Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Breast Cancer Subtypes and Current Promising Genetic Engineering Tools for Breast Cancer Treatment - An Overview

Author(s): Eric Tzyy Jiann Chong*, Adlar Ryan Ngiam and Ping-Chin Lee

Volume 21, Issue 1, 2025

Published on: 22 January, 2024

Page: [2 - 9] Pages: 8

DOI: 10.2174/0115733947278339231121105838

Price: $65

Abstract

Breast cancer poses a significant global health challenge, and if current trends persist, the burden of breast cancer is projected to escalate, yielding over 3 million new cases and 1 million fatalities annually by the year 2040. Breast cancer is a highly heterogeneous disease, presenting a spectrum of subtypes, each characterized by unique clinical behaviors and responses to treatments. Understanding these breast cancer subtypes is of paramount importance in the fields of oncology and personalized medicine. In addition to conventional breast cancer treatments, such as surgery, chemotherapy, radiotherapy, hormonal therapy, and immunotherapy, recent scientific advancements have introduced a range of genetic engineering tools with noteworthy potential. Zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and small interfering RNA (siRNA) have emerged as promising components of breast cancer treatment. These tools offer encouraging applications due to their precision in targeting and manipulating genes. This review presents a comprehensive exploration of the various subtypes of breast cancer, along with an examination of the current promising genetic engineering tools in treating breast cancer. It sheds light on their roles in the evolving landscape of breast cancer treatment.

Keywords: Breast cancer subtypes, genetic engineering tools, ZFNs, TALENs, CRISPR-Cas9, siRNA.

Graphical Abstract
[1]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[2]
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers 2021; 13(17): 4287.
[http://dx.doi.org/10.3390/cancers13174287] [PMID: 34503097]
[3]
Alawami HA, Al-Faraj ZH, Al Duhileb MA, AlOmran HA, El Sayed AA. Unusual collision tumor with infiltrating ductal carcinoma and breast skin squamous cell carcinoma: A case report and literature review. Int J Surg Case Rep 2021; 78: 167-71.
[http://dx.doi.org/10.1016/j.ijscr.2020.12.010] [PMID: 33360037]
[4]
Koo MM, von Wagner C, Abel GA, McPhail S, Rubin GP, Lyratzopoulos G. Typical and atypical presenting symptoms of breast cancer and their associations with diagnostic intervals: Evidence from a national audit of cancer diagnosis. Cancer Epidemiol 2017; 48: 140-6.
[http://dx.doi.org/10.1016/j.canep.2017.04.010] [PMID: 28549339]
[5]
Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23.
[http://dx.doi.org/10.1016/j.breast.2022.08.010] [PMID: 36084384]
[6]
Ye F, Dewanjee S, Li Y, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22(1): 105.
[http://dx.doi.org/10.1186/s12943-023-01805-y] [PMID: 37415164]
[7]
Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: Advances and future directions. Nat Rev Drug Discov 2023; 22(2): 101-26.
[http://dx.doi.org/10.1038/s41573-022-00579-0] [PMID: 36344672]
[8]
Tambe V, Patel S, Shard A, et al. Dendronized polymeric biomaterial for loading, stabilization, and targeted cytosolic delivery of microRNA in cancer cells. ACS Appl Bio Mater 2022; 5(9): 4128-53.
[http://dx.doi.org/10.1021/acsabm.2c00179]
[9]
Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: An overview. J Adv Pharm Technol Res 2010; 1(2): 109-26.
[PMID: 22247839]
[10]
Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin 2010; 60(5): 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[11]
Tan KF, Adam F, Hussin H, Mohd Mujar NM. A comparison of breast cancer survival across different age groups: A multicentric database study in Penang, Malaysia. Epidemiol Health 2021; 43: e2021038.
[http://dx.doi.org/10.4178/epih.e2021038] [PMID: 34044478]
[12]
Jenkins S, Kachur ME, Rechache K, Wells JM, Lipkowitz S. Rare breast cancer subtypes. Curr Oncol Rep 2021; 23(5): 54.
[http://dx.doi.org/10.1007/s11912-021-01048-4] [PMID: 33755810]
[13]
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: Syndromes, tumour pathology and molecular testing. Histopathology 2023; 82(1): 70-82.
[http://dx.doi.org/10.1111/his.14808] [PMID: 36468211]
[14]
Cosar R, Sut N, Topaloglu S, et al. Classifying invasive lobular carcinoma as special type breast cancer may be reducing its treatment success: A comparison of survival among invasive lobular carcinoma, invasive ductal carcinoma, and no-lobular special type breast cancer. PLoS One 2023; 18(7): e0283445.
[http://dx.doi.org/10.1371/journal.pone.0283445] [PMID: 37428725]
[15]
Christgen M, Cserni G, Floris G, et al. Lobular breast cancer: Histomorphology and different concepts of a special spectrum of tumors. Cancers 2021; 13(15): 3695.
[http://dx.doi.org/10.3390/cancers13153695] [PMID: 34359596]
[16]
Oliveira TMG, Elias J Jr, Melo AF, et al. Evolving concepts in breast lobular neoplasia and invasive lobular carcinoma, and their impact on imaging methods. Insights Imaging 2014; 5(2): 183-94.
[http://dx.doi.org/10.1007/s13244-014-0324-6] [PMID: 24633840]
[17]
Dossus L, Benusiglio PR. Lobular breast cancer: Incidence and genetic and non-genetic risk factors. Breast Cancer Res 2015; 17(1): 37.
[http://dx.doi.org/10.1186/s13058-015-0546-7] [PMID: 25848941]
[18]
Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed African–American and Caucasian patients. Cancer 2007; 110(4): 876-84.
[http://dx.doi.org/10.1002/cncr.22836] [PMID: 17620276]
[19]
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13(15): 4429-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[20]
Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer. Cancer 2008; 113(10): 2638-45.
[http://dx.doi.org/10.1002/cncr.23930] [PMID: 18833576]
[21]
Yin L, Duan JJ, Bian XW, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 2020; 22(1): 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[22]
Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer—current status and future directions. Ann Oncol 2009; 20(12): 1913-27.
[http://dx.doi.org/10.1093/annonc/mdp492] [PMID: 19901010]
[23]
Zhang L, Fang C, Xu X, Li A, Cai Q, Long X. Androgen receptor, EGFR, and BRCA1 as biomarkers in triple-negative breast cancer: A meta-analysis. BioMed Res Int 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/357485] [PMID: 25695063]
[24]
Chaudhary LN, Wilkinson KH, Kong A. Triple-negative breast cancer: Who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am 2018; 27(1): 141-53.
[http://dx.doi.org/10.1016/j.soc.2017.08.004] [PMID: 29132557]
[25]
Chen H, Wu J, Zhang Z, et al. Association between BRCA status and triple-negative breast cancer: A meta-analysis. Front Pharmacol 2018; 9: 909.
[http://dx.doi.org/10.3389/fphar.2018.00909] [PMID: 30186165]
[26]
Dawood S, Cristofanilli M. IBC as a rapidly spreading systemic disease: Clinical and targeted approaches using the neoadjuvant model. J Natl Cancer Inst Monogr 2015; 2015(51): 56-9.
[http://dx.doi.org/10.1093/jncimonographs/lgv017] [PMID: 26063888]
[27]
Ha KY, Glass SB, Laurie L. Inflammatory breast carcinoma. Proc Bayl Univ Med Cent 2013; 26(2): 149-51.
[http://dx.doi.org/10.1080/08998280.2013.11928940] [PMID: 23543972]
[28]
Kushwaha AC, Whitman GJ, Stelling CB, Cristofanilli M, Buzdar AU. Primary inflammatory carcinoma of the breast: Retrospective review of mammographic findings. AJR Am J Roentgenol 2000; 174(2): 535-8.
[http://dx.doi.org/10.2214/ajr.174.2.1740535] [PMID: 10658737]
[29]
van Golen KL, Cristofanilli M. The third international inflammatory breast cancer conference. Breast Cancer Res 2013; 15(6): 318.
[http://dx.doi.org/10.1186/bcr3571] [PMID: 24188125]
[30]
Atkinson RL, El-Zein R, Valero V, et al. Epidemiological risk factors associated with inflammatory breast cancer subtypes. Cancer Causes Control 2016; 27(3): 359-66.
[http://dx.doi.org/10.1007/s10552-015-0712-3] [PMID: 26797453]
[31]
Rana HQ, Sacca R, Drogan C, et al. Prevalence of germline variants in inflammatory breast cancer. Cancer 2019; 125(13): 2194-202.
[http://dx.doi.org/10.1002/cncr.32062] [PMID: 30933323]
[32]
Soliman AS, Schairer C. Considerations in setting up and conducting epidemiologic studies of cancer in middle‐ and low‐income countries: the experience of a case–control study of inflammatory breast cancer in North Africa in the past 10 years. Cancer Med 2012; 1(3): 338-49.
[http://dx.doi.org/10.1002/cam4.36] [PMID: 23342283]
[33]
van Golen K, Joglekar-Javadekar M, Bradfield P, Murphy T, Dickson-Witmer D, van Golen KL. Inflammatory breast cancer: A panoramic overview. J Rare Dis Res Treat 2018; 3(2): 37-43.
[http://dx.doi.org/10.29245/2572-9411/2018/2.1150]
[34]
Konduri S, Singh M, Bobustuc G, Rovin R, Kassam A. Epidemiology of male breast cancer. Breast 2020; 54: 8-14.
[http://dx.doi.org/10.1016/j.breast.2020.08.010] [PMID: 32866903]
[35]
Yalaza M, İnan A, Bozer M. Male breast cancer. J Breast Health 2016; 12(1): 1-8.
[http://dx.doi.org/10.5152/tjbh.2015.2711] [PMID: 28331724]
[36]
Bevier M, Sundquist K, Hemminki K. Risk of breast cancer in families of multiple affected women and men. Breast Cancer Res Treat 2012; 132(2): 723-8.
[http://dx.doi.org/10.1007/s10549-011-1915-2] [PMID: 22179927]
[37]
Massarweh SA, Sledge GW, Miller DP, McCullough D, Petkov VI, Shak S. Molecular characterization and mortality from breast cancer in men. J Clin Oncol 2018; 36(14): 1396-404.
[http://dx.doi.org/10.1200/JCO.2017.76.8861] [PMID: 29584547]
[38]
Leon-Ferre RA, Giridhar KV, Hieken TJ, et al. A contemporary review of male breast cancer: Current evidence and unanswered questions. Cancer Metastasis Rev 2018; 37(4): 599-614.
[http://dx.doi.org/10.1007/s10555-018-9761-x] [PMID: 30232577]
[39]
Madeira M, Mattar A, Passos RJB, et al. A case report of male breast cancer in a very young patient: What is changing? World J Surg Oncol 2011; 9(1): 16.
[http://dx.doi.org/10.1186/1477-7819-9-16] [PMID: 21291532]
[40]
Rudlowski C. Male breast cancer. Breast Care 2008; 3(3): 6.
[http://dx.doi.org/10.1159/000136825] [PMID: 20824037]
[41]
Cutuli B, Le-Nir CCS, Serin D, et al. Male breast cancer. Evolution of treatment and prognostic factors. Analysis of 489 cases. Crit Rev Oncol Hematol 2010; 73(3): 246-54.
[http://dx.doi.org/10.1016/j.critrevonc.2009.04.002] [PMID: 19442535]
[42]
Hultborn R, Hanson C, Köpf I, Verbiené I, Warnhammar E, Weimarck A. Prevalence of Klinefelter’s syndrome in male breast cancer patients. Anticancer Res 1997; 17(6D): 4293-7.
[PMID: 9494523]
[43]
Dimitrakakis C, Bondy C. Androgens and the breast. Breast Cancer Res 2009; 11(5): 212.
[http://dx.doi.org/10.1186/bcr2413] [PMID: 19889198]
[44]
Zheng G, Leone JP. Male breast cancer: An updated review of epidemiology, clinicopathology, and treatment. J Oncol 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/1734049] [PMID: 35656339]
[45]
Makki J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin Med Insights Pathol 2015; 8: CPath.S31563.
[http://dx.doi.org/10.4137/CPath.S31563] [PMID: 26740749]
[46]
Giannakeas V, Sopik V, Narod SA. Association of a diagnosis of ductal carcinoma in situ with death from breast cancer. JAMA Netw Open 2020; 3(9): e2017124.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.17124] [PMID: 32936299]
[47]
van Seijen M, Lips EH, Thompson AM, et al. Ductal carcinoma in situ: To treat or not to treat, that is the question. Br J Cancer 2019; 121(4): 285-92.
[http://dx.doi.org/10.1038/s41416-019-0478-6] [PMID: 31285590]
[48]
Allred DC. Ductal carcinoma in situ: Terminology, classification, and natural history. J Natl Cancer Inst Monogr 2010; 2010(41): 134-8.
[http://dx.doi.org/10.1093/jncimonographs/lgq035] [PMID: 20956817]
[49]
Virnig BA, Wang SY, Shamilyan T, Kane RL, Tuttle TM. Ductal carcinoma in situ: Risk factors and impact of screening. J Natl Cancer Inst Monogr 2010; 2010(41): 113-6.
[http://dx.doi.org/10.1093/jncimonographs/lgq024] [PMID: 20956813]
[50]
Li CI, Daling JR, Malone KE. Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980 to 2001. Cancer Epidemiol Biomarkers Prev 2005; 14(4): 1008-11.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0849] [PMID: 15824180]
[51]
Wohlfahrt J, Rank F, Kroman N, Melbye M. A comparison of reproductive risk factors for CIS lesions and invasive breast cancer. Int J Cancer 2004; 108(5): 750-3.
[http://dx.doi.org/10.1002/ijc.11588] [PMID: 14696102]
[52]
Gill JK, Maskarinec G, Pagano I, Kolonel LN. The association of mammographic density with ductal carcinoma in situ of the breast: The Multiethnic Cohort. Breast Cancer Res 2006; 8(3): R30.
[http://dx.doi.org/10.1186/bcr1507] [PMID: 16796758]
[53]
Komenaka IK, Ditkoff BA, Joseph KA, et al. The development of interval breast malignancies in patients withBRCA mutations. Cancer 2004; 100(10): 2079-83.
[http://dx.doi.org/10.1002/cncr.20221] [PMID: 15139048]
[54]
Logan GJ, Dabbs DJ, Lucas PC, et al. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res 2015; 17(1): 76.
[http://dx.doi.org/10.1186/s13058-015-0580-5] [PMID: 26041550]
[55]
Degnim AC, King TA. Surgical management of high-risk breast lesions. Surg Clin North Am 2013; 93(2): 329-40.
[http://dx.doi.org/10.1016/j.suc.2012.12.005] [PMID: 23464689]
[56]
To T, Wall C, Baines CJ, Miller AB. Is carcinoma in situ a precursor lesion of invasive breast cancer? Int J Cancer 2014; 135(7): 1646-52.
[http://dx.doi.org/10.1002/ijc.28803] [PMID: 24615647]
[57]
Wen HY, Brogi E. Lobular carcinoma in situ. Surg Pathol Clin 2018; 11(1): 123-45.
[http://dx.doi.org/10.1016/j.path.2017.09.009] [PMID: 29413653]
[58]
Emens LA. Breast cancer immunotherapy: Facts and hopes. Clin Cancer Res 2018; 24(3): 511-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3001] [PMID: 28801472]
[59]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[60]
Puria R, Sahi S, Nain V. HER2+ breast cancer therapy: by CPP-ZFN mediated targeting of mTOR? Technol Cancer Res Treat 2012; 11(2): 175-80.
[http://dx.doi.org/10.7785/tcrt.2012.500247] [PMID: 22335412]
[61]
Ahmed S, Wang A, Celius T, Matthews J. Zinc finger nuclease-mediated knockout of AHR or ARNT in human breast cancer cells abolishes basal and ligand-dependent regulation of CYP1B1 and differentially affects estrogen receptor α transactivation. Toxicol Sci 2014; 138(1): 89-103.
[http://dx.doi.org/10.1093/toxsci/kft274] [PMID: 24299737]
[62]
González Castro NG, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the feasibility, efficiency, and safety of genome editing technologies. Int J Mol Sci 2021; 22(19): 10355.
[http://dx.doi.org/10.3390/ijms221910355] [PMID: 34638696]
[63]
Cellectis. Cellectis presents preclinical data on TALEN®-edited MUC1 CAR T-cells to enhance efficacy in targeting triple negative breast cancer at the American Association for Cancer Research (AACR) Annual Meeting. Available from: https://www.cellectis.com/en/investors/scientific-presentations/ (Accessed Aug 19, 2023).
[64]
Yang M, Zeng C, Li P, et al. Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of triple-negative breast cancer cells. OncoTargets Ther 2019; 12: 3849-58.
[http://dx.doi.org/10.2147/OTT.S195661] [PMID: 31190884]
[65]
Wang Y, Zhang T, Kwiatkowski N, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 2015; 163(1): 174-86.
[http://dx.doi.org/10.1016/j.cell.2015.08.063] [PMID: 26406377]
[66]
Gonzalez-Salinas F, Rojo R, Martinez-Amador C, Herrera-Gamboa J, Trevino V. Transcriptomic and cellular analyses of CRISPR/] Cas9-mediated edition of FASN show inhibition of aggressive characteristics in breast cancer cells. Biochem Biophys Res Commun 2020; 529(2): 321-7.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.172] [PMID: 32703430]
[67]
Dekkers JF, Whittle JR, Vaillant F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst 2020; 112(5): 540-4.
[http://dx.doi.org/10.1093/jnci/djz196] [PMID: 31589320]
[68]
Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine 2020; 7.
[http://dx.doi.org/10.1177/1849543520983196] [PMID: 33488814]
[69]
Liu Y, Zhu YH, Mao CQ, et al. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J Control Release 2014; 192: 114-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.001] [PMID: 25016158]
[70]
Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget 2016; 7(13): 16619-35.
[http://dx.doi.org/10.18632/oncotarget.7672] [PMID: 26918606]
[71]
Kren BT, Unger GM, Abedin MJ, et al. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Breast Cancer Res 2015; 17(1): 19.
[http://dx.doi.org/10.1186/s13058-015-0524-0] [PMID: 25837326]
[72]
Morry J, Ngamcherdtrakul W, Gu S, et al. Targeted treatment of metastasis breast cancer by PLK1 siRNA delivered by an antioxidant nanoparticle platform. Mol Cancer Ther 2017; 16(4): 763-72.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0644] [PMID: 28138033]
[73]
Nachreiner I, Hussain AF, Wullner U, et al. Elimination of HER3-expressing breast cancer cells using aptamer-siRNA chimeras. Exp Ther Med 2019; 18(4): 2401-12.
[http://dx.doi.org/10.3892/etm.2019.7753] [PMID: 31555351]
[74]
Thiel KW, Hernandez LI, Dassie JP, et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 2012; 40(13): 6319-37.
[http://dx.doi.org/10.1093/nar/gks294] [PMID: 22467215]
[75]
Zhao Y, Liu T, Ardana A, et al. Investigation of a dual siRNA/chemotherapy delivery system for breast cancer therapy. ACS Omega 2022; 7(20): 17119-27.
[http://dx.doi.org/10.1021/acsomega.2c00620] [PMID: 35647423]
[76]
Karn V, Sandhya S, Hsu W, et al. CRISPR/Cas9 system in breast cancer therapy: Advancement, limitations and future scope. Cancer Cell Int 2022; 22(1): 234.
[http://dx.doi.org/10.1186/s12935-022-02654-3] [PMID: 35879772]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy