Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Design, Heat Leakage Analysis and Stirling Cryocooler Option of Stirling-type Lyophilizer

Author(s): Yinglong Feng and Ankuo Zhang*

Volume 17, Issue 2, 2024

Published on: 17 January, 2024

Page: [132 - 142] Pages: 11

DOI: 10.2174/0122127976274712231204045904

Price: $65

Abstract

Background: Based on referring to the relevant patents, it was found that the traditional lyophilizer refrigeration system has the disadvantages of large volume and high power consumption. Meanwhile, considering the context of advocating low carbon emission and environmental protection, the use of energy-saving refrigeration technology and the use of non-fluorine and harmless refrigerants are the trends of future development.

Objective: In order to solve the traditional lyophilizer problems and enhance the lyophilizer reliability, the paper designs a Stirling-type lyophilizer with a working temperature of -70°C.

Methods: Stirling cooling has the advantages of ultra-low refrigeration temperature and high cooling speed. Based on the above advantages, combining the characteristics of the lyophilization box, a Stirling- type lyophilizer with a capacity of 0.120 m3 and a shelf area of 0.4 m2 is designed. The Stirlingtype lyophilizer refrigeration system structure is analyzed. The flat plate heat pipe to transfer the cold is used. The rigid polyurethane as the insulation material of the lyophilization box is studied. The heat leakage calculation method of the lyophilization box is given.

Results: Stirling cryocooler is selected based on the lyophilization box heat leakage. The experimental test of the Stirling cryocooler is conducted. The feasibility of the design is verified. The Stirling cryocooler, with a charging pressure of 2.9 MPa and an operating frequency of 68 Hz, could achieve -87.057°C within 24 min. The lowest refrigeration temperature could be maintained at - 100.286°C after 97 min. The cooling capacity obtained is 40.0 W at an input power of 99.2 W, and the COP is 0.403.

Conclusion: Stirling refrigeration technology is suitable for use in lyophilizer and Stirling refrigeration technology improves the robustness of the lyophilizer refrigeration system.

Keywords: Lyophilizer, heat load, cryogenic cryocooler, Stirling cycle, optimal design, heat transfer, mass transfer.

[1]
Kremer DM, Pikal MJ, Petre WJ, Shalaev EY, Gatlin LA, Kramer T. A procedure to optimize scale-up for the primary drying phase of lyophilization. J Pharm Sci 2009; 98(1): 307-18.
[http://dx.doi.org/10.1002/jps.21430] [PMID: 18506820]
[2]
Barresi AA, Pisano R, Fissore D, et al. Monitoring of the primary drying of a lyophilization process in vials. Chem Eng Process 2009; 48(1): 408-23.
[http://dx.doi.org/10.1016/j.cep.2008.05.004]
[3]
Millman MJ, Liapis AI, Marchello JM. An analysis of the lyophilization process using a sorption-sublimation model and various operational policies. AIChE J 1985; 31(10): 1594-604.
[http://dx.doi.org/10.1002/aic.690311003]
[4]
Hammerling MJ, Warfel KF, Jewett MC. Lyophilization of premixed COVID-19 diagnostic RT qPCR reactions enables stable long term storage at elevated temperature. Biotechnol J 2021; 16(7): 2000572.
[http://dx.doi.org/10.1002/biot.202000572] [PMID: 33964860]
[5]
Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng 1991; 37(2): 177-84.
[http://dx.doi.org/10.1002/bit.260370210] [PMID: 18597353]
[6]
Zhu T, Moussa EM, Witting M, et al. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing. Eur J Pharm Biopharm 2018; 128: 363-78.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.005] [PMID: 29733948]
[7]
Kasper JC, Winter G, Friess W. Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm 2013; 85(2): 162-9.
[http://dx.doi.org/10.1016/j.ejpb.2013.05.019] [PMID: 23751601]
[8]
Xu Z, Zheng B, Chen J, Gao C. Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. Chem Mater 2014; 26(23): 6811-8.
[http://dx.doi.org/10.1021/cm503418h]
[9]
Thayse Souza Batista J, Matias CSA, Martins LHS, Cardoso DNP, Joele MRSP, Lourenço LFH. Effect of convection drying and lyophilization of fish myofibrillar proteins on the technological properties of biodegradable films. Dry Technol 2022; 40(8): 1673-87.
[http://dx.doi.org/10.1080/07373937.2021.1875230]
[10]
Barresi AA, Velardi SA, Pisano R, Rasetto V, Vallan A, Galan M. In-line control of the lyophilization process. A gentle PAT approach using software sensors. Int J Refrig 2009; 32(5): 1003-14.
[http://dx.doi.org/10.1016/j.ijrefrig.2008.10.012]
[11]
Pisano R, Arsiccio A, Capozzi LC, Trout BL. Achieving continuous manufacturing in lyophilization: Technologies and approaches. Eur J Pharm Biopharm 2019; 142: 265-79.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.027] [PMID: 31252071]
[12]
Zhu B, Li BG, Zheng XD, et al. The design and analysis on LN2-aided freeze-dryer for biomedicine. Cryo & Supercond 2011; 39(06): 16-19+63.
[13]
Yuan Z-G, Hegde U, Litwiller E, et al. Modeling of heat and mass transfer in a TEC-Driven lyophilizer. 36th International Conference on Environmental Systems.
[14]
Zhang H, Guo Y, Lin Y. Analysis of energy consumption of the lyophilizer system using solar absorption refrigeration. Sustainability 2021; 13(21): 12063.
[http://dx.doi.org/10.3390/su132112063]
[15]
Hu XZ. The design of Ray125 vacuum freeze dryer. East China University of Science and Technology 2017.
[16]
Chen Z. Liquid nitrogen lyophilizer. Proceedings of the 9th National Freeze-Drying Academic Exchange Conference. Refrigeration Society Small Refrigeration Machine Low Temperature Biomedical Professional Committee, China, pp. 123-128, 2008.
[17]
Ahmad A, Al-Dadah R, Mahmoud S. Liquid nitrogen energy storage for air conditioning and power generation in domestic applications. Energy Convers Manage 2016; 128: 34-43.
[http://dx.doi.org/10.1016/j.enconman.2016.09.063]
[18]
Jin T, Huang J, Feng Y, Yang R, Tang K, Radebaugh R. Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components. Energy 2015; 93: 828-53.
[http://dx.doi.org/10.1016/j.energy.2015.09.005]
[19]
Kim J, Seo Y, Chang D. Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction. Appl Energy 2016; 182: 154-63.
[http://dx.doi.org/10.1016/j.apenergy.2016.08.130]
[20]
Wang Y, Dai M, Liu K, Liu J, Han L, Liu H. Research on surface heat transfer mechanism of liquid nitrogen jet cooling in cryogenic machining. Appl Therm Eng 2020; 179: 115607.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.115607]
[21]
Zhao Y, Zhang X, Xu X. Application and research progress of cold storage technology in cold chain transportation and distribution. J Therm Anal Calorim 2020; 139(2): 1419-34.
[http://dx.doi.org/10.1007/s10973-019-08400-8]
[22]
Ahmad A, Al-Dadah R, Mahmoud S. Air conditioning and power generation for residential applications using liquid nitrogen. Appl Energy 2016; 184: 630-40.
[http://dx.doi.org/10.1016/j.apenergy.2016.11.022]
[23]
Zhu C, Li Y, Tan H. Numerical study on natural convection of liquid nitrogen used to cool the high-temperature superconducting cable in a new combined energy transmission system. Cryogenics 2020; 109: 103101.
[http://dx.doi.org/10.1016/j.cryogenics.2020.103101]
[24]
Gao W, Wu Z, Tian Z, Zhang Y. Experimental investigation on an R290-based organic Rankine cycle utilizing cold energy of liquid nitrogen. Appl Therm Eng 2022; 202: 117757.
[http://dx.doi.org/10.1016/j.applthermaleng.2021.117757]
[25]
Rogers S, Wu WD, Saunders J, Chen XD. Characteristics of milk powders produced by spray freeze drying. Dry Technol 2008; 26(4): 404-12.
[http://dx.doi.org/10.1080/07373930801929003]
[26]
Astrain D, Vián JG, Domínguez M. Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation. Appl Therm Eng 2003; 23(17): 2183-200.
[http://dx.doi.org/10.1016/S1359-4311(03)00202-3]
[27]
Xi H, Luo L, Fraisse G. Development and applications of solar based thermoelectric technologies. Renew Sustain Energy Rev 2007; 11(5): 923-36.
[http://dx.doi.org/10.1016/j.rser.2005.06.008]
[28]
Parashchuk T, Sidorenko N, Ivantsov L, et al. Development of a solid-state multi-stage thermoelectric cooler. J Power Sources 2021; 496: 229821.
[http://dx.doi.org/10.1016/j.jpowsour.2021.229821]
[29]
Enescu D, Virjoghe EO. A review on thermoelectric cooling parameters and performance. Renew Sustain Energy Rev 2014; 38: 903-16.
[http://dx.doi.org/10.1016/j.rser.2014.07.045]
[30]
Kishore RA, Nozariasbmarz A, Poudel B, Sanghadasa M, Priya S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun 2019; 10(1): 1765.
[http://dx.doi.org/10.1038/s41467-019-09707-8] [PMID: 30992438]
[31]
Wang S, Li W, Fooladi H. Performance evaluation of a polygeneration system based on fuel cell technology and solar photovoltaic and use of waste heat. Sustain Cities Soc 2021; 72: 103055.
[http://dx.doi.org/10.1016/j.scs.2021.103055]
[32]
Ju X, Xu C, Liao Z, et al. A review of concentrated photovoltaic thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Sci Bull 2017; 62(20): 1388-426.
[http://dx.doi.org/10.1016/j.scib.2017.10.002] [PMID: 36659374]
[33]
Al-Sayyab AKS, Mota-Babiloni A, Navarro-Esbrí J. Renewable and waste heat applications for heating, cooling, and power generation based on advanced configurations. Energy Convers Manage 2023; 291: 117253.
[http://dx.doi.org/10.1016/j.enconman.2023.117253]
[34]
Qasem NAA. Waste-heat recovery from a vapor absorption refrigeration system for a desalination plant. Appl Therm Eng 2021; 195: 117199.
[http://dx.doi.org/10.1016/j.applthermaleng.2021.117199]
[35]
Mateus T, Oliveira AC. Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates. Appl Energy 2009; 86(6): 949-57.
[http://dx.doi.org/10.1016/j.apenergy.2008.09.005]
[36]
Zhai XQ, Qu M, Li Y, Wang RZ. A review for research and new design options of solar absorption cooling systems. Renew Sustain Energy Rev 2011; 15(9): 4416-23.
[http://dx.doi.org/10.1016/j.rser.2011.06.016]
[37]
Narayanan R, Harilal GK, Golder S. Feasibility study on the solar absorption cooling system for a residential complex in the Australian subtropical region. Case Stud Therm Eng 2021; 27: 101202.
[http://dx.doi.org/10.1016/j.csite.2021.101202]
[38]
Harby K, Gebaly DR, Koura NS, Hassan MS. Performance improvement of vapor compression cooling systems using evaporative condenser: An overview. Renew Sustain Energy Rev 2016; 58: 347-60.
[http://dx.doi.org/10.1016/j.rser.2015.12.313]
[39]
Chen Z. The design of FD50 vacuum freeze dryer. Kunming University of Science and Technology 2022.
[40]
Söylemez E, Alpman E, Onat A. Experimental analysis of hybrid household refrigerators including thermoelectric and vapour compression cooling systems. Int J Refrig 2018; 95: 93-107.
[http://dx.doi.org/10.1016/j.ijrefrig.2018.08.010]
[41]
Kim M, Jostein PETTERSEN. Fundamental process and system design issues in CO2 vapor compression systems. Pror Energy Combust Sci 2004; 30(2): 119-74.
[http://dx.doi.org/10.1016/j.pecs.2003.09.002]
[42]
Yan SQ. A lyophilizer cooling unit that reduces the load on the low-pressure compressor device. CN217952883U, 2022.
[43]
She X, Cong L, Nie B, et al. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review. Appl Energy 2018; 232: 157-86.
[http://dx.doi.org/10.1016/j.apenergy.2018.09.067]
[44]
Schleussner C-F, Rogelj J, Schaeffer M, et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat Clim Chang 2016; 6(9): 827-35.
[http://dx.doi.org/10.1038/nclimate3096]
[45]
Fang K, Tang Y, Zhang Q, et al. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Appl Energy 2019; 255: 113852.
[http://dx.doi.org/10.1016/j.apenergy.2019.113852]
[46]
Qi T, Ji J, Zhang X, et al. Research progress of cold chain transport technology for storage fruits and vegetables. J Energy Storage 2022; 56: 105958.
[http://dx.doi.org/10.1016/j.est.2022.105958]
[47]
Zhao X-C, Xiang X-Y, Wang S-C, et al. By-production, emissions and abatement cost–climate benefit of HFC-23 in China’s HCFC-22 plants. Adv Clim Chang Res 2023; 14(1): 136-44.
[http://dx.doi.org/10.1016/j.accre.2023.01.003]
[48]
Jiang P, Li Y, Bai F, Zhao X, An M, Hu J. Coordinating to promote refrigerant transition and energy efficiency improvement of room air conditioners in China: Mitigation potential and costs. J Clean Prod 2023; 382: 134916.
[http://dx.doi.org/10.1016/j.jclepro.2022.134916]
[49]
Miao J, Wang X, Bai S, Xiang Y, Li L. Distance-to-target weighting factor sets in LCA for China under 2030 vision. J Clean Prod 2021; 314: 128010.
[http://dx.doi.org/10.1016/j.jclepro.2021.128010]
[50]
Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system: A review. Renew Sustain Energy Rev 2017; 69: 415-28.
[http://dx.doi.org/10.1016/j.rser.2016.11.207]
[51]
Li Y, Sun J, Fricke B, Im P, Kuruganti T. Grey-box fault models and applications for low carbon emission CO2 refrigeration system. Int J Refrig 2022; 141: 76-89.
[http://dx.doi.org/10.1016/j.ijrefrig.2022.06.003]
[52]
Ko J, Thu K, Miyazaki T. Investigation of a cascaded CO2 refrigeration system using phase change materials for energy-saving potentials. Appl Therm Eng 2021; 182: 116104.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.116104]
[53]
Dong Y, Coleman M, Miller SA. MILLER Shelie A. Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annu Rev Environ Resour 2021; 46(1): 59-83.
[http://dx.doi.org/10.1146/annurev-environ-012220-034103]
[54]
Mohanraj M, Abraham JD, Andrew P. Environment friendly refrigerant options for automobile air conditioners: A review. J Therm Anal Calorim 2020; 1-26.
[55]
Huang J-S, Cheng C-H. An efficient theoretical model of rotary integral Stirling cryocooler validated by experimental testing. Therm Sci Eng Prog 2023; 43: 101996.
[http://dx.doi.org/10.1016/j.tsep.2023.101996]
[56]
Steven Brown J, Domanski PA. Review of alternative cooling technologies. Appl Therm Eng 2014; 64(1-2): 252-62.
[http://dx.doi.org/10.1016/j.applthermaleng.2013.12.014]
[57]
Batooei A, Keshavarz A. A Gamma type Stirling refrigerator optimization: An experimental and analytical investigation. Int J Refrig 2018; 91: 89-100.
[http://dx.doi.org/10.1016/j.ijrefrig.2018.05.024]
[58]
Getie MZ, Lanzetta F, Bégot S, Admassu BT, Hassen AA. Reversed regenerative Stirling cycle machine for refrigeration application: A review. Int J Refrig 2020; 118: 173-87.
[http://dx.doi.org/10.1016/j.ijrefrig.2020.06.007]
[59]
Sun J-F, Kitamura Y, Satake T. Application of Stirling cooler to food processing: Feasibility study on butter churning. J Food Eng 2008; 84(1): 21-7.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.04.020]
[60]
Hachem H, Gheith R, Aloui F, Ben Nasrallah S. Technological challenges and optimization efforts of the Stirling machine: A review. Energy Convers Manage 2018; 171: 1365-87.
[http://dx.doi.org/10.1016/j.enconman.2018.06.042]
[61]
Zhang AK, Feng YL, Liu GC, et al. Refrigeration units for cold storage and cold storage. CN115978878A, 2023.
[62]
Li J, Li X, Zhou G, Liu Y. Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment. Appl Therm Eng 2021; 184: 116278.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.116278]
[63]
Tassou SA, De-Lille G, Ge YT. Food transport refrigeration: Approaches to reduce energy consumption and environmental impacts of road transport. Appl Therm Eng 2009; 29(8-9): 1467-77.
[http://dx.doi.org/10.1016/j.applthermaleng.2008.06.027]
[64]
Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr Build Mater 2018; 190: 995-1014.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.09.166]
[65]
Tao WS. Heat transfer 5th Beijing: HIGHER EDUCATION PRESS 2019.
[66]
Zhang AK, Wu M, Feng YL, et al. Research on Stirling-type lowtemperature cold storage at -80°C. J Refrig 1-7.
[67]
Sim JS, Ha JS. Experimental study of heat transfer characteristics for a refrigerator by using reverse heat loss method. Int Commun Heat Mass Transf 2011; 38(5): 572-6.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.02.007]
[68]
Sawalha S, Karampour M, Rogstam J. Field measurements of supermarket refrigeration systems. Part I: Analysis of CO2 trans-critical refrigeration systems. Appl Therm Eng 2015; 87: 633-47.
[http://dx.doi.org/10.1016/j.applthermaleng.2015.05.052]
[69]
Liu G, Yan G, Yu J. Research on test method of heat transfer coefficient for refrigerator gasket. Int J Refrig 2020; 110: 106-20.
[http://dx.doi.org/10.1016/j.ijrefrig.2019.11.007]
[70]
Liu G, Yan G, Yu J. A review of refrigerator gasket: Development trend, heat and mass transfer characteristics, structure and material optimization. Renew Sustain Energy Rev 2021; 144: 110975.
[http://dx.doi.org/10.1016/j.rser.2021.110975]
[71]
Hermes CJL, Barbosa JR Jr. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers. Appl Energy 2012; 91(1): 51-8.
[http://dx.doi.org/10.1016/j.apenergy.2011.08.043]
[72]
Chen GB, Tang K. Principle of small cryocoolers. Beijing: Science Press 2009.
[73]
Li R, Grosu L, Queiros-Condé D. Losses effect on the performance of a gamma type stirling engine. Energy Convers Manage 2016; 114: 28-37.
[http://dx.doi.org/10.1016/j.enconman.2016.02.007]
[74]
Li R, Grosu L. Parameter effect analysis for a Stirling cryocooler. Int J Refrig 2017; 80: 92-105.
[http://dx.doi.org/10.1016/j.ijrefrig.2017.05.006]
[75]
Park J, Ko J, Kim H, et al. The design and testing of a kW-class free-piston Stirling engine for micro-combined heat and power applications. Appl Therm Eng 2020; 164: 114504.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.114504]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy