Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation, Characterization, and Evaluation of Mesoporous Silica Nanoparticles in Enhancing Oral Bioavailability of Poorly Water-Soluble Drugs

Author(s): Hong Zhang, Fanjiao Zuo, Boyao Wang* and Xilong Qiu*

Volume 21, Issue 11, 2024

Published on: 16 January, 2024

Page: [1529 - 1536] Pages: 8

DOI: 10.2174/0115672018273792240101062603

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Breviscapine (BVP) is one of the extracts of several flavonoids of Erigeron breviscapus, which has been widely used in the treatment of cerebral infarction and its sequelae, cerebral thrombus, coronary heart disease, and angina pectoris. But BVP has poor solubility.

Objective: The objective of the study is to develop mesoporous silica nanoparticles (MSNs) that can be loaded with a drug with poor water solubility. The MSNs, which were designed for oral administration, enhanced both the dissolution rate and drug loading capacity.

Methods: The use of MSNs as an oral drug delivery system was investigated by SEM, TEM, BETBJH, XRD, FT-IR, and HPLC. Additionally, we examined the oral bioavailability of BVP loaded onto MSNs and examined the cellular cytotoxicity of MSNs.

Results: The results indicate that the oral bioavailability of BVP after loading onto MSNs was greater than that of a marketed product. Furthermore, we studied the mechanism by which MSNs enhance the oral absorption of BVP.

Conclusion: MSNs have the potential to enhance the oral bioavailability of poorly water-soluble drugs by accelerating the drug dissolution rate.

Keywords: Breviscapine, drug delivery, mesoporous silica nanoparticles, poor solubility, tablet, BVP.

Graphical Abstract
[1]
Kesisoglou, F.; Panmai, S.; Wu, Y. Nanosizing - Oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev., 2007, 59(7), 631-644.
[http://dx.doi.org/10.1016/j.addr.2007.05.003] [PMID: 17601629]
[2]
Takagi, T.; Ramachandran, C.; Bermejo, M.; Yamashita, S.; Yu, L.X.; Amidon, G.L. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharm., 2006, 3(6), 631-643.
[http://dx.doi.org/10.1021/mp0600182] [PMID: 17140251]
[3]
Lipinski, C. Poor aqueous solubility-an industry wide problem in drug discovery. Am. Pharm. Rev., 2002, 5, 82-85.
[4]
Jambhrunkar, S.; Qu, Z.; Popat, A.; Karmakar, S.; Xu, C.; Yu, C. Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. J. Colloid Interface Sci., 2014, 434, 218-225.
[http://dx.doi.org/10.1016/j.jcis.2014.08.019] [PMID: 25203914]
[5]
Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today, 2007, 12(23-24), 1068-1075.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[6]
Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H.Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug-delivery system. Adv. Mater., 2004, 16(21), 1959-1966.
[http://dx.doi.org/10.1002/adma.200400771]
[7]
Vallet-Regi, M.; Rámila, A.; del Real, R.P.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater., 2001, 13(2), 308-311.
[http://dx.doi.org/10.1021/cm0011559]
[8]
Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2010, 2(10), 1870-1883.
[http://dx.doi.org/10.1039/c0nr00156b] [PMID: 20730166]
[9]
He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small, 2009, 5(23), 2722-2729.
[http://dx.doi.org/10.1002/smll.200900923] [PMID: 19780070]
[10]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[11]
Lei, C.; Liu, P.; Chen, B.; Mao, Y.; Engelmann, H.; Shin, Y.; Jaffar, J.; Hellstrom, I.; Liu, J.; Hellstrom, K.E. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J. Am. Chem. Soc., 2010, 132(20), 6906-6907.
[http://dx.doi.org/10.1021/ja102414t] [PMID: 20433206]
[12]
Zhou, Y.; Tan, L.L.; Li, Q.L.; Qiu, X.L.; Qi, A.D.; Tao, Y.; Yang, Y.W. Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors. Chemistry, 2014, 20(11), 2998-3004.
[http://dx.doi.org/10.1002/chem.201304864] [PMID: 24585543]
[13]
Yang, G.; Li, Z.; Wu, F.; Chen, M.; Wang, R.; Zhu, H.; Li, Q.; Yuan, Y. Improving solubility and bioavailability of breviscapine with mesoporous silica nanoparticles prepared using ultrasound-assisted solution-enhanced dispersion by supercritical fluids method. Int. J. Nanomedicine, 2020, 15, 1661-1675.
[http://dx.doi.org/10.2147/IJN.S238337] [PMID: 32210559]
[14]
Hu, L.; Sun, H.R.; Zhao, Q.F. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Mater. Sci. Eng. C Mater. Biol. Appl, 2015, 47, 313-324.
[15]
Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci., 2022, 291, 120301.
[http://dx.doi.org/10.1016/j.lfs.2022.120301] [PMID: 34999114]
[16]
Jiang, X.H.; Li, S.H.; Lan, K.; Yang, J.Y.; Zhou, J. [Study on the pharmacokinetics of scutellarin in dogs]. Yao Xue Xue Bao, 2003, 38(5), 371-373.
[PMID: 12958843]
[17]
Liu, Y.M.; Lin, A.H.; Chen, H.; Zeng, F.D. Study on pharmacokinetics of scutellarin in rabbits. Yao Xue Xue Bao, 2003, 38(10), 775-778.
[PMID: 14730903]
[18]
Goh, A.S.W.; Chung, A.Y.F.; Lo, R.H.G.; Lau, T.N.; Yu, S.W.K.; Chng, M.; Satchithanantham, S.; Loong, S.L.E.; Ng, D.C.E.; Lim, B.C.; Connor, S.; Chow, P.K.H. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device-a first-in-man study. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(3), 786-792.
[http://dx.doi.org/10.1016/j.ijrobp.2006.09.011] [PMID: 17141975]
[19]
Pacholski, C.; Sartor, M.; Sailor, M.J.; Cunin, F.; Miskelly, G.M. Biosensing using porous silicon double-layer interferometers: Reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc., 2005, 127(33), 11636-11645.
[http://dx.doi.org/10.1021/ja0511671] [PMID: 16104739]
[20]
Guo, L.; Zhang, Y.; Al-Jamal, K.T. Recent progress in nanotechnology-based drug carriers for celastrol delivery. Biomater. Sci., 2021, 9(19), 6355-6380.
[http://dx.doi.org/10.1039/D1BM00639H] [PMID: 34582530]
[21]
Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F.; Barnett, C. Peptide and protein loading into porous silicon wafers. Phys. Status Solidi., A Appl. Mater. Sci., 2008, 205(2), 311-315.
[http://dx.doi.org/10.1002/pssa.200723113]
[22]
Salonen, J.; Laitinen, L.; Kaukonen, A.M.; Tuura, J.; Björkqvist, M.; Heikkilä, T.; Vähä-Heikkilä, K.; Hirvonen, J.; Lehto, V.P. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J. Control. Release, 2005, 108(2-3), 362-374.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.017] [PMID: 16169628]
[23]
Anglin, E.; Cheng, L.; Freeman, W.; Sailor, M. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev., 2008, 60(11), 1266-1277.
[http://dx.doi.org/10.1016/j.addr.2008.03.017] [PMID: 18508154]
[24]
Sun, Y.L.; Zhou, Y.; Li, Q.L.; Yang, Y.W. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chem. Commun., 2013, 49(79), 9033-9035.
[http://dx.doi.org/10.1039/c3cc45216f] [PMID: 23982479]
[25]
Vadia, N.; Rajput, S. Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. Eur. J. Pharm. Sci., 2012, 45(1-2), 8-18.
[http://dx.doi.org/10.1016/j.ejps.2011.10.016] [PMID: 22067974]
[26]
Shen, D.; Yang, J.; Li, X.; Zhou, L.; Zhang, R.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett., 2014, 14(2), 923-932.
[http://dx.doi.org/10.1021/nl404316v] [PMID: 24467566]
[27]
Peng, T.; Xu, T.; Liu, X. Research progress of the engagement of inorganic nanomaterials in cancer immunotherapy. Drug Deliv., 2022, 29(1), 1914-1932.
[http://dx.doi.org/10.1080/10717544.2022.2086940] [PMID: 35748543]
[28]
Ibrahim, A.H.; Ibrahim, H.M.; Ismael, H.R.; Samy, A.M. Optimization and evaluation of lyophilized fenofibrate nanoparticles with enhanced oral bioavailability and efficacy. Pharm. Dev. Technol., 2018, 23(4), 358-369.
[http://dx.doi.org/10.1080/10837450.2017.1295065] [PMID: 29069712]
[29]
Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J.M.; Ambrogi, V.; Hamidi, M. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release, 2017, 262, 329-347.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.047] [PMID: 28778479]
[30]
Moritz, M; Geszke-Moritz, M Mesoporous materials as adsorbents for biologically active substances., 2021, 100(10), 992-994.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy