup, dose-ranging phase 2 study to evaluate the efficacy and safety of Oral BIIB061 as add-on therapy to interferon-beta 1 or glatiramer acetate therapies in relapsing multiple sclerosis; clinicaltrials.gov. D1690C00024, 2021.
[349]
Bonaventura, G.; Munafò, A.; Bellanca, C.M.; La Cognata, V.; Iemmolo, R.; Attaguile, G.A.; Di Mauro, R.; Di Benedetto, G.; Cantarella, G.; Barcellona, M.L.; Cavallaro, S.; Bernardini, R. Stem cells : Innovative therapeutic options for neurodegenerative diseases? Cells, 2021, 10(8), 1992.
[http://dx.doi.org/10.3390/cells10081992] [PMID: 34440761]
[350]
Moayeri, A.; Nazm Bojnordi, M.; Haratizadeh, S.; Esmaeilnejad-Moghadam, A.; Alizadeh, R.; Ghasemi Hamidabadi, H. Transdifferentiation of human dental pulp stem cells into oligoprogenitor cells. Basic Clin. Neurosci., 2017, 8(5), 387-394.
[http://dx.doi.org/10.18869/nirp.bcn.8.5.387] [PMID: 29167725]
[351]
Pluchino, S.; Martino, G. The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders. J. Neurol. Sci., 2005, 233(1-2), 117-119.
[http://dx.doi.org/10.1016/j.jns.2005.03.026] [PMID: 15896808]
[352]
Chopp, M.; Li, Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol., 2002, 1(2), 92-100.
[http://dx.doi.org/10.1016/S1474-4422(02)00040-6] [PMID: 12849513]
[353]
Teixeira, F.G.; Carvalho, M.M.; Sousa, N.; Salgado, A.J. Mesenchymal stem cells secretome : A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci., 2013, 70(20), 3871-3882.
[http://dx.doi.org/10.1007/s00018-013-1290-8] [PMID: 23456256]
[354]
Alanazi, A.; Alassiri, M.; Jawdat, D.; Almalik, Y. Mesenchymal stem cell therapy : A review of clinical trials for multiple sclerosis. Regen. Ther., 2022, 21, 201-209.
[http://dx.doi.org/10.1016/j.reth.2022.07.003] [PMID: 36092509]
[355]
Laudani, S.; La Cognata, V.; Iemmolo, R.; Bonaventura, G.; Villaggio, G.; Saccone, S.; Barcellona, M.L.; Cavallaro, S.; Sinatra, F. Effect of a bone marrow-derived extracellular matrix on cell adhesion and neural induction of dental pulp stem cells. Front. Cell Dev. Biol., 2020, 8, 100.
[http://dx.doi.org/10.3389/fcell.2020.00100] [PMID: 32211401]
[356]
Ghasemi Hamidabadi, H.; Rezvani, Z.; Nazm Bojnordi, M.; Shirinzadeh, H.; Seifalian, A.M.; Joghataei, M.T.; Razaghpour, M.; Alibakhshi, A.; Yazdanpanah, A.; Salimi, M.; Mozafari, M.; Urbanska, A.M.; Reis, R.L.; Kundu, S.C.; Gholipourmalekabadi, M. Chitosan-intercalated montmorillonite/poly(vinyl alcohol) nanofibers as a platform to guide neuronlike differentiation of human dental pulp stem cells. ACS Appl. Mater. Interfaces, 2017, 9(13), 11392-11404.
[http://dx.doi.org/10.1021/acsami.6b14283] [PMID: 28117963]
[357]
Caseiro, A.R.; Pereira, T.; Ivanova, G.; Luís, A.L.; Maurício, A.C. Neuromuscular regeneration : Perspective on the application of mesenchymal stem cells and their secretion products. Stem Cells Int., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/9756973] [PMID: 26880998]
[358]
Hidalgo San Jose, L.; Stephens, P.; Song, B.; Barrow, D. Microfluidic encapsulation supports stem cell viability, proliferation, and neuronal differentiation. Tissue Eng. Part C Methods, 2018, 24(3), 158-170.
[http://dx.doi.org/10.1089/ten.tec.2017.0368] [PMID: 29258387]
[359]
Sakai, K.; Yamamoto, A.; Matsubara, K.; Nakamura, S.; Naruse, M.; Yamagata, M.; Sakamoto, K.; Tauchi, R.; Wakao, N.; Imagama, S.; Hibi, H.; Kadomatsu, K.; Ishiguro, N.; Ueda, M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J. Clin. Invest., 2011, 122(1), 80-90.
[http://dx.doi.org/10.1172/JCI59251] [PMID: 22133879]
[360]
Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Paracrinemediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells : Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One, 2014, 9(10), e109305.
[http://dx.doi.org/10.1371/journal.pone.0109305] [PMID: 25290916]
[361]
Gancheva, M.R.; Kremer, K.L.; Gronthos, S.; Koblar, S.A. Using dental pulp stem cells for stroke therapy. Front. Neurol., 2019, 10, 422.
[http://dx.doi.org/10.3389/fneur.2019.00422] [PMID: 31110489]
[362]
Xiao, Z.; Lei, T.; Liu, Y.; Yang, Y.; Bi, W.; Du, H. The potential therapy with dental tissuederived mesenchymal stem cells in Parkinson’s disease. Stem Cell Res. Ther., 2021, 12(1), 5.
[http://dx.doi.org/10.1186/s13287-020-01957-4] [PMID: 33407864]
[363]
Darabi, S.; Tiraihi, T.; Nazm Bojnordi, M.; Ghasemi Hamidabadi, H.; Rezaei, N.; Zahiri, M.; Alizadeh, R. Transdifferentiation of human dental pulp stem cells into cholinergiclike neurons via nerve growth factor. Basic Clin. Neurosci., 2019, 10(6), 609-618.
[http://dx.doi.org/10.32598/bcn.10.6.609] [PMID: 32477478]
[364]
Dhanushkodi, A.; Shamir, C.; Venugopal, C. Dental pulp stem cells for treating neurodegenerative diseases. Neural Regen. Res., 2015, 10(12), 1910-1911.
[http://dx.doi.org/10.4103/1673-5374.169629] [PMID: 26889163]
[365]
Victor, A.K.; Reiter, L.T. Dental pulp stem cells for the study of neurogenetic disorders. Hum. Mol. Genet., 2017, 26(R2), R166-R171.
[http://dx.doi.org/10.1093/hmg/ddx208] [PMID: 28582499]
[366]
Alsaeedi, H.A.; Koh, A.E.H.; Lam, C.; Rashid, M.B.A.; Harun, M.H.N.; Saleh, M.F.B.M.; Teh, S.W.; Luu, C.D.; Ng, M.H.; Isa, H.M.; Leow, S.N.; Then, K.Y.; Bastion, M.L.C.; Mok, P.L.; Muthuvenkatachalam, B.S.; Samrot, A.V.; Swamy, K.B.; Nandakumar, J.; Kumar, S.S. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J. Photochem. Photobiol. B, 2019, 198, 111561.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111561] [PMID: 31352000]
[367]
Feng, X.; Chen, P.; Zhao, X.; Wang, J.; Wang, H. Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol., 2021, 21(1), 26.
[http://dx.doi.org/10.1186/s12886-020-01795-1] [PMID: 33422026]
[368]
Blakemore, W.F.; Franklin, R.J.M. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant., 2000, 9(2), 289-294.
[http://dx.doi.org/10.1177/096368970000900214] [PMID: 10811401]
[369]
Huang, A.H.C.; Chen, Y.K.; Lin, L.M.; Shieh, T.Y.; Chan, A.W.S. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J. Oral Pathol. Med., 2008, 37(9), 571-574.
[http://dx.doi.org/10.1111/j.1600-0714.2008.00654.x] [PMID: 18331285]
[370]
Sloan, A.J.; Smith, A.J. Stem cells and the dental pulp : Potential roles in dentine regeneration and repair. Oral Dis., 2007, 13(2), 151-157.
[http://dx.doi.org/10.1111/j.1601-0825.2006.01346.x] [PMID: 17305615]
[371]
Chang, C.C.; Chang, K.C.; Tsai, S.J.; Chang, H.H.; Lin, C.P. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J. Formos. Med. Assoc., 2014, 113(12), 956-965.
[http://dx.doi.org/10.1016/j.jfma.2014.09.003] [PMID: 25438878]
[372]
Chun, S.Y.; Soker, S.; Jang, Y.J.; Kwon, T.G.; Yoo, E.S. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in Vitro J. Korean Med. Sci., 2016, 31(2), 171-177.
[http://dx.doi.org/10.3346/jkms.2016.31.2.171] [PMID: 26839468]

© 2024 Bentham Science Publishers | Privacy Policy