Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Alterations of the Gut Microbiome and Metabolome Following: A Opportunity for Early Detection of Colorectal Cancer

Author(s): Mehdi Pezeshgi Modarres, Mohammad Amin Habibi, Mohammad Reza Pashaei, Yousef Mohammadpour, Kimia Jazi and Sajjad Ahmadpour*

Volume 21, Issue 1, 2025

Published on: 17 January, 2024

Page: [10 - 22] Pages: 13

DOI: 10.2174/0115733947270529231116114913

Price: $65

Open Access Journals Promotions 2
Abstract

Colorectal cancer (CRC) is a commonly diagnosed cancer responsible for numerous deaths worldwide. In recent decades, technological advances implicated in considering the molecular pathways underlying CRC pathogenesis. Several investigations have identified various mechanisms involved in CRC and have paved the way for new therapeutics and early diagnosis. Gut microbiome play a crucial role in intestinal inflammation and can be associated with colitis colorectal cancer. In this review, we narrated the role of the microbiome population and their metabolome profile as a new screening method for early detection of CRC.

Keywords: Colorectal cancer, diagnosis, microbiota, gut, metabolite, screening.

Graphical Abstract
[1]
Sobhani I, Rotkopf H, Khazaie K. Bacteria-related changes in host DNA methylation and the risk for CRC. Gut Microbes 2020; 12(1): 1800898.
[http://dx.doi.org/10.1080/19490976.2020.1800898] [PMID: 32931352]
[2]
Dolatkhah R, Somi MH, Bonyadi MJ, Asvadi Kermani I, Farassati F, Dastgiri S. Colorectal cancer in Iran: Molecular epidemiology and screening strategies. J Cancer Epidemiol 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/643020] [PMID: 25685149]
[3]
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021; 14(10): 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[4]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[5]
Dörr NM, Bartels M, Morgul MH. Current treatment of colorectal liver metastasis as a chronic disease. Anticancer Res 2020; 40(1): 1-7.
[http://dx.doi.org/10.21873/anticanres.13921] [PMID: 31892548]
[6]
Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): Long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 2013; 14(12): 1208-15.
[http://dx.doi.org/10.1016/S1470-2045(13)70447-9] [PMID: 24120480]
[7]
Petrelli F, Tomasello G, Borgonovo K, et al. Prognostic survival associated with left-sided vs right-sided colon cancer. JAMA Oncol 2017; 3(2): 211-9.
[http://dx.doi.org/10.1001/jamaoncol.2016.4227] [PMID: 27787550]
[8]
Samadder NJ, Riegert-Johnson D, Boardman L, et al. Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome. JAMA Oncol 2021; 7(2): 230-7.
[http://dx.doi.org/10.1001/jamaoncol.2020.6252] [PMID: 33126242]
[9]
Yurgelun MB, Kulke MH, Fuchs CS, et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol 2017; 35(10): 1086-95.
[http://dx.doi.org/10.1200/JCO.2016.71.0012] [PMID: 28135145]
[10]
Yang J, McDowell A, Kim EK, et al. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp Mol Med 2019; 51(10): 1-15.
[http://dx.doi.org/10.1038/s12276-019-0313-4] [PMID: 31582724]
[11]
Temraz S, Nassar F, Nasr R, Charafeddine M, Mukherji D, Shamseddine A. Gut microbiome: A promising biomarker for immunotherapy in colorectal cancer. Int J Mol Sci 2019; 20(17): 4155.
[http://dx.doi.org/10.3390/ijms20174155] [PMID: 31450712]
[12]
Wong SH, Yu J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019; 16(11): 690-704.
[http://dx.doi.org/10.1038/s41575-019-0209-8] [PMID: 31554963]
[13]
Balchen V, Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging 2016; 11: 967-76.
[http://dx.doi.org/10.2147/CIA.S109285] [PMID: 27486317]
[14]
Nikolouzakis T, Vassilopoulou L, Fragkiadaki P, et al. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol Rep 2018; 39(6): 2455-72.
[http://dx.doi.org/10.3892/or.2018.6330] [PMID: 29565457]
[15]
Fayazfar S, Zali H, Arefi Oskouie A, Asadzadeh Aghdaei H, Rezaei Tavirani M, Nazemalhosseini Mojarad E. Early diagnosis of colorectal cancer via plasma proteomic analysis of CRC and advanced adenomatous polyp. Gastroenterol Hepatol Bed Bench 2019; 12(4): 328-39.
[PMID: 31749922]
[16]
Villéger R, Lopès A, Veziant J, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol 2018; 24(22): 2327-47.
[http://dx.doi.org/10.3748/wjg.v24.i22.2327] [PMID: 29904241]
[17]
Tan X, Mao L, Huang C, et al. Comprehensive analysis of lncRNA-miRNA-mRNA regulatory networks for microbiota-mediated colorectal cancer associated with immune cell infiltration. Bioengineered 2021; 12(1): 3410-25.
[http://dx.doi.org/10.1080/21655979.2021.1940614] [PMID: 34227920]
[18]
Ye Y, Liu Y, Cheng K, Wu Z, Zhang P, Zhang X. Effects of intestinal flora on irritable bowel syndrome and therapeutic significance of polysaccharides. Front Nutr 2022; 9(9): 810453.
[http://dx.doi.org/10.3389/fnut.2022.810453] [PMID: 35634403]
[19]
Li J, Zhang A, Wu F, Wang X. Alterations in the gut microbiota and their metabolites in colorectal cancer: Recent progress and future prospects. Front Oncol 2022; 12(11): 841552.
[http://dx.doi.org/10.3389/fonc.2022.841552] [PMID: 35223525]
[20]
Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial involvement in progression and metastasis of colorectal neoplasia. Cancers 2022; 14(4): 1019.
[http://dx.doi.org/10.3390/cancers14041019] [PMID: 35205767]
[21]
Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10(8): 575-82.
[http://dx.doi.org/10.1038/nrmicro2819] [PMID: 22728587]
[22]
Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in research on colorectal cancer-related microorganisms and metabolites. Cancer Manag Res 2020; 12: 8703-20.
[http://dx.doi.org/10.2147/CMAR.S268943] [PMID: 33061569]
[23]
Koulouris A, Tsagkaris C, Messaritakis I, et al. Resectable colorectal cancer: Current perceptions on the correlation of recurrence risk, microbiota and detection of genetic mutations in liquid biopsies. Cancers 2021; 13(14): 3522.
[http://dx.doi.org/10.3390/cancers13143522] [PMID: 34298740]
[24]
Olovo CV, Huang X, Zheng X, Xu M. Faecal microbial biomarkers in early diagnosis of colorectal cancer. J Cell Mol Med 2021; 25(23): 10783-97.
[http://dx.doi.org/10.1111/jcmm.17010] [PMID: 34750964]
[25]
Chen G. The role of the gut microbiome in colorectal cancer. Clin Colon Rectal Surg 2018; 31(3): 192-8.
[http://dx.doi.org/10.1055/s-0037-1602239] [PMID: 29720905]
[26]
Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021; 21(1): 1325.
[http://dx.doi.org/10.1186/s12885-021-09054-2] [PMID: 34895176]
[27]
Huang R, He K, Duan X, Xiao J, Wang H, Xiang G. Changes of intestinal microflora in colorectal cancer patients after surgical resection and chemotherapy. Comput Math Methods Med 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/1940846] [PMID: 35251295]
[28]
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration. Dig Dis Sci 2020; 65(3): 695-705.
[http://dx.doi.org/10.1007/s10620-020-06118-4] [PMID: 32067143]
[29]
Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778): 1355-9.
[30]
Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 2013; 11(4): 227-38.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[31]
Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol 2019; 17(1): e3000102.
[http://dx.doi.org/10.1371/journal.pbio.3000102] [PMID: 30673701]
[32]
Heeney DD, Gareau MG, Marco ML. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol 2018; 49(49): 140-7.
[http://dx.doi.org/10.1016/j.copbio.2017.08.004] [PMID: 28866243]
[33]
Martinez-Medina M. Special Issue: Pathogenic Escherichia coli: Infections and therapies. Antibiotics 2021; 10(2): 112.
[http://dx.doi.org/10.3390/antibiotics10020112] [PMID: 33504016]
[34]
Kaiki Y, Kitagawa H, Tadera K, et al. Laboratory identification and clinical characteristics of Streptococcus bovis/Streptococcus equinus complex bacteremia: a retrospective, multicenter study in Hiroshima, Japan. BMC Infect Dis 2021; 21(1): 1192.
[http://dx.doi.org/10.1186/s12879-021-06880-4] [PMID: 34836500]
[35]
Corredoira J, Grau I, Garcia-Rodriguez JF, et al. Species and biotypes of Streptococcus bovis causing infective endocarditis. Enfermedades infecciosas y microbiologia clinica 2023; 41(4): 215-20.
[http://dx.doi.org/10.1016/j.eimce.2021.08.017] [PMID: 36610830]
[36]
Mandal P. Molecular mechanistic pathway of colorectal carcinogenesis associated with intestinal microbiota. Anaerobe 2018; 49: 63-70.
[http://dx.doi.org/10.1016/j.anaerobe.2017.12.008] [PMID: 29277623]
[37]
Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22(2): 299-306.
[http://dx.doi.org/10.1101/gr.126516.111] [PMID: 22009989]
[38]
Kang Y, Feng D, Law HK, et al. Compositional alterations of gut microbiota in children with primary nephrotic syndrome after initial therapy. BMC Nephrol 2019; 20(1): 434.
[http://dx.doi.org/10.1186/s12882-019-1615-4] [PMID: 30606155]
[39]
Montalban-Arques A, Scharl M. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine 2019; 48: 648-55.
[http://dx.doi.org/10.1016/j.ebiom.2019.09.050] [PMID: 31631043]
[40]
Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol 2020; 11: 615056.
[http://dx.doi.org/10.3389/fimmu.2020.615056] [PMID: 33329610]
[41]
Martinez JE, Kahana DD, Ghuman S, et al. Unhealthy lifestyle and gut dysbiosis: A better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol 2021; 12: 667066.
[http://dx.doi.org/10.3389/fendo.2021.667066] [PMID: 34168615]
[42]
Belizário JE, Faintuch J. Microbiome and gut dysbiosis. Experientia Suppl 2018; 109(109): 459-76.
[http://dx.doi.org/10.1007/978-3-319-74932-7_13] [PMID: 30535609]
[43]
Gagnière J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22(2): 501-18.
[http://dx.doi.org/10.3748/wjg.v22.i2.501] [PMID: 26811603]
[44]
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 2016; 7: 979.
[http://dx.doi.org/10.3389/fmicb.2016.00979] [PMID: 27446020]
[45]
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635-8.
[46]
Chattopadhyay I, Dhar R, Pethusamy K, et al. Exploring the role of gut microbiome in colon cancer. Appl Biochem Biotechnol 2021; 193(6): 1780-99.
[http://dx.doi.org/10.1007/s12010-021-03498-9] [PMID: 33492552]
[47]
Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019; 25(6): 968-76.
[http://dx.doi.org/10.1038/s41591-019-0458-7] [PMID: 31171880]
[48]
Osman MA, Neoh H, Ab Mutalib NS, et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci Rep 2021; 11(1): 2925.
[http://dx.doi.org/10.1038/s41598-021-82465-0] [PMID: 33536501]
[49]
Sun Y, Fan X, Zhao J. Development of colorectal cancer detection and prediction based on gut microbiome big-data. Medicine in Microecology 2022; 12: 100053.
[http://dx.doi.org/10.1016/j.medmic.2022.100053]
[50]
Wu Y, Jiao N, Zhu R, et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat Commun 2021; 12(1): 3063.
[http://dx.doi.org/10.1038/s41467-021-23265-y] [PMID: 34031391]
[51]
Zhang S, Cai S, Ma Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J Cancer 2018; 9(9): 1652-9.
[http://dx.doi.org/10.7150/jca.24048] [PMID: 29760804]
[52]
Flemer B, Lynch DB, Brown JMR, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017; 66(4): 633-43.
[http://dx.doi.org/10.1136/gutjnl-2015-309595] [PMID: 26992426]
[53]
Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60(2): 208-15.
[http://dx.doi.org/10.1093/cid/ciu787] [PMID: 25305284]
[54]
Zhang H, Chang Y, Zheng Q, Zhang R, Hu C, Jia W. Altered intestinal microbiota associated with colorectal cancer. Front Med 2019; 13(4): 461-70.
[http://dx.doi.org/10.1007/s11684-019-0695-7] [PMID: 31250341]
[55]
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol Syst Biol 2014; 10(11): 766.
[http://dx.doi.org/10.15252/msb.20145645] [PMID: 25432777]
[56]
Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal cancer stage-specific fecal bacterial community fingerprinting of the taiwanese population and underpinning of potential taxonomic biomarkers. Microorganisms 2021; 9(8): 1548.
[http://dx.doi.org/10.3390/microorganisms9081548] [PMID: 34442626]
[57]
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 2016; 70(1): 395-411.
[http://dx.doi.org/10.1146/annurev-micro-102215-095513] [PMID: 27607555]
[58]
Ulger Toprak N, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006; 12(8): 782-6.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01494.x] [PMID: 16842574]
[59]
Brennan CA, Garrett WS. Fusobacterium nucleatum-symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019; 17(3): 156-66.
[http://dx.doi.org/10.1038/s41579-018-0129-6] [PMID: 30546113]
[60]
Kowalik J. Faecal tests in the early detection of colorectal cancer. Prz Gastroenterol 2020; 15(3): 200-6.
[http://dx.doi.org/10.5114/pg.2020.98541] [PMID: 33005264]
[61]
Guo S, Li L, Xu B, et al. A simple and novel fecal biomarker for colorectal Cancer: Ratio of Fusobacterium Nucleatum to probiotics populations, based on their antagonistic effect. Clin Chem 2018; 64(9): 1327-37.
[http://dx.doi.org/10.1373/clinchem.2018.289728] [PMID: 29914865]
[62]
Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology 2020; 158(2): 322-40.
[http://dx.doi.org/10.1053/j.gastro.2019.06.048] [PMID: 31586566]
[63]
Nosho K, Sukawa Y, Adachi Y, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016; 22(2): 557-66.
[http://dx.doi.org/10.3748/wjg.v22.i2.557] [PMID: 26811607]
[64]
Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 2015; 1(5): 653-61.
[http://dx.doi.org/10.1001/jamaoncol.2015.1377] [PMID: 26181352]
[65]
Ito M, Kanno S, Nosho K, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer 2015; 137(6): 1258-68.
[http://dx.doi.org/10.1002/ijc.29488] [PMID: 25703934]
[66]
Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal cancer. Cancer Cell 2018; 33(6): 954-64.
[http://dx.doi.org/10.1016/j.ccell.2018.03.004] [PMID: 29657127]
[67]
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020; 580(7802): 269-73.
[http://dx.doi.org/10.1038/s41586-020-2080-8] [PMID: 32106218]
[68]
de Almeida CV, Taddei A, Amedei A. The controversial role of Enterococcus faecalis in colorectal cancer. Therap Adv Gastroenterol 2018; 11.
[http://dx.doi.org/10.1177/1756284818783606] [PMID: 30013618]
[69]
Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol 2021; 21(7): 426-40.
[http://dx.doi.org/10.1038/s41577-020-00488-6] [PMID: 33510490]
[70]
Okumura S, Konishi Y, Narukawa M, et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun 2021; 12(1): 5674.
[http://dx.doi.org/10.1038/s41467-021-25965-x] [PMID: 34584098]
[71]
Wang X, Jia Y, Wen L, et al. Porphyromonas gingivalis promotes colorectal carcinoma by activating the hematopoietic NLRP3 inflammasome. Cancer Res 2021; 81(10): 2745-59.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3827] [PMID: 34003774]
[72]
Könönen E, Wade WG. Actinomyces and related organisms in human infections. Clin Microbiol Rev 2015; 28(2): 419-42.
[http://dx.doi.org/10.1128/CMR.00100-14] [PMID: 25788515]
[73]
Boleij A, Tjalsma H. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect Dis 2013; 13(8): 719-24.
[http://dx.doi.org/10.1016/S1473-3099(13)70107-5] [PMID: 23831427]
[74]
Klein RS, Catalano MT, Edberg SC, Casey JI, Steigbigel NH. Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med 1979; 91(4): 560-2.
[http://dx.doi.org/10.7326/0003-4819-91-4-560] [PMID: 484953]
[75]
Rezasoltani S, Sharafkhah M, Asadzadeh Aghdaei H, et al. Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer. J Microbiol Methods 2018; 155: 82-8.
[http://dx.doi.org/10.1016/j.mimet.2018.11.007] [PMID: 30439465]
[76]
Dahmus JD, Kotler DL, Kastenberg DM, Kistler CA. The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J Gastrointest Oncol 2018; 9(4): 769-77.
[http://dx.doi.org/10.21037/jgo.2018.04.07] [PMID: 30151274]
[77]
Hoang T, Kim M, Park JW, Jeong SY, Lee J, Shin A. Dysbiotic microbiome variation in colorectal cancer patients is linked to lifestyles and metabolic diseases. BMC Microbiol 2023; 23(1): 33.
[http://dx.doi.org/10.1186/s12866-023-02771-7] [PMID: 36709262]
[78]
Wu Y, Zhuang J, Zhang Q, et al. Aging characteristics of colorectal cancer based on gut microbiota. Cancer Med 2023; 12(17): 17822-34.
[http://dx.doi.org/10.1002/cam4.6414] [PMID: 37548332]
[79]
Royston KJ, Adedokun B, Olopade OI. Race, the microbiome and colorectal cancer. World J Gastrointest Oncol 2019; 11(10): 773-87.
[http://dx.doi.org/10.4251/wjgo.v11.i10.773] [PMID: 31662819]
[80]
Iadsee N, Chuaypen N, Techawiwattanaboon T, et al. Identification of a novel gut microbiota signature associated with colorectal cancer in Thai population. Sci Rep 2023; 13(1): 6702.
[http://dx.doi.org/10.1038/s41598-023-33794-9] [PMID: 37095272]
[81]
Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23(8pt1): 1298-303.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05490.x] [PMID: 18624900]
[82]
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012; 6(2): 320-9.
[http://dx.doi.org/10.1038/ismej.2011.109] [PMID: 21850056]
[83]
Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011; 6(1): e16393.
[http://dx.doi.org/10.1371/journal.pone.0016393] [PMID: 21297998]
[84]
Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7(6): e39743.
[http://dx.doi.org/10.1371/journal.pone.0039743] [PMID: 22761885]
[85]
Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013; 105(24): 1907-11.
[http://dx.doi.org/10.1093/jnci/djt300] [PMID: 24316595]
[86]
Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol 2013; 66(2): 462-70.
[http://dx.doi.org/10.1007/s00248-013-0245-9] [PMID: 23733170]
[87]
Marchesi JR. Human distal gut microbiome. Environ Microbiol 2011; 13(12): 3088-102.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02574.x] [PMID: 21906225]
[88]
Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22(2): 292-8.
[http://dx.doi.org/10.1101/gr.126573.111] [PMID: 22009990]
[89]
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun 2015; 6(1): 6528.
[http://dx.doi.org/10.1038/ncomms7528] [PMID: 25758642]
[90]
Salahshouri P, Emadi-Baygi M, Jalili M, Khan FM, Wolkenhauer O, Salehzadeh-Yazdi A. A metabolic model of intestinal secretions: the link between human microbiota and colorectal cancer progression. Metabolites 2021; 11(7): 456.
[http://dx.doi.org/10.3390/metabo11070456] [PMID: 34357350]
[91]
Nishiumi S, Kobayashi T, Ikeda A, et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 2012; 7(7): e40459.
[http://dx.doi.org/10.1371/journal.pone.0040459] [PMID: 22792336]
[92]
Wang H, Wang L, Zhang H, et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer 2013; 12(1): 121.
[http://dx.doi.org/10.1186/1476-4598-12-121] [PMID: 24138801]
[93]
Uchiyama K, Yagi N, Mizushima K, et al. Serum metabolomics analysis for early detection of colorectal cancer. J Gastroenterol 2017; 52(6): 677-94.
[http://dx.doi.org/10.1007/s00535-016-1261-6] [PMID: 27650200]
[94]
Tian Y, Xu T, Huang J, et al. Tissue metabonomic phenotyping for diagnosis and prognosis of human colorectal cancer. Sci Rep 2016; 6(1): 20790.
[http://dx.doi.org/10.1038/srep20790] [PMID: 26876567]
[95]
Williams MD, Zhang X, Park JJ, et al. Characterizing metabolic changes in human colorectal cancer. Anal Bioanal Chem 2015; 407(16): 4581-95.
[http://dx.doi.org/10.1007/s00216-015-8662-x] [PMID: 25943258]
[96]
Lin Y, Ma C, Liu C, et al. NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget 2016; 7(20): 29454-64.
[http://dx.doi.org/10.18632/oncotarget.8762] [PMID: 27107423]
[97]
Vahabi F, Sadeghi S, Arjmand M, et al. Staging of colorectal cancer using serum metabolomics with 1HNMR Spectroscopy. Iran J Basic Med Sci 2017; 20(7): 835-40.
[PMID: 28852450]
[98]
Triantafillidis JK, Vagianos C, Malgarinos G. Colonoscopy in colorectal cancer screening: Current aspects. Indian J Surg Oncol 2015; 6(3): 237-50.
[http://dx.doi.org/10.1007/s13193-015-0410-3] [PMID: 27217671]
[99]
Lin JS, Perdue LA, Henrikson NB, Bean SI, Blasi PR. Screening for colorectal cancer. JAMA 2021; 325(19): 1978-98.
[http://dx.doi.org/10.1001/jama.2021.4417] [PMID: 34003220]
[100]
Jahn B, Sroczynski G, Bundo M, et al. Effectiveness, benefit harm and cost effectiveness of colorectal cancer screening in Austria. BMC Gastroenterol 2019; 19(1): 209.
[http://dx.doi.org/10.1186/s12876-019-1121-y] [PMID: 31805871]
[101]
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12(2): 124-48.
[http://dx.doi.org/10.4251/wjgo.v12.i2.124] [PMID: 32104546]
[102]
Helsingen LM, Kalager M. Colorectal cancer screening - approach, evidence, and future directions. NEJM Evidence 2022; 1(1): EVIDra2100035.
[103]
Shaukat A, Levin TR. Current and future colorectal cancer screening strategies. Nat Rev Gastroenterol Hepatol 2022; 19(8): 521-31.
[http://dx.doi.org/10.1038/s41575-022-00612-y] [PMID: 35505243]
[104]
Stockenhuber K, East JE. Colorectal cancer: Prevention and early diagnosis. Medicine 2019; 47(7): 395-9.
[http://dx.doi.org/10.1016/j.mpmed.2019.04.001]
[105]
Mousavinezhad M, Majdzadeh R, Akbari Sari A, Delavari A, Mohtasham F. The effectiveness of FOBT vs. FIT: A meta-analysis on colorectal cancer screening test. Med J Islam Repub Iran 2016; 30: 366.
[PMID: 27493910]
[106]
Mole G, Withington J, Logan R. From FOBt to FIT: making it work for patients and populations. Clin Med 2019; 19(3): 196-9.
[http://dx.doi.org/10.7861/clinmedicine.19-3-196]
[107]
Niederreiter M, Niederreiter L, Schmiderer A, Tilg H, Djanani A. Colorectal cancer screening and prevention—pros and cons. Mag Eur Med Oncol 2019; 12(3): 239-43.
[http://dx.doi.org/10.1007/s12254-019-00520-z]
[108]
Malagón M, Ramió-Pujol S, Serrano M, et al. New fecal bacterial signature for colorectal cancer screening reduces the fecal immunochemical test false-positive rate in a screening population. PLoS One 2020; 15(12): e0243158.
[http://dx.doi.org/10.1371/journal.pone.0243158] [PMID: 33259546]
[109]
Niedermaier T, Balavarca Y, Brenner H. Stage-specific sensitivity of fecal immunochemical tests for detecting colorectal cancer: Systematic review and meta-analysis. Am J Gastroenterol 2020; 115(1): 56-69.
[http://dx.doi.org/10.14309/ajg.0000000000000465] [PMID: 31850933]
[110]
Hernandez V, Cubiella J, Gonzalez-Mao MC, et al. Fecal immunochemical test accuracy in average-risk colorectal cancer screening. World J Gastroenterol 2014; 20(4): 1038-47.
[http://dx.doi.org/10.3748/wjg.v20.i4.1038] [PMID: 24574776]
[111]
Naber SK, Knudsen AB, Zauber AG, et al. Cost-effectiveness of a multitarget stool DNA test for colorectal cancer screening of Medicare beneficiaries. PLoS One 2019; 14(9): e0220234.
[http://dx.doi.org/10.1371/journal.pone.0220234] [PMID: 31483796]
[112]
Ahluwalia A, Kears A, Lam H, Wright J, Bloomfield C, Jones M. S3537 modernizing colorectal cancer screening with cologuard. Official journal of the American College of Gastroenterology | ACG 2021; 116: S1453.
[http://dx.doi.org/10.14309/01.ajg.0000787680.88302.8e]
[113]
Lamb YN, Dhillon S. Epi proColon® 2.0 CE: A blood-based screening test for colorectal cancer. Mol Diagn Ther 2017; 21(2): 225-32.
[http://dx.doi.org/10.1007/s40291-017-0259-y] [PMID: 28155091]
[114]
Bering J, Kahn A, Rodriguez E, Ginos B, Ramirez FC, Gurudu SR. Outcomes of cologuard Screening at an Academic medical center: 1-year results: 230. Official journal of the American College of Gastroenterology-ACG 2017; 112: S123-4.
[115]
Baxter NT, Koumpouras CC, Rogers MAM, Ruffin MT IV, Schloss PD. DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model. Microbiome 2016; 4(1): 59.
[http://dx.doi.org/10.1186/s40168-016-0205-y] [PMID: 27842559]
[116]
Ma X, Zhou Z, Zhang X, et al. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice. Cell Biol Toxicol 2020; 36(5): 509-15.
[http://dx.doi.org/10.1007/s10565-020-09518-4] [PMID: 32172331]
[117]
Wang C, Yang S, Gao L, Wang L, Cao L. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice. Food Funct 2018; 9(5): 2695-704.
[http://dx.doi.org/10.1039/C7FO01886J] [PMID: 29756138]
[118]
Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 2019; 26(11): 2447-63.
[http://dx.doi.org/10.1038/s41418-019-0312-y] [PMID: 30850734]
[119]
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim Biophys Acta Rev Cancer 2021; 1875(1): 188490.
[http://dx.doi.org/10.1016/j.bbcan.2020.188490] [PMID: 33321173]
[120]
Eklöf V, Löfgren-Burström A, Zingmark C, et al. Cancerassociated fecal microbial markers in colorectal cancer detection. Int J Cancer 2017; 141(12): 2528-36.
[http://dx.doi.org/10.1002/ijc.31011] [PMID: 28833079]
[121]
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65(12): 1973-80.
[http://dx.doi.org/10.1136/gutjnl-2015-310101] [PMID: 26311717]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy