Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Functional Roles of Tumor Protein D52 (TPD52) in Breast Cancer

Author(s): Mojtaba Zehtabi, Mohsen Maleknia, Amir Anbiyaiee, Razieh Mohammad Jafari, Farideh Moramezi, Maryam Farzaneh* and Shirin Azizidoost*

Volume 21, Issue 1, 2025

Published on: 22 January, 2024

Page: [35 - 39] Pages: 5

DOI: 10.2174/0115733947264751231123160934

Price: $65

Open Access Journals Promotions 2
Abstract

Breast cancer is an aggressive disease with a significant morbidity and death rate among women worldwide. Despite the progress of diagnostic and therapy options for breast cancer in recent years, the prognosis and survival rates of breast cancer patients remain unsatisfactory. The aberrant growth and spread of tumor cells are the leading cause of death in these patients. More profound knowledge of molecular biology underlying breast cancer and a more accurate stratification are still necessary for more precise therapy. Further understanding of the disease's molecular mechanism and genetic aberrations may allow for the identification of more accurate prognostic and diagnostic markers and more effective treatments. Tumor protein D52 (TPD52) is an oncogene whose overexpression has been found in breast cancer. Overexpression of TPD52 has been linked to specific molecular subtypes of breast cancer, including luminal B and ERBB2-positive tumors. Besides, non-coding RNAs (ncRNAs) were found to play a significant role in breast cancer progression. ncRNAs play regulatory roles in cell behaviors, cancer pathogenesis, radiotherapy, and resistance to chemotherapy. Multiple ncRNAs could modulate the expression of TPD52 and regulate breast cancer cell proliferation, invasion, and metastasis. In this review, we summarized the functions of TPD52 in breast cancer cells.

Keywords: Breast cancer, TPD52, non-coding RNAs, progression, resistance, targeted therapy.

Graphical Abstract
[1]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[2]
Tarighati E, Keivan H, Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin Exp Med 2023; 23(1): 1-16.
[PMID: 35031885]
[3]
Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin 2022; 72(6): 524-41.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[4]
Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. In: Seminars in cancer biology. Elsevier 2020; pp. 14-27.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.012]
[5]
Krug K, Jaehnig EJ, Satpathy S, et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 2020; 183(5): 1436-1456.e31.
[http://dx.doi.org/10.1016/j.cell.2020.10.036] [PMID: 33212010]
[6]
Baslan T, Kendall J, Volyanskyy K, et al. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing. eLife 2020; 9: e51480.
[http://dx.doi.org/10.7554/eLife.51480] [PMID: 32401198]
[7]
Pan X, Hu X, Zhang YH, et al. Identification of the copy number variant biomarkers for breast cancer subtypes. Mol Genet Genomics 2019; 294(1): 95-110.
[http://dx.doi.org/10.1007/s00438-018-1488-4] [PMID: 30203254]
[8]
Dasari C, Reddy KRK, Natani S, Murthy TRL, Bhukya S, Ummanni R. Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of Peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration. Biochim Biophys Acta Mol Cell Res 2019; 1866(8): 1298-309.
[http://dx.doi.org/10.1016/j.bbamcr.2019.04.007] [PMID: 30981892]
[9]
Han G, Fan M, Zhang X. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun 2015; 456(3): 804-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.026] [PMID: 25511701]
[10]
Ren J, Chen Y, Kong W, Li Y, Lu F. Tumor protein D52 promotes breast cancer proliferation and migration via the long non-coding RNA NEAT1/microRNA-218-5p axis. Ann Transl Med 2021; 9(12): 1008.
[http://dx.doi.org/10.21037/atm-21-2668] [PMID: 34277808]
[11]
Fu M, Chen CW, Yang LQ, et al. MicroRNA 103a 3p promotes metastasis by targeting TPD52 in salivary adenoid cystic carcinoma. Int J Oncol 2020; 57(2): 574-86.
[http://dx.doi.org/10.3892/ijo.2020.5069] [PMID: 32467999]
[12]
Larocque G, Moore DJ, Sittewelle M, et al. Intracellular nanovesicles mediate α5β1 integrin trafficking during cell migration. J Cell Biol 2021; 220(10): e202009028.
[http://dx.doi.org/10.1083/jcb.202009028] [PMID: 34287617]
[13]
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79(6): 335.
[http://dx.doi.org/10.1007/s00018-022-04371-6] [PMID: 35657500]
[14]
Larocque G, La-Borde PJ, Clarke NI, Carter NJ, Royle SJ. Tumor protein D54 defines a new class of intracellular transport vesicles. J Cell Biol 2020; 219(1): e201812044.
[http://dx.doi.org/10.1083/jcb.201812044] [PMID: 31672706]
[15]
Guadagno NA, Progida C. Rab GTPases: Switching to human diseases. Cells 2019; 8(8): 909.
[http://dx.doi.org/10.3390/cells8080909] [PMID: 31426400]
[16]
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2018; 9(1-2): 22-48.
[http://dx.doi.org/10.1080/21541248.2017.1336191] [PMID: 28632484]
[17]
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6(11): a022616.
[http://dx.doi.org/10.1101/cshperspect.a022616] [PMID: 25341920]
[18]
Chen Y, Frost S, Khushi M, et al. Delayed recruiting of TPD52 to lipid droplets – evidence for a “second wave” of lipid droplet-associated proteins that respond to altered lipid storage induced by Brefeldin A treatment. Sci Rep 2019; 9(1): 9790.
[http://dx.doi.org/10.1038/s41598-019-46156-1] [PMID: 31278300]
[19]
Chen Y, Frost S, Byrne JA. Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte 2016; 5(3): 326-32.
[http://dx.doi.org/10.1080/21623945.2016.1148835] [PMID: 27617178]
[20]
Kamili A, Roslan N, Frost S, et al. TPD52 expression increases neutral lipid storage within cultured cells. J Cell Sci 2015; 128(17): jcs.167692.
[http://dx.doi.org/10.1242/jcs.167692] [PMID: 26183179]
[21]
Kotapalli SS, Dasari C, Duscharla D, Kami Reddy KR, Kasula M, Ummanni R. All‐trans‐retinoic acid stimulates overexpression of tumor protein D52 (TPD52, Isoform 3) and neuronal differentiation of IMR‐32 cells. J Cell Biochem 2017; 118(12): 4358-69.
[http://dx.doi.org/10.1002/jcb.26090] [PMID: 28436114]
[22]
Byrne JA, Frost S, Chen Y, Bright RK. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene? Tumour Biol 2014; 35(8): 7369-82.
[http://dx.doi.org/10.1007/s13277-014-2006-x] [PMID: 24798974]
[23]
Tennstedt P, Bölch C, Strobel G, et al. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol 2014; 44(2): 609-15.
[http://dx.doi.org/10.3892/ijo.2013.2200] [PMID: 24317684]
[24]
Wang Z, Li Y, Fan L, et al. Silencing of TPD52 inhibits proliferation, migration, invasion but induces apoptosis of pancreatic cancer cells by deactivating Akt pathway. Neoplasma 2020; 67(2): 277-85.
[http://dx.doi.org/10.4149/neo_2019_190404N295] [PMID: 31847526]
[25]
Li J, Li Y, Liu H, Liu Y, Cui B. The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis. PLoS One 2017; 12(5): e0178515.
[http://dx.doi.org/10.1371/journal.pone.0178515] [PMID: 28562687]
[26]
Wang Y, Chen CL, Pan QZ, et al. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget 2016; 7(5): 6323-34.
[http://dx.doi.org/10.18632/oncotarget.6319] [PMID: 26575170]
[27]
Liu S, Xi X. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis. Biochem Biophys Res Commun 2020; 533(4): 1088-94.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.074] [PMID: 33036757]
[28]
Zhang H, Li M, Zhang J, Shen Y, Gui Q. Exosomal circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 axis. Drug Des Devel Ther 2021; 15: 1835-49.
[http://dx.doi.org/10.2147/DDDT.S300376] [PMID: 33976535]
[29]
Lu W, Wan X, Tao L, Wan J. Long non-coding RNA HULC promotes cervical cancer cell proliferation, migration and invasion via miR-218/TPD52 axis. OncoTargets Ther 2020; 13: 1109-18.
[http://dx.doi.org/10.2147/OTT.S232914] [PMID: 32103980]
[30]
Yin W, Shi L, Mao Y. MicroRNA-449b-5p suppresses cell proliferation, migration and invasion by targeting TPD52 in nasopharyngeal carcinoma. J Biochem 2019; 166(5): 433-40.
[http://dx.doi.org/10.1093/jb/mvz057] [PMID: 31350893]
[31]
Yang M, Wang X, Jia J, et al. Tumor protein D52-like 2 contributes to proliferation of breast cancer cells. Cancer Biother Radiopharm 2015; 30(1): 1-7.
[http://dx.doi.org/10.1089/cbr.2014.1723] [PMID: 25629696]
[32]
Maleknia M, Valizadeh A, Pezeshki SMS, Saki N. Immunomodulation in leukemia: Cellular aspects of anti-leukemic properties. Clin Transl Oncol 2020; 22(1): 1-10.
[http://dx.doi.org/10.1007/s12094-019-02132-9] [PMID: 31127471]
[33]
Aure MR, Steinfeld I, Baumbusch LO, et al. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS One 2013; 8(1): e53014.
[http://dx.doi.org/10.1371/journal.pone.0053014] [PMID: 23382830]
[34]
Zhao Z, Liu H, Hou J, et al. Tumor Protein D52 (TPD52) inhibits growth and metastasis in renal cell carcinoma cells through the PI3K/Akt signaling pathway. Oncol Res 2017; 25(5): 773-9.
[http://dx.doi.org/10.3727/096504016X14774889687280] [PMID: 27983909]
[35]
Ma C, Shi X, Guo W, Niu J, Wang G. miR-107 enhances the sensitivity of breast cancer cells to paclitaxel. Open Med 2019; 14(1): 456-66.
[http://dx.doi.org/10.1515/med-2019-0049] [PMID: 31206033]
[36]
Li G, Yao L, Zhang J, et al. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52. Tumour Biol 2016; 37(6): 7481-91.
[http://dx.doi.org/10.1007/s13277-015-4623-4] [PMID: 26678891]
[37]
Zhang E, Han L, Yin D, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res 2017; 45(6): 3086-101.
[http://dx.doi.org/10.1093/nar/gkw1247] [PMID: 27956498]
[38]
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res 2017; 77(15): 3965-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[39]
Liu L, Zhang Y, Lu J. The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020; 11(9): 749.
[http://dx.doi.org/10.1038/s41419-020-02954-4] [PMID: 32929060]
[40]
Xu WW, Jin J, Wu X, Ren QL, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 2022; 22(1): 126.
[http://dx.doi.org/10.1186/s12935-022-02540-y] [PMID: 35305641]
[41]
Malih S, Saidijam M, Malih N. A brief review on long noncoding RNAs: A new paradigm in breast cancer pathogenesis, diagnosis and therapy. Tumour Biol 2016; 37(2): 1479-85.
[http://dx.doi.org/10.1007/s13277-015-4572-y] [PMID: 26662315]
[42]
Ritter A, Hirschfeld M, Berner K, et al. Circulating non coding RNA biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2020; 56(1): 47-68.
[PMID: 31789396]
[43]
Volovat SR, Volovat C, Hordila I, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: A review. Front Oncol 2020; 10: 526850.
[http://dx.doi.org/10.3389/fonc.2020.526850] [PMID: 33330019]
[44]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[45]
Zhang Z, Wang J, Gao R, et al. Downregulation of MicroRNA-449 promotes migration and invasion of breast cancer cells by targeting tumor protein D52 (TPD52). Oncol Res 2017; 25(5): 753-61.
[http://dx.doi.org/10.3727/096504016X14772342320617] [PMID: 27983918]
[46]
Xu Y, Liu M. MicroRNA-1323 downregulation promotes migration and invasion of breast cancer cells by targeting tumour protein D52. J Biochem 2020; 168(1): 83-91.
[http://dx.doi.org/10.1093/jb/mvaa035] [PMID: 32211853]
[47]
Wang Y, Fang J, Gu F. MiR-125b-5p/TPD52 axis affects proliferation, migration and invasion of breast cancer cells. Mol Biotechnol 2022; 64(9): 1003-12.
[http://dx.doi.org/10.1007/s12033-022-00475-3] [PMID: 35320453]
[48]
Bartonicek N, Maag JLV, Dinger ME. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Mol Cancer 2016; 15(1): 43.
[http://dx.doi.org/10.1186/s12943-016-0530-6] [PMID: 27233618]
[49]
Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Roles of Long Noncoding RNAs in recurrence and metastasis of radiotherapy-resistant cancer stem cells. Int J Mol Sci 2017; 18(9): 1903.
[http://dx.doi.org/10.3390/ijms18091903] [PMID: 28872613]
[50]
Shi R, Wu P, Liu M, Chen B, Cong L. Knockdown of lncRNA PCAT6 Enhances Radiosensitivity in Triple-Negative Breast Cancer Cells by Regulating miR-185-5p/TPD52 Axis. OncoTargets Ther 2020; 13: 3025-37.
[http://dx.doi.org/10.2147/OTT.S237559] [PMID: 32308433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy