Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Exploring the Effect of Xiao-Chai-Hu Decoction on Treating Psoriasis Based on Network Pharmacology and Experiment Validation

Author(s): Ke He, Ziyang Wang, Meng Liu, Wenqian Du, Tingyi Yin, Ruimin Bai, Qiqi Duan, Yuqian Wang, Hao Lei and Yan Zheng*

Volume 30, Issue 3, 2024

Published on: 17 January, 2024

Page: [215 - 229] Pages: 15

DOI: 10.2174/0113816128288527240108110844

Price: $65

conference banner
Abstract

Background: Psoriasis is a chronic, inflammatory and recurrent skin disease. Xiao-Chai-Hu Decoction (XCHD) has shown good effects against some inflammatory diseases and cancers. However, the pharmacological effect and mechanisms of XCHD on psoriasis are not yet clear.

Objective: To uncover the effect and mechanisms of XCHD on psoriasis by integrating network pharmacology, molecular docking, and in vivo experiments.

Methods: The active ingredients and corresponding targets of XCHD were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID). Differentially expressed genes (DEGs) of psoriasis were obtained from the gene expression omnibus (GEO) database. The XCHD-psoriasis intersection targets were obtained by intersecting XCHD targets, and DEGs were used to establish the “herb-active ingredient-target” network and Protein-Protein Interaction (PPI) Network. The hub targets were identified based on the PPI network by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed next. Molecular docking was executed via AutoDockTools-1.5.6. Finally, in vivo experiments were carried out further to validate the therapeutic effects of XCHD on psoriasis.

Results: 58 active components and 219 targets of XCHD were screened. 4 top-active components (quercetin, baicalein, wogonin and kaempferol) and 7 hub targets (IL1B, CXCL8, CCND1, FOS, MMP9, STAT1 and CCL2) were identified. GO and KEGG pathway enrichment analyses indicated that the TNF signaling pathway, IL-17 signaling pathway and several pathways were involved. Molecular docking results indicated that hub genes had a good affinity to the corresponding key compounds. In imiquimod (IMQ)-induced psoriasis mouse models, XCHD could significantly improve psoriasis-like skin lesions, downregulate KRT17 and Ki67, and inhibit inflammation cytokines and VEGF.

Conclusion: XCHD showed the therapeutic effect on psoriasis by regulating keratinocyte differentiation, and suppressing inflammation and angiogenesis, which provided a theoretical basis for further experiments and clinical research.

Keywords: Chinese herbal medicine, experimental validation, molecular docking, network pharmacology, psoriasis, Xiao-Chai-Hu decoction.

[1]
Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun 2010; 34(3): J314-21.
[http://dx.doi.org/10.1016/j.jaut.2009.12.001] [PMID: 20034760]
[2]
Dubertret L, Mrowietz U, Ranki A, et al. European patient perspectives on the impact of psoriasis: The EUROPSO patient membership survey. Br J Dermatol 2006; 155(4): 729-36.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07405.x] [PMID: 16965422]
[3]
Rapp SR, Feldman SR, Exum ML, Fleischer AB Jr, Reboussin DM. Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol 1999; 41(3): 401-7.
[http://dx.doi.org/10.1016/S0190-9622(99)70112-X] [PMID: 10459113]
[4]
Boehncke WH, Schön MP. Psoriasis. Lancet 2015; 386(9997): 983-94.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[5]
Prodanovich S, Kirsner RS, Kravetz JD, Ma F, Martinez L, Federman DG. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch Dermatol 2009; 145(6): 700-3.
[http://dx.doi.org/10.1001/archdermatol.2009.94] [PMID: 19528427]
[6]
Kimball AB, Guerin A, Latremouille-viau D, et al. Coronary heart disease and stroke risk in patients with psoriasis: Retrospective analysis. Am J Med 2010; 123(4): 350-7.
[http://dx.doi.org/10.1016/j.amjmed.2009.08.022] [PMID: 20362755]
[7]
Ahlehoff O, Gislason GH, Charlot M, et al. Psoriasis is associated with clinically significant cardiovascular risk: A Danish nationwide cohort study. J Intern Med 2011; 270(2): 147-57.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02310.x] [PMID: 21114692]
[8]
Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA 2006; 296(14): 1735-41.
[http://dx.doi.org/10.1001/jama.296.14.1735] [PMID: 17032986]
[9]
Gelfand JM, Dommasch ED, Shin DB, et al. The risk of stroke in patients with psoriasis. J Invest Dermatol 2009; 129(10): 2411-8.
[http://dx.doi.org/10.1038/jid.2009.112] [PMID: 19458634]
[10]
Gowda BHJ, Ahmed MG, Hani U, Kesharwani P, Wahab S, Paul K. Microneedles as a momentous platform for psoriasis therapy and diagnosis: A state-of-the-art review. Int J Pharm 2023; 632: 122591.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122591] [PMID: 36626973]
[11]
Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361(5): 496-509.
[http://dx.doi.org/10.1056/NEJMra0804595] [PMID: 19641206]
[12]
Menter A, Strober BE, Kaplan DH, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol 2019; 80(4): 1029-72.
[http://dx.doi.org/10.1016/j.jaad.2018.11.057] [PMID: 30772098]
[13]
Sondermann W, Ventzke J, Matusiewicz D, Körber A. Analysis of pharmaceutical care in patients with psoriatic arthritis using statutory health insurance data. J Dtsch Dermatol Ges 2018; 16(3): 285-94.
[http://dx.doi.org/10.1111/ddg.13464] [PMID: 29537175]
[14]
China PoPsRo. National Commission of Chinese Pharmacopoeia. Beijing: Chinese Medical Science Press 2015.
[15]
Su Y, Qin W, Wu L, et al. A review of Chinese medicine for the treatment of psoriasis: Principles, methods and analysis. Chin Med 2021; 16(1): 138.
[http://dx.doi.org/10.1186/s13020-021-00550-y] [PMID: 34930402]
[16]
Weng SW, Chen BC, Wang YC, et al. Traditional Chinese medicine use among patients with psoriasis in Taiwan: A nationwide population-based study. Evid Based Complement Alternat Med 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/3164105] [PMID: 27822287]
[17]
Nguyen LTH, Choi MJ, Shin HM, Yang IJ. Coptisine alleviates imiquimod-induced psoriasis-like skin lesions and anxiety-like behavior in mice. Molecules 2022; 27(4): 1412.
[http://dx.doi.org/10.3390/molecules27041412] [PMID: 35209199]
[18]
Mao J, Ma X, Zhu J, Zhang H. Ginsenoside Rg1 ameliorates psoriasis-like skin lesions by suppressing proliferation and NLRP3 inflammasomes in keratinocytes. J Food Biochem 2022; 46(5): e14053.
[http://dx.doi.org/10.1111/jfbc.14053] [PMID: 35218026]
[19]
Jia HY, Qiu HY, Zhang MD, Hou JJ, Zhou ML, Wu Y. Lenalidomide attenuates IMQ-induced inflammation in a mouse model of psoriasis. Biomed Pharmacother 2022; 156: 113883.
[http://dx.doi.org/10.1016/j.biopha.2022.113883] [PMID: 36270258]
[20]
Yang Y, Zhang Y, Chen X, Su Z, Deng Y, Zhao Q. Khasianine ameliorates psoriasis-like skin inflammation and represses TNF-α/NF-κB axis mediated transactivation of IL-17A and IL-33 in keratinocytes. J Ethnopharmacol 2022; 292: 115124.
[http://dx.doi.org/10.1016/j.jep.2022.115124] [PMID: 35183690]
[21]
Gowda BHJ, Ahmed MG, Husain A. Transferosomal in situ gel administered through umbilical skin tissues for improved systemic bioavailability of drugs: A novel strategy to replace conventional transdermal route. Med Hypotheses 2022; 161: 110805.
[http://dx.doi.org/10.1016/j.mehy.2022.110805]
[22]
Huang Y, Lu J, Xu Y, et al. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway. Parasit Vectors 2020; 13(1): 254.
[http://dx.doi.org/10.1186/s13071-020-04121-2] [PMID: 32410640]
[23]
Zhang SK, Cui NQ, Zhuo YZ, et al. Modified xiaochaihu decoction () promotes collagen degradation and inhibits pancreatic fibrosis in chronic pancreatitis rats. Chin J Integr Med 2020; 26(8): 599-603.
[http://dx.doi.org/10.1007/s11655-017-2413-0] [PMID: 29181733]
[24]
Zhan L, Pu J, Hu Y, Xu P, Liang W, Ji C. Uncovering the pharmacology of xiaochaihu decoction in the treatment of acute pancreatitis based on the network pharmacology. BioMed Res Int 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/6621682] [PMID: 33824873]
[25]
Kato M, Isobe K, Dai Y, Liu W, Nakashima I, Takahashi M. Further characterization of the Sho-saio-to-mediated anti-tumor effect on melanoma developed in RET-transgenic mice. J Invest Dermatol 2000; 114(3): 599-601.
[http://dx.doi.org/10.1046/j.1523-1747.2000.02005.x] [PMID: 10777360]
[26]
Kato M, Liu W, Yi H, et al. The herbal medicine Sho-saiko-to inhibits growth and metastasis of malignant melanoma primarily developed in ret-transgenic mice. J Invest Dermatol 1998; 111(4): 640-4.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00341.x] [PMID: 9764846]
[27]
Jiao X, Jin X, Ma Y, et al. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2021; 90: 107402.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107402] [PMID: 33338839]
[28]
Xu Q, Sheng L, Zhu X, et al. Jingfang granules exert anti-psoriasis effect by targeting MAPK-mediated dendritic cell maturation and PPARγ-mediated keratinocytes cell cycle progression in vitro and in vivo. Phytomedicine 2023; 117: 154925.
[http://dx.doi.org/10.1016/j.phymed.2023.154925] [PMID: 37321079]
[29]
Hu X, Qi C, Feng F, et al. Combining network pharmacology, RNA-seq, and metabolomics strategies to reveal the mechanism of Cimicifugae Rhizoma - Smilax glabra Roxb herb pair for the treatment of psoriasis. Phytomedicine 2022; 105: 154384.
[http://dx.doi.org/10.1016/j.phymed.2022.154384] [PMID: 35963195]
[30]
Qu K, Luo Y, Yan X, et al. Qinzhuliangxue mixture alleviates psoriasis-like skin lesions via inhibiting the IL6/STAT3 axis. J Ethnopharmacol 2021; 274: 114041.
[http://dx.doi.org/10.1016/j.jep.2021.114041] [PMID: 33757812]
[31]
Kuai L, Song J, Zhang R, et al. Uncovering the mechanism of Jueyin granules in the treatment of psoriasis using network pharmacology. J Ethnopharmacol 2020; 262: 113214.
[http://dx.doi.org/10.1016/j.jep.2020.113214] [PMID: 32736045]
[32]
Di T, Zhao J, Wang Y, et al. Tuhuaiyin alleviates imiquimod-induced psoriasis via inhibiting the properties of IL-17-producing cells and remodels the gut microbiota. Biomed Pharmacother 2021; 141: 111884.
[http://dx.doi.org/10.1016/j.biopha.2021.111884] [PMID: 34243099]
[33]
Zhao J, Wang Y, Chen W, et al. Systems pharmacology approach and experiment evaluation reveal multidimensional treatment strategy of liangxuejiedu formula for psoriasis. Front Pharmacol 2021; 12: 626267.
[http://dx.doi.org/10.3389/fphar.2021.626267] [PMID: 34168554]
[34]
Jin L, Wang G. Keratin 17: A critical player in the pathogenesis of psoriasis. Med Res Rev 2014; 34(2): 438-54.
[http://dx.doi.org/10.1002/med.21291] [PMID: 23722817]
[35]
Zhang X, Yin M, Zhang L. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells 2019; 8(8): 807.
[http://dx.doi.org/10.3390/cells8080807] [PMID: 31374826]
[36]
Sezer E, Böer-Auer A, Cetin E, et al. Diagnostic utility of Ki-67 and Cyclin D1 immunostaining in differentiation of psoriasis vs. other psoriasiform dermatitis. Dermatol Pract Concept 2015; 5(3): 7-13.
[http://dx.doi.org/10.5826/dpc.0503a02] [PMID: 26336616]
[37]
Lee HJ, Hong YJ, Kim M. Angiogenesis in chronic inflammatory skin disorders. Int J Mol Sci 2021; 22(21): 12035.
[http://dx.doi.org/10.3390/ijms222112035] [PMID: 34769465]
[38]
Liu M, Zhang G, Naqvi S, et al. Cytotoxicity of Saikosaponin A targets HEKa cell through apoptosis induction by ROS accumulation and inflammation suppression via NF-κB pathway. Int Immunopharmacol 2020; 86: 106751.
[http://dx.doi.org/10.1016/j.intimp.2020.106751] [PMID: 32634696]
[39]
Shen SC, Lee WR, Yang LY, Tsai HH, Yang LL, Chen YC. Quercetin enhancement of arsenic-induced apoptosis via stimulating ROS-dependent p53 protein ubiquitination in human HaCaT keratinocytes. Exp Dermatol 2012; 21(5): 370-5.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01479.x] [PMID: 22509835]
[40]
Chen H, Lu C, Liu H, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int Immunopharmacol 2017; 48: 110-7.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[41]
Yu J, Jing Z, Shen D, et al. Quercetin promotes autophagy to alleviate cigarette smoke-related periodontitis. J Periodontal Res 2023; 58(5): 1082-95.
[http://dx.doi.org/10.1111/jre.13170] [PMID: 37533377]
[42]
Islam MT, Tuday E, Allen S, et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 2023; 22(2): e13767.
[http://dx.doi.org/10.1111/acel.13767] [PMID: 36637079]
[43]
Wang Y, Wan R, Peng W, Zhao X, Bai W, Hu C. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation. Eur J Pharmacol 2023; 938: 175407.
[http://dx.doi.org/10.1016/j.ejphar.2022.175407] [PMID: 36417973]
[44]
Wang H, Yan Y, Pathak JL, et al. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 2023; 27(4): 515-28.
[http://dx.doi.org/10.1111/jcmm.17672] [PMID: 36722313]
[45]
Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV 4 receptor activation. Exp Dermatol 2016; 25(8): 623-9.
[http://dx.doi.org/10.1111/exd.13024] [PMID: 27060689]
[46]
Yu M, Li H, Wang B, et al. Baicalein ameliorates polymyxin B-induced acute renal injury by inhibiting ferroptosis via regulation of SIRT1/p53 acetylation. Chem Biol Interact 2023; 382: 110607.
[http://dx.doi.org/10.1016/j.cbi.2023.110607] [PMID: 37354967]
[47]
Wan Y, shen K, Yu H, Fan W. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis. Free Radic Biol Med 2023; 196: 108-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.01.006] [PMID: 36657732]
[48]
Liu L, Wu W, Li S, et al. Engineered baicalein-decorated zinc phosphates for synergistic alleviation of inflammatory bowel disease by repairing the mucosal barrier and relieving oxidative stress. Biomater Sci 2023; 11(23): 7678-91.
[http://dx.doi.org/10.1039/D3BM01284K] [PMID: 37870399]
[49]
Sulistyowati E, Huang SE, Cheng TL, et al. Vasculoprotective potential of baicalein in angiotensin II-infused abdominal aortic aneurysms through inhibiting inflammation and oxidative stress. Int J Mol Sci 2023; 24(21): 16004.
[http://dx.doi.org/10.3390/ijms242116004] [PMID: 37958985]
[50]
Liu C, Liu H, Lu C, et al. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin Exp Immunol 2019; 198(3): 403-15.
[http://dx.doi.org/10.1111/cei.13363] [PMID: 31407330]
[51]
Li Y, Cui H, Li S, et al. Kaempferol modulates IFN-γ induced JAK-STAT signaling pathway and ameliorates imiquimod-induced psoriasis-like skin lesions. Int Immunopharmacol 2023; 114: 109585.
[http://dx.doi.org/10.1016/j.intimp.2022.109585] [PMID: 36527884]
[52]
Nasanbat B, Uchiyama A, Amalia SN, et al. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. J Dermatol Sci 2023; 111(3): 93-100.
[http://dx.doi.org/10.1016/j.jdermsci.2023.06.008] [PMID: 37393173]
[53]
Xie Y, Mei X, Shi W. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes. J Cell Mol Med 2023; 27(7): 982-90.
[http://dx.doi.org/10.1111/jcmm.17711] [PMID: 36924030]
[54]
Li N, Chen S, Deng W, et al. Kaempferol attenuates gouty arthritis by regulating the balance of Th17/Treg cells and secretion of IL-17. Inflammation 2023; 46(5): 1901-16.
[http://dx.doi.org/10.1007/s10753-023-01849-8] [PMID: 37311931]
[55]
Zhou Y, Dou F, Song H, Liu T. Anti-ulcerative effects of wogonin on ulcerative colitis induced by dextran sulfate sodium via Nrf2/ TLR4/NF-κB signaling pathway in BALB /c mice. Environ Toxicol 2022; 37(4): 954-63.
[http://dx.doi.org/10.1002/tox.23457] [PMID: 35044701]
[56]
Lucas CD, Dorward DA, Sharma S, et al. Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation. Am J Respir Crit Care Med 2015; 191(6): 626-36.
[http://dx.doi.org/10.1164/rccm.201408-1565OC] [PMID: 25629436]
[57]
Sirong S, Yang C, Taoran T, et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res 2020; 8(1): 6.
[http://dx.doi.org/10.1038/s41413-019-0077-4] [PMID: 32047705]
[58]
Su Y, Liang J, Zhang M, et al. Wogonin regulates colonocyte metabolism via PPARγ to inhibit Enterobacteriaceae against dextran sulfate sodium-induced colitis in mice. Phytother Res 2023; 37(3): 872-84.
[http://dx.doi.org/10.1002/ptr.7677] [PMID: 36451541]
[59]
He X, Wang J, Sun L, et al. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling. Cell Stress Chaperones 2023; 28(6): 989-99.
[http://dx.doi.org/10.1007/s12192-023-01391-4] [PMID: 37910344]
[60]
Li L, Ji Y, Zhang L, et al. Wogonin inhibits the growth of HT144 melanoma via regulating hedgehog signaling-mediated inflammation and glycolysis. Int Immunopharmacol 2021; 101(Pt B): 108222.
[http://dx.doi.org/10.1016/j.intimp.2021.108222] [PMID: 34688155]
[61]
Wang Y, Cho JG, Hwang ES, et al. Enhancement of protective effects of radix scutellariae on UVB-induced photo damage in human HaCat keratinocytes. Appl Biochem Biotechnol 2018; 184(4): 1073-93.
[http://dx.doi.org/10.1007/s12010-017-2611-4] [PMID: 28948464]
[62]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[63]
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32(1): 227-55.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120225] [PMID: 24655295]
[64]
Lavoie JN, Rivard N, L’Allemain G, Pouysségur J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Prog Cell Cycle Res 1996; 2: 49-58.
[http://dx.doi.org/10.1007/978-1-4615-5873-6_5] [PMID: 9552382]
[65]
Kim SA, Ryu YW, Kwon JI, Choe MS, Jung JW, Cho JW. Differential expression of cyclin D1, Ki-67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep 2018; 17(1): 735-42.
[PMID: 29115643]
[66]
Uluçkan Ö, Guinea-Viniegra J, Jimenez M, Wagner EF. Signalling in inflammatory skin disease by AP-1 (Fos/Jun). Clin Exp Rheumatol 2015; 33(4): S44-9.
[PMID: 26458100]
[67]
Mehic D, Bakiri L, Ghannadan M, Wagner EF, Tschachler E. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol 2005; 124(1): 212-20.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23558.x] [PMID: 15654976]
[68]
Chen J, Zhu Z, Li Q, et al. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9. J Invest Dermatol 2021; 141(4): 787-99.
[http://dx.doi.org/10.1016/j.jid.2020.07.028] [PMID: 32888954]
[69]
Hald A, Andrés RM, Salskov-Iversen ML, Kjellerup RB, Iversen L, Johansen C. STAT1 expression and activation is increased in lesional psoriatic skin. Br J Dermatol 2013; 168(2): 302-10.
[http://dx.doi.org/10.1111/bjd.12049] [PMID: 23013371]
[70]
Bai L, Fang H, Xia S, et al. STAT1 activation represses IL-22 gene expression and psoriasis pathogenesis. Biochem Biophys Res Commun 2018; 501(2): 563-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.042] [PMID: 29750958]
[71]
Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110: 226-31.
[http://dx.doi.org/10.1016/j.cyto.2017.12.010] [PMID: 29277337]
[72]
Kay AM, Simpson CL, Stewart JA Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/6809703] [PMID: 27547766]
[73]
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci 2020; 21(17): 6206.
[http://dx.doi.org/10.3390/ijms21176206] [PMID: 32867343]
[74]
Siddiqi HK, Ridker PM. Psoriasis and atherosclerosis. Circ Res 2018; 123(11): 1183-4.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314073] [PMID: 30571473]
[75]
Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-responsive microneedles as a transdermal drug delivery system: A demand-supply strategy. Biomacromolecules 2022; 23(4): 1519-44.
[http://dx.doi.org/10.1021/acs.biomac.1c01691] [PMID: 35274937]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy