Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Mini-Review Article

Salivary Biomarkers for Oral Cancer Detection: Insights from Human DNA and RNA Analysis

Author(s): Archana Navale* and Atharva Deshpande

Volume 22, Issue 3, 2024

Published on: 23 January, 2024

Page: [249 - 257] Pages: 9

DOI: 10.2174/0118715257269271231201094946

Price: $65

Open Access Journals Promotions 2
Abstract

Oral cancer is a significant global health concern, with a high mortality rate mainly due to late-stage diagnosis. Early detection plays a critical role in improving patient outcomes, highlighting the need for non-invasive and accessible screening methods. Salivary biomarkers have emerged as a promising avenue for oral cancer detection, leveraging advancements in human DNA and RNA analysis. Several DNA-based biomarkers, such as genetic mutations, chromosomal aberrations, and epigenetic alterations, have shown promise in detecting oral cancer at various stages. Likewise, RNA-based biomarkers, including microRNAs, long non-coding RNAs, and messenger RNAs, have demonstrated potential for diagnosing oral cancer and predicting treatment outcomes. The integration of high-throughput sequencing technologies, such as next-generation sequencing and transcriptomic profiling, has enabled the identification of novel biomarkers and provided deeper insights into the molecular mechanisms underlying oral cancer development and progression. Despite the promising results, challenges remain in standardizing sample collection, establishing robust biomarker panels, and validating their clinical utility. Nevertheless, salivary biomarkers hold great promise as a non-invasive, cost-effective, and accessible approach for oral cancer detection, ultimately leading to improved patient outcomes through early diagnosis and intervention. The analysis of genetic material obtained from saliva offers several advantages, including ease of collection, non-invasiveness, and the potential for repeated sampling. Furthermore, saliva reflects the physiological and pathological status of the oral cavity, making it an ideal source for biomarker discovery and validation. This article presents a comprehensive review of the current research on salivary biomarkers for oral cancer detection, focusing on insights gained from human DNA and RNA analysis.

Keywords: Salivary biomarkers, oral cancer, DNA methylation, RNA expression, tumor suppressor genes, epigenetic modifications.

Graphical Abstract
[1]
Seyhan, A.A.; Carini, C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med., 2019, 17(1), 114.
[http://dx.doi.org/10.1186/s12967-019-1864-9] [PMID: 30953518]
[2]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; O’Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The growing role of precision and personalized medicine for cancer treatment. Technology, 2018, 6(03n04), 79-100.
[http://dx.doi.org/10.1142/S2339547818300020] [PMID: 30713991]
[3]
Ribeiro, I.P.; Barroso, L.; Marques, F.; Melo, J.B.; Carreira, I.M. Early detection and personalized treatment in oral cancer: the impact of omics approaches. Mol. Cytogenet., 2016, 9(1), 85.
[http://dx.doi.org/10.1186/s13039-016-0293-1] [PMID: 27895714]
[4]
Amato, A. Personalized oral and dental care. J. Pers. Med., 2023, 13(1), 110.
[http://dx.doi.org/10.3390/jpm13010110] [PMID: 36675771]
[5]
Malcangi, G.; Patano, A.; Guglielmo, M.; Sardano, R.; Palmieri, G.; Di Pede, C.; de Ruvo, E.; Inchingolo, A.D.; Mancini, A.; Inchingolo, F.; Bordea, I.R.; Dipalma, G.; Inchingolo, A.M. Precision medicine in oral health and diseases: A systematic review. J. Pers. Med., 2023, 13(5), 725.
[http://dx.doi.org/10.3390/jpm13050725] [PMID: 37240895]
[6]
Zhong, L.; Liu, Y.; Wang, K.; He, Z.; Gong, Z.; Zhao, Z.; Yang, Y.; Gao, X.; Li, F.; Wu, H.; Zhang, S.; Chen, L. Biomarkers: Paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer, 2018, 18(1), 911.
[http://dx.doi.org/10.1186/s12885-018-4806-7] [PMID: 30241505]
[7]
Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of salivary biomarkers in oral cancer detection. Adv. Clin. Chem., 2018, 86, 23-70.
[http://dx.doi.org/10.1016/bs.acc.2018.05.002] [PMID: 30144841]
[8]
Bhatia, V.; Goel, M.M.; Makker, A.; Tewari, S.; Yadu, A.; Shilpi, P.; Kumar, S.; Agarwal, S.P.; Goel, S.K. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/248419] [PMID: 24991542]
[9]
Su, C.W.; Lin, C.W.; Yang, W.E.; Yang, S.F. TIMP-3 as a therapeutic target for cancer. Ther. Adv. Med. Oncol., 2019, 11.
[http://dx.doi.org/10.1177/1758835919864247] [PMID: 31360238]
[10]
Huang, S.H.; Lee, H.S.; Mar, K.; Ji, D.D.; Huang, M.S.; Hsia, K.T. Loss expression of O6-methylguanine DNA methyltransferase by promoter hypermethylation and its relationship to betel quid chewing in oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, 109(6), 883-889.
[http://dx.doi.org/10.1016/j.tripleo.2009.12.019] [PMID: 20451846]
[11]
Hirai, H.; Roussel, M.F.; Kato, J.Y.; Ashmun, R.A.; Sherr, C.J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol., 1995, 15(5), 2672-2681.
[http://dx.doi.org/10.1128/MCB.15.5.2672] [PMID: 7739547]
[12]
Sushma, P.S.; Jamil, K.; Kumar, P.U.; Satyanarayana, U.; Ramakrishna, M.; Triveni, B. PTEN and p16 genes as epigenetic biomarkers in oral squamous cell carcinoma (OSCC): A study on south Indian population. Tumour Biol., 2016, 37(6), 7625-7632.
[http://dx.doi.org/10.1007/s13277-015-4648-8] [PMID: 26687648]
[13]
Hall, G.L.; Shaw, R.J.; Field, E.A.; Rogers, S.N.; Sutton, D.N.; Woolgar, J.A.; Lowe, D.; Liloglou, T.; Field, J.K.; Risk, J.M. p16 Promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol. Biomarkers Prev., 2008, 17(8), 2174-2179.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2867] [PMID: 18708411]
[14]
Liao, P.H.; Chang, Y.C.; Huang, M.F.; Tai, K.W.; Chou, M.Y. Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol., 2000, 36(3), 272-276.
[http://dx.doi.org/10.1016/S1368-8375(00)00005-1] [PMID: 10793330]
[15]
Wtodek, J. Clinical significance of CD10 expression in cancer. Int. Clin. Pathol. J., 2017, 5(1), 192-194.
[16]
pERK-mediated IL8 secretion can enhance the migration, invasion, and cisplatin resistance of CD10-positive oral cancer cells. BMC Cancer, 2021, 21(1), 1-0.
[PMID: 33397301]
[17]
El-Naggar, A.K.; Mao, L.; Staerkel, G.; Coombes, M.M.; Tucker, S.L.; Luna, M.A.; Clayman, G.L.; Lippman, S.; Goepfert, H. Genetic heterogeneity in saliva from patients with oral squamous carcinomas: Implications in molecular diagnosis and screening. J. Mol. Diagn., 2001, 3(4), 164-170.
[http://dx.doi.org/10.1016/S1525-1578(10)60668-X] [PMID: 11687600]
[18]
Barrett, A.; Woessner, J.; Rawlings, N. Handbook of Proteolytic Enzymes; 2nd ed; Elsevier Inc.: Europe, 2013, p. 715.
[19]
Tanasubsinn, P.; Aung, W.P.P.; Pata, S.; Laopajon, W.; Makeudom, A.; Sastraruji, T.; Kasinrerk, W.; Krisanaprakornkit, S. Overexpression of ADAM9 in oral squamous cell carcinoma. Oncol. Lett., 2018, 15(1), 495-502.
[PMID: 29285199]
[20]
Peisker, A.; Raschke, G.F.; Fahmy, M.D.; Guentsch, A.; Roshanghias, K.; Hennings, J.; Schultze-Mosgau, S. Salivary MMP-9 in the detection of oral squamous cell carcinoma. Med. Oral Patol. Oral Cir. Bucal, 2017, 22(3), 0.
[http://dx.doi.org/10.4317/medoral.21626] [PMID: 28160595]
[21]
Nosratzehi, T.; Alijani, E.; Moodi, M. Salivary MMP-1, MMP-2, MMP-3 and MMP-13 levels in patients with oral lichen planus and squamous cell carcinoma. Asian Pacific journal of cancer prevention. Asian Pac. J. Cancer Prev., 2017, 18(7), 1947-1951.
[PMID: 28749626]
[22]
Jiang, W.W.; Masayesva, B.; Zahurak, M.; Carvalho, A.L.; Rosenbaum, E.; Mambo, E.; Zhou, S.; Minhas, K.; Benoit, N.; Westra, W.H.; Alberg, A.; Sidransky, D.; Koch, W.; Califano, J. Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin. Cancer Res., 2005, 11(7), 2486-2491.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2147] [PMID: 15814624]
[23]
Cavalli, L.R.; Liang, B.C. Mutagenesis, tumorigenicity, and apoptosis: Are the mitochondria involved? Mutat. Res., 1998, 398(1-2), 19-26.
[http://dx.doi.org/10.1016/S0027-5107(97)00223-6] [PMID: 9626961]
[24]
Wei, Y.H.; Lee, C.F.; Lee, H.C.; Ma, Y.S.; Wang, C.W.; Lu, C.Y.; Pang, C.Y. Increases of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4,977 BP-deleted mitochondrial DNA. Ann. N. Y. Acad. Sci., 2001, 928(1), 97-112.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05640.x] [PMID: 11795533]
[25]
Fliss, M.S.; Usadel, H.; Caballero, O.L.; Wu, L.; Buta, M.R.; Eleff, S.M.; Jen, J.; Sidransky, D. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science, 2000, 287(5460), 2017-2019.
[http://dx.doi.org/10.1126/science.287.5460.2017] [PMID: 10720328]
[26]
Wilusz, J.E.; Freier, S.M.; Spector, D.L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell, 2008, 135(5), 919-932.
[http://dx.doi.org/10.1016/j.cell.2008.10.012] [PMID: 19041754]
[27]
Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; Blencowe, B.J.; Prasanth, S.G.; Prasanth, K.V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39(6), 925-938.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[28]
Zhang, X.; Hamblin, M.H.; Yin, K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol., 2017, 14(12), 1705-1714.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[29]
Yang, L.; Lin, C.; Liu, W.; Zhang, J.; Ohgi, K.A.; Grinstein, J.D.; Dorrestein, P.C.; Rosenfeld, M.G. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 2011, 147(4), 773-788.
[http://dx.doi.org/10.1016/j.cell.2011.08.054] [PMID: 22078878]
[30]
Tripathi, V.; Shen, Z.; Chakraborty, A.; Giri, S.; Freier, S.M.; Wu, X.; Zhang, Y.; Gorospe, M.; Prasanth, S.G.; Lal, A.; Prasanth, K.V. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet., 2013, 9(3), e1003368.
[http://dx.doi.org/10.1371/journal.pgen.1003368] [PMID: 23555285]
[31]
Elashoff, D.; Zhou, H.; Reiss, J.; Wang, J.; Xiao, H.; Henson, B.; Hu, S.; Arellano, M.; Sinha, U.; Le, A.; Messadi, D.; Wang, M.; Nabili, V.; Lingen, M.; Morris, D.; Randolph, T.; Feng, Z.; Akin, D.; Kastratovic, D.A.; Chia, D.; Abemayor, E.; Wong, D.T.W. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol. Biomarkers Prev., 2012, 21(4), 664-672.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-1093] [PMID: 22301830]
[32]
Li, Y.; St John, M.A.; Zhou, X.; Kim, Y.; Sinha, U.; Jordan, R.C.; Eisele, D.; Abemayor, E.; Elashoff, D.; Park, N.H.; Wong, D.T. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res., 2004, 10(24), 8442-8450.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1167] [PMID: 15623624]
[33]
Brinkmann, O.; Kastratovic, D.A.; Dimitrijevic, M.V.; Konstantinovic, V.S.; Jelovac, D.B.; Antic, J.; Nesic, V.S.; Markovic, S.Z.; Martinovic, Z.R.; Akin, D.; Spielmann, N.; Zhou, H.; Wong, D.T. Wong, Oral squamous cell carcinoma detection by salivary biomarkers in a Serbian population. Oral Oncol., 2011, 47(1), 51-55.
[34]
Gleber-Netto, F.O.; Yakob, M.; Li, F.; Feng, Z.; Dai, J.; Kao, H.K.; Chang, Y.L.; Chang, K.P.; Wong, D.T.W. Salivary biomarkers for detection of oral squamous cell carcinoma in a taiwanese population. Clin. Cancer Res., 2016, 22(13), 3340-3347.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1761] [PMID: 26847061]
[35]
Cheng, Y.S.L.; Jordan, L.; Chen, H.S.; Kang, D.; Oxford, L.; Plemons, J.; Parks, H.; Rees, T. Chronic periodontitis can affect the levels of potential oral cancer salivary MRNA biomarkers. J. Periodontal Res., 2017, 52(3), 428-437.
[http://dx.doi.org/10.1111/jre.12407] [PMID: 27549383]
[36]
Cheng, Y.S.L.; Jordan, L.; Rees, T.; Chen, H.S.; Oxford, L.; Brinkmann, O.; Wong, D. Levels of potential oral cancer salivary mRNA biomarkers in oral cancer patients in remission and oral lichen planus patients. Clin. Oral Investig., 2014, 18(3), 985-993.
[http://dx.doi.org/10.1007/s00784-013-1041-0] [PMID: 23892499]
[37]
Suzuki, C.; Unoki, M.; Nakamura, Y. Identification and allelic frequencies of novel single-nucleotide polymorphisms in the DUSP1 and BTG1 genes. J. Hum. Genet., 2001, 46(3), 155-157.
[http://dx.doi.org/10.1007/s100380170105] [PMID: 11310585]
[38]
Berta, G.N.; Ghezzo, F.; D’Avollo, A.; Zulian, P.; Carbone, V.; Racca, S.; Vercellino, V.; Di Carlo, F. Enhancement of calcyclin gene RNA expression in squamous cell carcinoma of the oral mucosa, but not in benign lesions. J. Oral Pathol. Med., 1997, 26(5), 206-210.
[http://dx.doi.org/10.1111/j.1600-0714.1997.tb01225.x] [PMID: 9178171]
[39]
Jablonska, E.; Piotrowski, L.; Grabowska, Z. Serum Levels of IL-lβ, IL-6, TNF-α, sTNF-RI and CRP in Patients with oral cavity cancer. Pathol. Oncol. Res., 1997, 3(2), 126-129.
[http://dx.doi.org/10.1007/BF02907807] [PMID: 11173639]
[40]
Watanabe, H.; Iwase, M.; Ohashi, M.; Nagumo, M. Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol., 2002, 38(7), 670-679.
[http://dx.doi.org/10.1016/S1368-8375(02)00006-4] [PMID: 12167419]
[41]
Tsuji, T.; Usui, S.; Aida, T.; Tachikawa, T.; Hu, G.F.; Sasaki, A.; Matsumura, T.; Todd, R.; Wong, D.T.W. Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene, 2001, 20(1), 24-33.
[http://dx.doi.org/10.1038/sj.onc.1204051] [PMID: 11244502]
[42]
Mousses, S.; Bubendorf, L.; Wagner, U.; Hostetter, G.; Kononen, J.; Cornelison, R.; Goldberger, N.; Elkahloun, A.G.; Willi, N.; Koivisto, P.; Ferhle, W.; Raffeld, M.; Sauter, G.; Kallioniemi, O.P. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res., 2002, 62(5), 1256-1260.
[PMID: 11888886]
[43]
Bettuzzi, S.; Davalli, P.; Astancolle, S.; Carani, C.; Madeo, B.; Tampieri, A.; Corti, A. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens. Cancer Res., 2000, 60(1), 28-34.
[PMID: 10646846]
[44]
Tang, H.; Wu, Z.; Zhang, J.; Su, B. Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis. Mol. Med. Rep., 2013, 7(3), 761-766.
[http://dx.doi.org/10.3892/mmr.2012.1254] [PMID: 23292713]
[45]
Dong, Y.; Wu, W. Downregulation of lncRNA CASC2 promotes the postoperative local recurrence of early oral squamous cell carcinoma. Eur. Arch. Otorhinolaryngol., 2019, 276(2), 605-610.
[http://dx.doi.org/10.1007/s00405-018-5209-8] [PMID: 30467776]
[46]
Scapoli, L.; Palmieri, A.; Muzio, L.L.; Pezzetti, F.; Rubini, C.; Girardi, A.; Farinella, F.; Mazzotta, M.; Carinci, F. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int. J. Immunopathol. Pharmacol., 2010, 23(4), 1229-1234.
[http://dx.doi.org/10.1177/039463201002300427] [PMID: 21244772]
[47]
Gibb, E.A.; Enfield, K.S.S.; Stewart, G.L.; Lonergan, K.M.; Chari, R.; Ng, R.T.; Zhang, L.; MacAulay, C.E.; Rosin, M.P.; Lam, W.L. Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol., 2011, 47(11), 1055-1061.
[http://dx.doi.org/10.1016/j.oraloncology.2011.07.008] [PMID: 21835683]
[48]
Schöler, N.; Langer, C.; Döhner, H.; Buske, C.; Kuchenbauer, F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp. Hematol., 2010, 38(12), 1126-1130.
[http://dx.doi.org/10.1016/j.exphem.2010.10.004] [PMID: 20977925]
[49]
Xing, L.; Todd, N.W.; Yu, L.; Fang, H.; Jiang, F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod. Pathol., 2010, 23(8), 1157-1164.
[http://dx.doi.org/10.1038/modpathol.2010.111] [PMID: 20526284]
[50]
Tran, N.; O’Brien, C.J.; Clark, J.; Rose, B. Potential role of micro‐RNAs in head and neck tumorigenesis. Head Neck, 2010, 32(8), 1099-1111.
[http://dx.doi.org/10.1002/hed.21356] [PMID: 20213828]
[51]
Avissar, M.; Christensen, B.C.; Kelsey, K.T.; Marsit, C.J. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin. Cancer Res., 2009, 15(8), 2850-2855.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3131] [PMID: 19351747]
[52]
Park, N.J.; Zhou, H.; Elashoff, D.; Henson, B.S.; Kastratovic, D.A.; Abemayor, E.; Wong, D.T. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res., 2009, 15(17), 5473-5477.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0736] [PMID: 19706812]
[53]
Li, J.; Huang, H.; Sun, L.; Yang, M.; Pan, C.; Chen, W.; Wu, D.; Lin, Z.; Zeng, C.; Yao, Y.; Zhang, P.; Song, E. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin. Cancer Res., 2009, 15(12), 3998-4008.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3053] [PMID: 19509158]
[54]
Brito, J.A.R.; Gomes, C.C.; Guimarães, A.L.S.; Campos, K.; Gomez, R.S. Relationship between micro RNA expression levels and histopathological features of dysplasia in oral leukoplakia. J. Oral Pathol. Med., 2014, 43(3), 211-216.
[http://dx.doi.org/10.1111/jop.12112] [PMID: 24020903]
[55]
Xie, Y.; Todd, N.W.; Liu, Z.; Zhan, M.; Fang, H.; Peng, H.; Alattar, M.; Deepak, J.; Stass, S.A.; Jiang, F. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer, 2010, 67(2), 170-176.
[http://dx.doi.org/10.1016/j.lungcan.2009.04.004] [PMID: 19446359]
[56]
Hung, P.S.; Tu, H.F.; Kao, S.Y.; Yang, C.C.; Liu, C.J.; Huang, T.Y.; Chang, K.W.; Lin, S.C. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis, 2014, 35(5), 1162-1171.
[http://dx.doi.org/10.1093/carcin/bgu024] [PMID: 24480806]
[57]
Xiao, W.; Bao, Z.X.; Zhang, C.Y.; Zhang, X.Y.; Shi, L.J.; Zhou, Z.T.; Jiang, W.W. Upregulation of miR-31* is negatively associated with recurrent/newly formed oral leukoplakia. PLoS One, 2012, 7(6), e38648.
[http://dx.doi.org/10.1371/journal.pone.0038648] [PMID: 22719913]
[58]
Hung, P.S.; Liu, C.J.; Chou, C.S.; Kao, S.Y.; Yang, C.C.; Chang, K.W.; Chiu, T.H.; Lin, S.C. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLoS One, 2013, 8(11), e79926.
[http://dx.doi.org/10.1371/journal.pone.0079926] [PMID: 24302991]
[59]
Hsu, C.M.; Lin, P.M.; Wang, Y.M.; Chen, Z.J.; Lin, S.F.; Yang, M.Y. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol., 2012, 33(6), 1933-1942.
[http://dx.doi.org/10.1007/s13277-012-0454-8] [PMID: 22811001]
[60]
Shao, T.; Huang, J.; Zheng, Z.; Wu, Q.; Liu, T.; Lv, X. SCCA, TSGF, and the long non-coding RNA AC007271. 3 are effective biomarkers for diagnosing oral squamous cell carcinoma. Cell. Physiol. Biochem., 2018, 47(1), 26-38.
[http://dx.doi.org/10.1159/000489741] [PMID: 29763905]
[61]
Liu, C.J.; Shen, W.G.; Peng, S.Y.; Cheng, H.W.; Kao, S.Y.; Lin, S.C.; Chang, K.W. miR‐134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene. Int. J. Cancer, 2014, 134(4), 811-821.
[http://dx.doi.org/10.1002/ijc.28358] [PMID: 23824713]
[62]
Ni, Y.H.; Huang, X.F.; Wang, Z.Y.; Han, W.; Deng, R.Z.; Mou, Y.B.; Ding, L.; Hou, Y.Y.; Hu, Q.G. Upregulation of a potential prognostic biomarker, miR-155, enhances cell proliferation in patients with oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2014, 117(2), 227-233.
[http://dx.doi.org/10.1016/j.oooo.2013.10.017] [PMID: 24439918]
[63]
Rather, M.I.; Nagashri, M.N.; Swamy, S.S.; Gopinath, K.S.; Kumar, A. Oncogenic microRNA-155 down-regulates tumor suppressor CDC73 and promotes oral squamous cell carcinoma cell proliferation: Implications for cancer therapeutics. J. Biol. Chem., 2013, 288(1), 608-618.
[http://dx.doi.org/10.1074/jbc.M112.425736] [PMID: 23166327]
[64]
Venkatesh, T.; Nagashri, M.N.; Swamy, S.S.; Mohiyuddin, S.M.A.; Gopinath, K.S.; Kumar, A. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma. PLoS One, 2013, 8(3), e54643.
[http://dx.doi.org/10.1371/journal.pone.0054643] [PMID: 23472065]
[65]
Lu, L.; Xue, X.; Lan, J.; Gao, Y.; Xiong, Z.; Zhang, H.; Jiang, W.; Song, W.; Zhi, Q. MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed. Pharmacother., 2014, 68(1), 13-19.
[http://dx.doi.org/10.1016/j.biopha.2013.10.005] [PMID: 24210072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy