Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Effective Strategies in Designing Chitosan-hyaluronic Acid Nanocarriers: From Synthesis to Drug Delivery Towards Chemotherapy

Author(s): Long-Quy Hong, Thao N.T Ho, Son T. Cu, Lien Tuyet Ngan, Ngoc Quyen Tran* and Tien T. Dang*

Volume 22, Issue 1, 2025

Published on: 16 January, 2024

Page: [41 - 62] Pages: 22

DOI: 10.2174/0115672018275983231207101222

Price: $65

Open Access Journals Promotions 2
Abstract

The biomedical field faces an ongoing challenge in developing more effective anti-cancer medication due to the significant burden that cancer poses on human health. Extensive research has been conducted on the utilization of natural polysaccharides in nanomedicine owing to their properties of biocompatibility, biodegradability, non-immunogenicity, and non-toxicity. These characteristics make them a potent drug delivery system for cancer therapy. The chitosan hyaluronic acid nanoparticle (CSHANp) system, consisting of chitosan and hyaluronic acid nanoparticles, has exhibited considerable potential as a nanocarrier for various cancer drugs, rendering it one of the most auspicious systems presently accessible. The CSHANps demonstrate remarkable drug loading capacity, precise control over drug release, and exceptional selectivity towards cancer cells. These properties enhance the therapeutic effectiveness against cancerous cells. This article aims to provide a comprehensive analysis of CSHANp, focusing on its characteristics, production techniques, applications, and future prospects.

Keywords: Chitosan, hyaluronic acid, cancer, nanoparticle, nanocarrier, cyclotide.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Diaz-Cano, S.J. Tumor heterogeneity: Mechanisms and bases for a reliable application of molecular marker design. Int. J. Mol. Sci., 2012, 13(2), 1951-2011.
[http://dx.doi.org/10.3390/ijms13021951] [PMID: 22408433]
[3]
Jacquemin, V.; Antoine, M.; Dom, G.; Detours, V.; Maenhaut, C.; Dumont, J.E. Dynamic cancer cell heterogeneity: Diagnostic and therapeutic implications. Cancers, 2022, 14(2), 280.
[http://dx.doi.org/10.3390/cancers14020280] [PMID: 35053446]
[4]
Benjamin, D.J. The efficacy of surgical treatment of cancer-20years later. Med. Hypotheses, 2014, 82(4), 412-420.
[http://dx.doi.org/10.1016/j.mehy.2014.01.004] [PMID: 24480434]
[5]
Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401.
[http://dx.doi.org/10.1016/j.gendis.2022.02.007] [PMID: 37397557]
[6]
Jha, S.; Sharma, P.K.; Malviya, R. Hyperthermia: Role and risk factor for cancer treatment. Achievements in the Life Sciences, 2016, 10(2), 161-167.
[http://dx.doi.org/10.1016/j.als.2016.11.004]
[7]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[8]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[9]
Franco, P.; Martini, S.; Di Muzio, J.; Cavallin, C.; Arcadipane, F.; Rampino, M.; Ostellino, O.; Pecorari, G.; Garzino Demo, P.; Fasolis, M.; Airoldi, M.; Ricardi, U. Prospective assessment of oral mucositis and its impact on quality of life and patient-reported outcomes during radiotherapy for head and neck cancer. Med. Oncol., 2017, 34(5), 81.
[http://dx.doi.org/10.1007/s12032-017-0950-1] [PMID: 28386836]
[10]
Pearce, A.; Haas, M.; Viney, R.; Pearson, S.A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS One, 2017, 12(10), e0184360.
[http://dx.doi.org/10.1371/journal.pone.0184360] [PMID: 29016607]
[11]
Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res., 2017, 77(7), 1548-1552.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1536] [PMID: 28330928]
[12]
Kifle, Z.D.; Tadele, M.; Alemu, E.; Gedamu, T.; Ayele, A.G. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med., 2021, 9.
[http://dx.doi.org/10.1177/20503121211067083] [PMID: 34992782]
[13]
Bae, Y.H. Drug targeting and tumor heterogeneity. J. Control. Release, 2009, 133(1), 2-3.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.074] [PMID: 18848589]
[14]
Navya, P.N.; Kaphle, A.; Daima, H.K. Nanomedicine in sensing, delivery, imaging and tissue engineering: advances, opportunities and challenges. In: Nanoscience; , 2018.
[http://dx.doi.org/10.1039/9781788013871-00030]
[15]
Rasool, M.; Malik, A.; Waquar, S.; Arooj, M.; Zahid, S.; Asif, M.; Shaheen, S.; Hussain, A.; Ullah, H.; Gan, S.H. New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 2022, 13(1), 759-773.
[http://dx.doi.org/10.1080/21655979.2021.2012907] [PMID: 34856849]
[16]
Bhatia, S.N.; Chen, X.; Dobrovolskaia, M.A.; Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer, 2022, 22(10), 550-556.
[http://dx.doi.org/10.1038/s41568-022-00496-9] [PMID: 35941223]
[17]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[18]
Yousefi Rizi, H.A.; Shin, D.H.; Yousefi Rizi, S. Polymeric nanoparticles in cancer chemotherapy: A narrative review. Iran. J. Public Health, 2022, 51(2), 226-239.
[http://dx.doi.org/10.18502/ijph.v51i2.8677] [PMID: 35866132]
[19]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[20]
Wong, K.H.; Lu, A.; Chen, X.; Yang, Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules, 2020, 25(16), 3620.
[http://dx.doi.org/10.3390/molecules25163620] [PMID: 32784890]
[21]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[22]
Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv., 2021, 18(10), 1435-1455.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[23]
Ashique, S.; Almohaywi, B.; Haider, N.; Yasmin, S.; Hussain, A. Mishra, N siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Adv. Cancer Biol. Metastasis, 2022, 4, 100047.
[24]
Ashique, S.; Upadhyay, A.; Kumar, N.; Chauhan, S.; Mishra, N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery-a review. Adv. Cancer Bio.-. Metastasis., 2022, 4, 100041.
[25]
Ashique, S.; Garg, A.; Mishra, N.; Raina, N.; Ming, L.C.; Tulli, H.S.; Behl, T.; Rani, R.; Gupta, M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(11), 2769-2792.
[http://dx.doi.org/10.1007/s00210-023-02522-5] [PMID: 37219615]
[26]
Patil, M; Hussain, A; Altamimi, MA; Ashique, S; Haider, N; Faruk, A An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer. Adv. Cancer Bio - Metastasis., 2023, 7, 100103.
[http://dx.doi.org/10.1016/j.adcanc.2023.100103]
[27]
Ashrafi, H.; Azadi, A. Chitosan-based hydrogel nanoparticle amazing behaviors during transmission electron microscopy. Int. J. Biol. Macromol., 2016, 84, 31-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.089] [PMID: 26658231]
[28]
Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials, 2011, 4(8), 1399-1416.
[http://dx.doi.org/10.3390/ma4081399] [PMID: 28824150]
[29]
Kamath, P.R.; Sunil, D. Nano-chitosan particles in anticancer drug delivery: An up-to-date review. Mini Rev. Med. Chem., 2017, 17(15), 1457-1487.
[PMID: 28245780]
[30]
Bonin, M.; Sreekumar, S.; Cord-Landwehr, S.; Moerschbacher, B.M. Preparation of defined chitosan oligosaccharides using chitin deacetylases. Int. J. Mol. Sci., 2020, 21(21), 7835.
[http://dx.doi.org/10.3390/ijms21217835] [PMID: 33105791]
[31]
Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol., 2021, 169, 85-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.005] [PMID: 33279563]
[32]
Ding, F.; Fu, J.; Tao, C.; Yu, Y.; He, X.; Gao, Y.; Zhang, Y. Recent advances of chitosan and its derivatives in biomedical applications. Curr. Med. Chem., 2020, 27(18), 3023-3045.
[http://dx.doi.org/10.2174/0929867326666190405151538] [PMID: 30961477]
[33]
Zeng, Z.; Liu, Y.; Wen, Q.; Li, Y.; Yu, J.; Xu, Q.; Wan, W.; He, Y.; Ma, C.; Huang, Y.; Yang, H.; Jiang, O.; Li, F. Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages. Drug Deliv., 2021, 28(1), 943-956.
[http://dx.doi.org/10.1080/10717544.2021.1921076] [PMID: 33988472]
[34]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717.
[http://dx.doi.org/10.3390/polym13111717] [PMID: 34074020]
[35]
Shahbaz, U. Chitin, characteristic, sources, and biomedical application. Curr. Pharm. Biotechnol., 2020, 21(14), 1433-1443.
[http://dx.doi.org/10.2174/1389201021666200605104939] [PMID: 32503407]
[36]
Zoe, L.H.; David, S.R.; Rajabalaya, R. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol. Rep., 2023, 11, 83-106.
[http://dx.doi.org/10.1016/j.toxrep.2023.06.012]
[37]
Naqvi, S.; Moerschbacher, B.M. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit. Rev. Biotechnol., 2017, 37(1), 11-25.
[http://dx.doi.org/10.3109/07388551.2015.1104289] [PMID: 26526199]
[38]
Arya, G.; Gupta, N.; Nimesh, S. 8 - Chitosan nanoparticles for therapeutic delivery of anticancer drugs. In: Polysaccharide Nanoparticles; Venkatesan, J.; Kim, S-K.; Anil, S., Eds.; Elsevier, 2022; pp. 201-230.
[http://dx.doi.org/10.1016/B978-0-12-822351-2.00018-8]
[39]
Baharlouei, P.; Rahman, A. Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar. Drugs, 2022, 20(7), 460.
[http://dx.doi.org/10.3390/md20070460] [PMID: 35877753]
[40]
Ahsan, A.; Farooq, M.A.; Parveen, A. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier. ACS Omega, 2020, 5(32), 20450-20460.
[http://dx.doi.org/10.1021/acsomega.0c02548] [PMID: 32832798]
[41]
Huang, P.; Yang, C.; Liu, J.; Wang, W.; Guo, S.; Li, J.; Sun, Y.; Dong, H.; Deng, L.; Zhang, J.; Liu, J.; Dong, A. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 4021-4033.
[http://dx.doi.org/10.1039/C4TB00273C] [PMID: 32261653]
[42]
Hadler, N.M.; Napier, M.A. Structure of hyaluronic acid in synovial fluid and its influence on the movement of solutes. Semin. Arthritis Rheum., 1977, 7(2), 141-152.
[http://dx.doi.org/10.1016/0049-0172(77)90020-8] [PMID: 929207]
[43]
Burdick, J.A.; Prestwich, G.D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater., 2011, 23(12), H41-H56.
[http://dx.doi.org/10.1002/adma.201003963] [PMID: 21394792]
[44]
Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci., 2019, 6, 192.
[http://dx.doi.org/10.3389/fvets.2019.00192] [PMID: 31294035]
[45]
Tsuji, R.; Ogata, S.; Mochizuki, S. Interaction between CD44 and highly condensed hyaluronic acid through crosslinking with proteins. Bioorg. Chem., 2022, 121, 105666.
[http://dx.doi.org/10.1016/j.bioorg.2022.105666] [PMID: 35152139]
[46]
Bhattacharya, D.S.; Svechkarev, D.; Souchek, J.J.; Hill, T.K.; Taylor, M.A.; Natarajan, A.; Mohs, A.M. Impact of structurally modifying hyaluronic acid on CD44 interaction. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(41), 8183-8192.
[http://dx.doi.org/10.1039/C7TB01895A] [PMID: 29354263]
[47]
Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 2014, 64, 353-367.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
[48]
Wu, D.; Zhu, L.; Li, Y.; Zhang, X.; Xu, S.; Yang, G.; Delair, T. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: A review. Carbohydr. Polym., 2020, 238, 116126.
[http://dx.doi.org/10.1016/j.carbpol.2020.116126] [PMID: 32299572]
[49]
Pornpitchanarong, C.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T.; Patrojanasophon, P. Catechol-modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells. Colloids Surf. B Biointerfaces, 2020, 196, 111279.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111279] [PMID: 32750605]
[50]
Marras, A.E.; Vieregg, J.R.; Ting, J.M.; Rubien, J.D.; Tirrell, M.V. Polyelectrolyte complexation of oligonucleotides by charged hydrophobic—neutral hydrophilic block copolymers. Polymers, 2019, 11(1), 83.
[http://dx.doi.org/10.3390/polym11010083] [PMID: 30960067]
[51]
Zhao, L.; Skwarczynski, M.; Toth, I. Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater. Sci. Eng., 2019, 5(10), 4937-4950.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01135] [PMID: 33455241]
[52]
Nasti, A.; Zaki, N.M.; de Leonardis, P.; Ungphaiboon, S.; Sansongsak, P.; Rimoli, M.G.; Tirelli, N. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm. Res., 2009, 26(8), 1918-1930.
[http://dx.doi.org/10.1007/s11095-009-9908-0] [PMID: 19507009]
[53]
Luo, Y.; Zhang, B.; Cheng, W.H.; Wang, Q. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydr. Polym., 2010, 82(3), 942-951.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.029]
[54]
Chiesa, E.; Dorati, R.; Conti, B.; Modena, T.; Cova, E.; Meloni, F.; Genta, I. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus. Int. J. Mol. Sci., 2018, 19(8), 2310.
[http://dx.doi.org/10.3390/ijms19082310] [PMID: 30087241]
[55]
Sawtarie, N.; Cai, Y.; Lapitsky, Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf. B Biointerfaces, 2017, 157, 110-117.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.055] [PMID: 28578269]
[56]
Chen, R.; Zhai, Y.Y.; Sun, L.; Wang, Z.; Xia, X.; Yao, Q.; Kou, L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian Journal of Pharmaceutical Sciences, 2022, 17(2), 268-283.
[http://dx.doi.org/10.1016/j.ajps.2022.02.003] [PMID: 35582636]
[57]
Zhang, W.; Xu, W.; Lan, Y.; He, X.; Liu, K.; Liang, Y. Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int. J. Nanomedicine, 2019, 14, 5287-5301.
[http://dx.doi.org/10.2147/IJN.S203113] [PMID: 31406460]
[58]
Wang, T.; Hou, J.; Su, C.; Zhao, L.; Shi, Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J. Nanobiotechnology, 2017, 15(1), 7.
[http://dx.doi.org/10.1186/s12951-016-0245-2] [PMID: 28068992]
[59]
Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 13-36.
[http://dx.doi.org/10.1016/S0169-409X(01)00240-X] [PMID: 11755704]
[60]
Xia, D.; Wang, F.; Pan, S.; Yuan, S.; Liu, Y.; Xu, Y. Redox/pH-responsive biodegradable thiol-hyaluronic acid/chitosan charge-reversal nanocarriers for triggered drug release. Polymers, 2021, 13(21), 3785.
[http://dx.doi.org/10.3390/polym13213785] [PMID: 34771342]
[61]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Gurny, R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 35-52.
[http://dx.doi.org/10.1016/S0939-6411(03)00160-7] [PMID: 14729079]
[62]
Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Rodziewicz, J.; Mielcarek, A. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React. Funct. Polym., 2017, 114, 58-74.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.03.007]
[63]
Nath, S.D.; Abueva, C.; Kim, B.; Lee, B.T. Chitosan–hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr. Polym., 2015, 115, 160-169.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.077] [PMID: 25439881]
[64]
Fam, S.Y.; Chee, C.F.; Yong, C.Y.; Ho, K.L.; Mariatulqabtiah, A.R.; Tan, W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials, 2020, 10(4), 787.
[http://dx.doi.org/10.3390/nano10040787] [PMID: 32325941]
[65]
Wang, J.; Asghar, S.; Yang, L.; Gao, S.; Chen, Z.; Huang, L.; Zong, L.; Ping, Q.; Xiao, Y. Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Int. J. Biol. Macromol., 2018, 113, 345-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.128] [PMID: 29486258]
[66]
Raviña, M.; Cubillo, E.; Olmeda, D.; Novoa-Carballal, R.; Fernandez-Megia, E.; Riguera, R.; Sánchez, A.; Cano, A.; Alonso, M.J. Hyaluronic acid/chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy: An application for pDNA and siRNA delivery. Pharm. Res., 2010, 27(12), 2544-2555.
[http://dx.doi.org/10.1007/s11095-010-0263-y] [PMID: 20857179]
[67]
Wang, H.; Agarwal, P.; Zhao, S.; Xu, R.X.; Yu, J.; Lu, X.; He, X. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials, 2015, 72, 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[68]
Bonferoni, M.C.; Sandri, G.; Dellera, E.; Rossi, S.; Ferrari, F.; Mori, M.; Caramella, C. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. Eur. J. Pharm. Biopharm., 2014, 87(1), 101-106.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.018] [PMID: 24384070]
[69]
Aranaz, I.; Harris, R.; Heras, A. Chitosan amphiphilic derivatives: Chemistry and applications. Curr. Org. Chem., 2010, 14(3), 308-330.
[http://dx.doi.org/10.2174/138527210790231919]
[70]
Sang, M.; Han, L.; Luo, R.; Qu, W.; Zheng, F.; Zhang, K.; Liu, F.; Xue, J.; Liu, W.; Feng, F. CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer. Biomater. Sci., 2020, 8(1), 212-223.
[http://dx.doi.org/10.1039/C9BM01171D] [PMID: 31674634]
[71]
Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Nair, A.B.; Yt, K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics, 2022, 14(8), 1636.
[http://dx.doi.org/10.3390/pharmaceutics14081636] [PMID: 36015262]
[72]
Raval, N.; Maheshwari, R.; Shukla, H.; Kalia, K.; Torchilin, V.P.; Tekade, R.K. Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. Mater. Sci. Eng. C, 2021, 126, 112186.
[http://dx.doi.org/10.1016/j.msec.2021.112186] [PMID: 34082985]
[73]
Xu, W.; Wang, H.; Dong, L.; Zhang, P.; Mu, Y.; Cui, X.; Zhou, J.; Huo, M.; Yin, T. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid. Int. J. Nanomedicine, 2019, 14, 4649-4666.
[http://dx.doi.org/10.2147/IJN.S201110] [PMID: 31303753]
[74]
Anirudhan, T.S.; Vasantha, C.S.; Sasidharan, A.V. Layer-by-layer assembly of hyaluronic acid/carboxymethylchitosan polyelectrolytes on the surface of aminated mesoporous silica for the oral delivery of 5-fluorouracil. Eur. Polym. J., 2017, 93, 572-589.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.06.033]
[75]
Radwan, R.; Abdelkader, A.; Fathi, H.A.; Elsabahy, M.; Fetih, G.; El-Badry, M. Development and evaluation of letrozole-loaded hyaluronic acid/chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles. J. Pharm. Innov., 2022, 17(2), 572-583.
[http://dx.doi.org/10.1007/s12247-021-09538-5]
[76]
Gao, Z.; Li, Z.; Yan, J.; Wang, P. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des. Devel. Ther., 2017, 11, 2595-2604.
[http://dx.doi.org/10.2147/DDDT.S140797] [PMID: 28919710]
[77]
Chiesa, E.; Riva, F.; Dorati, R.; Greco, A.; Ricci, S.; Pisani, S.; Patrini, M.; Modena, T.; Conti, B.; Genta, I. On-chip synthesis of hyaluronic acid-based nanoparticles for selective inhibition of CD44+ human mesenchymal stem cell proliferation. Pharmaceutics, 2020, 12(3), 260.
[http://dx.doi.org/10.3390/pharmaceutics12030260] [PMID: 32183027]
[78]
Zhang, X.; Niu, S.; Williams, G.R.; Wu, J.; Chen, X.; Zheng, H.; Zhu, L.M. Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy. Carbohydr. Polym., 2019, 221, 84-93.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.081] [PMID: 31227170]
[79]
Belyanina, I.; Kolovskaya, O.; Zamay, S.; Gargaun, A.; Zamay, T.; Kichkailo, A. Targeted magnetic nanotheranostics of cancer. Molecules, 2017, 22(6), 975.
[http://dx.doi.org/10.3390/molecules22060975] [PMID: 28604617]
[80]
Wang, J.; Asghar, S.; Jin, X.; Chen, Z.; Huang, L.; Ping, Q.; Zong, L.; Xiao, Y. Mitoxantrone-loaded chitosan/hyaluronate polyelectrolyte nanoparticles decorated with amphiphilic PEG derivates for long-circulating effect. Colloids Surf. B Biointerfaces, 2018, 171, 468-477.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.060] [PMID: 30077147]
[81]
Xu, Y.; Asghar, S.; Yang, L.; Chen, Z.; Li, H.; Shi, W.; Li, Y.; Shi, Q.; Ping, Q.; Xiao, Y. Nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG containing curcumin: In vitro evaluation and pharmacokinetics in rats. Int. J. Biol. Macromol., 2017, 102, 1083-1091.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.105] [PMID: 28472690]
[82]
Salimifard, S.; Karoon Kiani, F.; Sadat Eshaghi, F.; Izadi, S.; Shahdadnejad, K.; Masjedi, A.; Heydari, M.; Ahmadi, A.; Hojjat-Farsangi, M.; Hassannia, H.; Mohammadi, H.; Boroumand-Noughabi, S.; Keramati, M.R.; Jadidi-Niaragh, F. Codelivery of BV6 and anti-IL6 siRNA by hyaluronate-conjugated PEG-chitosan-lactate nanoparticles inhibits tumor progression. Life Sci., 2020, 260, 118423.
[http://dx.doi.org/10.1016/j.lfs.2020.118423] [PMID: 32941896]
[83]
Karpisheh, V.; Fakkari Afjadi, J.; Nabi Afjadi, M.; Haeri, M.S.; Abdpoor Sough, T.S.; Heydarzadeh Asl, S.; Edalati, M.; Atyabi, F.; Masjedi, A.; Hajizadeh, F.; Izadi, S.; Mirzazadeh Tekie, F.S.; Hajiramezanali, M.; Sojoodi, M.; Jadidi-Niaragh, F. Inhibition of HIF-1α/EP4 axis by hyaluronate-trimethyl chitosan-SPION nanoparticles markedly suppresses the growth and development of cancer cells. Int. J. Biol. Macromol., 2021, 167, 1006-1019.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.056] [PMID: 33227333]
[84]
Shabani Ravari, N.; Goodarzi, N.; Alvandifar, F.; Amini, M.; Souri, E.; Khoshayand, M.R.; Hadavand Mirzaie, Z.; Atyabi, F.; Dinarvand, R. Fabrication and biological evaluation of chitosan coated hyaluronic acid-docetaxel conjugate nanoparticles in CD44+ cancer cells. Daru, 2016, 24(1), 21.
[http://dx.doi.org/10.1186/s40199-016-0160-y] [PMID: 27473554]
[85]
Yang, L.; Gao, S.; Asghar, S.; Liu, G.; Song, J.; Wang, X.; Ping, Q.; Zhang, C.; Xiao, Y. Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells. Int. J. Biol. Macromol., 2015, 72, 1391-1401.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.039] [PMID: 25450553]
[86]
Xu, Y.; Asghar, S.; Gao, S.; Chen, Z.; Huang, L.; Yin, L.; Ping, Q.; Xiao, Y. Polysaccharide-based nanoparticles for co-loading mitoxantrone and verapamil to overcome multidrug resistance in breast tumor. Int. J. Nanomedicine, 2017, 12, 7337-7350.
[http://dx.doi.org/10.2147/IJN.S145620] [PMID: 29066886]
[87]
Mesrati, M.H.; Tajudin, A.A.; Masarudin, M.J.; Alamassi, M.N.; Abuhamad, A.Y.; Syahir, A. Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells. OpenNano, 2023, 12, 100166.
[http://dx.doi.org/10.1016/j.onano.2023.100166]
[88]
Cannavà, C.; De Gaetano, F.; Stancanelli, R.; Venuti, V.; Paladini, G.; Caridi, F.; Ghica, C.; Crupi, V.; Majolino, D.; Ferlazzo, G.; Tommasini, S.; Ventura, C.A. Chitosan-hyaluronan nanoparticles for vinblastine sulfate delivery: characterization and internalization studies on K-562 cells. Pharmaceutics, 2022, 14(5), 942.
[http://dx.doi.org/10.3390/pharmaceutics14050942] [PMID: 35631528]
[89]
Sharifi, F.; Jahangiri, M.; Ebrahimnejad, P. Synthesis of novel polymeric nanoparticles (methoxy-polyethylene glycol-chitosan/hyaluronic acid) containing 7-ethyl-10-hydroxycamptothecin for colon cancer therapy: in vitro, ex vivo and in vivo investigation. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 367-380.
[http://dx.doi.org/10.1080/21691401.2021.1907393] [PMID: 33851564]
[90]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[91]
Omar, H.; Fardous, R.; Alhindi, Y.M.; Aodah, A.H.; Alyami, M.; Alsuabeyl, M.S.; Alghamdi, W.M.; Alhasan, A.H.; Almalik, A. α1-Acid glycoprotein-decorated hyaluronic acid nanoparticles for suppressing metastasis and overcoming drug resistance breast cancer. Biomedicines, 2022, 10(2), 414.
[http://dx.doi.org/10.3390/biomedicines10020414] [PMID: 35203623]
[92]
Lee, R.; Choi, Y.J.; Jeong, M.S.; Park, Y.I.; Motoyama, K.; Kim, M.W.; Kwon, S.H.; Choi, J.H. Hyaluronic acid-decorated glycol chitosan nanoparticles for pH-sensitive controlled release of doxorubicin and celecoxib in nonsmall cell lung cancer. Bioconjug. Chem., 2020, 31(3), 923-932.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00048] [PMID: 32027493]
[93]
Gennari, A.; Rios de la Rosa, J.M.; Hohn, E.; Pelliccia, M.; Lallana, E.; Donno, R.; Tirella, A.; Tirelli, N. The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency. Beilstein J. Nanotechnol., 2019, 10, 2594-2608.
[http://dx.doi.org/10.3762/bjnano.10.250] [PMID: 31976191]
[94]
Hashad, R.A.; Ishak, R.A.H.; Geneidi, A.S.; Mansour, S. Surface functionalization of methotrexate-loaded chitosan nanoparticles with hyaluronic acid/human serum albumin: Comparative characterization and in vitro cytotoxicity. Int. J. Pharm., 2017, 522(1-2), 128-136.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.008] [PMID: 28279742]
[95]
Pelegrino, M.T.; Baldi, C.; Souza, A.C.S.; Seabra, A.B. Cytotoxicity of hyaluronic acid coated chitosan nanoparticles containing nitric oxide donor against cancer cell lines. J. Phys. Conf. Ser., 2019, 1323(1), 012019.
[http://dx.doi.org/10.1088/1742-6596/1323/1/012019]
[96]
Kousar, K.; Naseer, F.; Abduh, M.S.; Kakar, S.; Gul, R.; Anjum, S.; Ahmad, T. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma. Front. Pharmacol., 2023, 13, 1073004.
[http://dx.doi.org/10.3389/fphar.2022.1073004] [PMID: 36712656]
[97]
Naseer, F.; Ahmad, T.; Kousar, K.; Kakar, S.; Gul, R.; Anjum, S.; Shareef, U. Formulation for the targeted delivery of a vaccine strain of oncolytic measles virus (OMV) in hyaluronic acid coated thiolated chitosan as a green nanoformulation for the treatment of prostate cancer: A viro-immunotherapeutic approach. Int. J. Nanomedicine, 2023, 18, 185-205.
[http://dx.doi.org/10.2147/IJN.S386560] [PMID: 36643861]
[98]
Meylina, L.; Muchtaridi, M.; Joni, I.M.; Elamin, K.M.; Wathoni, N. Hyaluronic acid-coated chitosan nanoparticles as an active targeted carrier of alpha mangostin for breast cancer cells. Polymers, 2023, 15(4), 1025.
[http://dx.doi.org/10.3390/polym15041025] [PMID: 36850308]
[99]
Liang, Y.; Wang, Y.; Wang, L.; Liang, Z.; Li, D.; Xu, X.; Chen, Y.; Yang, X.; Zhang, H.; Niu, H. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact. Mater., 2021, 6(2), 433-446.
[http://dx.doi.org/10.1016/j.bioactmat.2020.08.019] [PMID: 32995671]
[100]
Salehi Khesht, A.M.; Karpisheh, V.; Sahami Gilan, P.; Melnikova, L.A.; Olegovna Zekiy, A.; Mohammadi, M.; Hojjat-Farsangi, M.; Majidi Zolbanin, N.; Mahmoodpoor, A.; Hassannia, H.; Aghebati-Maleki, L.; Jafari, R.; Jadidi-Niaragh, F. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int. J. Biol. Macromol., 2021, 186, 849-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.034] [PMID: 34245737]
[101]
Taghipour-Sabzevar, V.; Sharifi, T.; Bagheri-Khoulenjani, S.; Goodarzi, V.; Kooshki, H.; Halabian, R.; Moosazadeh Moghaddam, M. Targeted delivery of a short antimicrobial peptide against CD44-overexpressing tumor cells using hyaluronic acid-coated chitosan nanoparticles: An in vitro study. J. Nanopart. Res., 2020, 22(5), 99.
[http://dx.doi.org/10.1007/s11051-020-04838-2]
[102]
Dadashi, F.; Esmaeili, A. Optimization, in-vitro release and in-vivo evaluation of bismuth-hyaluronic acid-melittin-chitosan modified with oleic acid nanoparticles computed imaging-guided radiotherapy of cancer tumor in eye cells. Mater. Sci. Eng. B, 2021, 270, 115197.
[http://dx.doi.org/10.1016/j.mseb.2021.115197]
[103]
Rezaei, S.; Kashanian, S.; Bahrami, Y.; Cruz, L.J.; Motiei, M. Redox-sensitive and hyaluronic acid-functionalized nanoparticles for improving breast cancer treatment by cytoplasmic 17α-mthyltestosterone delivery. Molecules, 2020, 25(5), 1181.
[http://dx.doi.org/10.3390/molecules25051181] [PMID: 32151062]
[104]
Li, H.; Zhuang, S.; Yang, Y.; Zhou, F.; Rong, J.; Zhao, J. ATP/Hyals dually responsive core-shell hyaluronan/chitosan-based drug nanocarrier for potential application in breast cancer therapy. Int. J. Biol. Macromol., 2021, 183, 839-851.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.020] [PMID: 33965490]
[105]
Almutairi, F.M.; Abd-Rabou, A.A.; Mohamed, M.S. Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells. Bioorg. Med. Chem., 2019, 27(8), 1629-1638.
[http://dx.doi.org/10.1016/j.bmc.2019.03.004] [PMID: 30879864]
[106]
Parashar, P.; Rathor, M.; Dwivedi, M.; Saraf, S. Hyaluronic acid decorated naringenin nanoparticles: Appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics, 2018, 10(1), 33.
[http://dx.doi.org/10.3390/pharmaceutics10010033] [PMID: 29534519]
[107]
Campos, J.; Varas-Godoy, M.; Haidar, Z.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells. Nanomedicine, 2017, 12(5), 473-490.
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
[108]
Wang, Y.; Qian, J.; Yang, M.; Xu, W.; Wang, J.; Hou, G.; Ji, L.; Suo, A. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr. Polym., 2019, 225, 115206.
[http://dx.doi.org/10.1016/j.carbpol.2019.115206] [PMID: 31521263]
[109]
Shahidi, M.; Abazari, O.; Dayati, P.; Reza, J.Z.; Modarressi, M.H.; Tofighi, D.; Haghiralsadat, B.F.; Oroojalian, F. Using chitosan-stabilized, hyaluronic acid-modified selenium nanoparticles to deliver CD44-targeted PLK1 siRNAs for treating bladder cancer. Nanomedicine, 2023, 18(3), 259-277.
[http://dx.doi.org/10.2217/nnm-2022-0198] [PMID: 37125618]
[110]
Anirudhan, T.S.; Mohan, M.; Rajeev, M.R. Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int. J. Biol. Macromol., 2022, 201, 378-388.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.022] [PMID: 35033527]
[111]
Ashique, S.; Garg, A.; Hussain, A.; Farid, A.; Kumar, P.; Taghizadeh-Hesary, F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med., 2023.
[112]
Ozcan, G.; Ozpolat, B.; Coleman, R.L.; Sood, A.K.; Lopez-Berestein, G. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Deliv. Rev., 2015, 87, 108-119.
[http://dx.doi.org/10.1016/j.addr.2015.01.007] [PMID: 25666164]
[113]
Asai, T.; Oku, N. Systemic delivery of small RNA using lipid nanoparticles. Biol. Pharm. Bull., 2014, 37(2), 201-205.
[http://dx.doi.org/10.1248/bpb.13-00744] [PMID: 24492716]
[114]
Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A.K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv., 2015, 12(3), 415-440.
[http://dx.doi.org/10.1517/17425247.2015.961420] [PMID: 25251334]
[115]
Howard, K.A. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv. Drug Deliv. Rev., 2009, 61(9), 710-720.
[http://dx.doi.org/10.1016/j.addr.2009.04.001] [PMID: 19356738]
[116]
Merdan, T.; Kopec̆ek, J.; Kissel, T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev., 2002, 54(5), 715-758.
[http://dx.doi.org/10.1016/S0169-409X(02)00046-7] [PMID: 12204600]
[117]
Shajari, N.; Mansoori, B.; Davudian, S.; Mohammadi, A.; Baradaran, B. Overcoming the challenges of siRNA delivery: Nanoparticle strategies. Curr. Drug Deliv., 2017, 14(1), 36-46.
[http://dx.doi.org/10.2174/1567201813666160816105408] [PMID: 27538460]
[118]
Bastaki, S.; Aravindhan, S.; Ahmadpour Saheb, N.; Afsari Kashani, M.; Evgenievich Dorofeev, A.; Karoon Kiani, F.; Jahandideh, H.; Beigi Dargani, F.; Aksoun, M.; Nikkhoo, A.; Masjedi, A.; Mahmoodpoor, A.; Ahmadi, M.; Dolati, S.; Namvar Aghdash, S.; Jadidi-Niaragh, F. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sci., 2021, 266, 118847.
[http://dx.doi.org/10.1016/j.lfs.2020.118847] [PMID: 33309720]
[119]
Varlamova, E.G.; Turovsky, E.A.; Blinova, E.V. Therapeutic potential and main methods of obtaining selenium nanoparticles. Int. J. Mol. Sci., 2021, 22(19), 10808.
[http://dx.doi.org/10.3390/ijms221910808] [PMID: 34639150]
[120]
Jabbarzadeh Kaboli, P.; Salimian, F.; Aghapour, S.; Xiang, S.; Zhao, Q.; Li, M.; Wu, X.; Du, F.; Zhao, Y.; Shen, J.; Cho, C.H.; Xiao, Z. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer-a comprehensive review from chemotherapy to immunotherapy. Pharmacol. Res., 2020, 156, 104806.
[http://dx.doi.org/10.1016/j.phrs.2020.104806] [PMID: 32294525]
[121]
Caswell-Jin, J.L.; Plevritis, S.K.; Tian, L.; Cadham, C.J.; Xu, C.; Stout, N.K.; Sledge, G.W.; Mandelblatt, J.S.; Kurian, A.W. Change in survival in metastatic breast cancer with treatment advances: meta-analysis and systematic review. JNCI Cancer Spectr., 2018, 2(4), pky062.
[http://dx.doi.org/10.1093/jncics/pky062] [PMID: 30627694]
[122]
Lampis, A.; Hahne, J.C.; Hedayat, S.; Valeri, N. MicroRNAs as mediators of drug resistance mechanisms. Curr. Opin. Pharmacol., 2020, 54, 44-50.
[http://dx.doi.org/10.1016/j.coph.2020.08.004] [PMID: 32898724]
[123]
Zeng, X.; Wang, H.Y.; Bai, S.Y.; Pu, K.; Wang, Y.P.; Zhou, Y.N. The roles of microRNAs in multidrug-resistance mechanisms in gastric cancer. Curr. Mol. Med., 2021, 20(9), 667-674.
[http://dx.doi.org/10.2174/1566524020666200226124336] [PMID: 32209033]
[124]
Yang, X.; Shang, P.; Ji, J.; Malichewe, C.; Yao, Z.; Liao, J.; Du, D.; Sun, C.; Wang, L.; Tang, Y.; Guo, X. Hyaluronic acid-modified nanoparticles self-assembled from linoleic acid-conjugated chitosan for the codelivery of miR34a and doxorubicin in resistant breast cancer. Mol. Pharm., 2022, 19(1), 2-17.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00459] [PMID: 34910493]
[125]
Roh, M.; Wainwright, D.A.; Wu, J.D.; Wan, Y.; Zhang, B. Targeting CD73 to augment cancer immunotherapy. Curr. Opin. Pharmacol., 2020, 53, 66-76.
[http://dx.doi.org/10.1016/j.coph.2020.07.001] [PMID: 32777746]
[126]
Xu, G.; McLeod, H.L. Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res., 2001, 7(11), 3314-3324.
[PMID: 11705842]
[127]
Sun, I.C.; Yoon, H.Y.; Lim, D.K.; Kim, K. Recent trends in in situ enzyme-activatable prodrugs for targeted cancer therapy. Bioconjug. Chem., 2020, 31(4), 1012-1024.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00082] [PMID: 32163277]
[128]
Humer, D.; Spadiut, O. Enzyme prodrug therapy: Cytotoxic potential of paracetamol turnover with recombinant horseradish peroxidase. Monatsh. Chem., 2021, 152(11), 1389-1397.
[http://dx.doi.org/10.1007/s00706-021-02848-x] [PMID: 34759433]
[129]
Malekshah, O.M.; Chen, X.; Nomani, A.; Sarkar, S.; Hatefi, A. Enzyme/prodrug systems for cancer gene therapy. Curr. Pharmacol. Rep., 2016, 2(6), 299-308.
[http://dx.doi.org/10.1007/s40495-016-0073-y] [PMID: 28042530]
[130]
Pereira, F.M.; Melo, M.N.; Santos, Á.K.M.; Oliveira, K.V.; Diz, F.M.; Ligabue, R.A.; Morrone, F.B.; Severino, P.; Fricks, A.T. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb. Technol., 2021, 150, 109889.
[http://dx.doi.org/10.1016/j.enzmictec.2021.109889] [PMID: 34489042]
[131]
Manandhar, S.; Sjöholm, E.; Bobacka, J.; Rosenholm, J.M.; Bansal, K.K. Polymer-drug conjugates as nanotheranostic agents. J. Nanotheranostics, 2021, 2(1), 63-81.
[132]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[133]
Bakare, O.O.; Gokul, A.; Wu, R.; Niekerk, L.A.; Klein, A.; Keyster, M. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules, 2021, 11(8), 1120.
[http://dx.doi.org/10.3390/biom11081120] [PMID: 34439786]
[134]
Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[135]
Amani, J.; Barjini, K.; Moghaddam, M.; Asadi, A. In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria. Protein Pept. Lett., 2015, 22(10), 940-951.
[http://dx.doi.org/10.2174/0929866522666150728115439] [PMID: 26216264]
[136]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[137]
Wang, Z.; Jin, A.; Yang, Z.; Huang, W. Advanced nitric oxide generating nanomedicine for therapeutic applications. ACS Nano, 2023, 17(10), 8935-8965.
[http://dx.doi.org/10.1021/acsnano.3c02303] [PMID: 37126728]
[138]
de Veer, S.J.; Kan, M.W.; Craik, D.J. Cyclotides: From structure to function. Chem. Rev., 2019, 119(24), 12375-12421.
[http://dx.doi.org/10.1021/acs.chemrev.9b00402] [PMID: 31829013]
[139]
Gould, A.; Camarero, J.A. Cyclotides: overview and biotechnological applications. ChemBioChem, 2017, 18(14), 1350-1363.
[http://dx.doi.org/10.1002/cbic.201700153] [PMID: 28544675]
[140]
Jacob, B.; Vogelaar, A.; Cadenas, E.; Camarero, J.A. Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules, 2022, 27(19), 6430.
[http://dx.doi.org/10.3390/molecules27196430] [PMID: 36234971]
[141]
Ho, T.N.T.; Pham, S.H.; Nguyen, L.T.T.; Nguyen, H.T.; Nguyen, L.T.; Dang, T.T. Insights into the synthesis strategies of plant-derived cyclotides. Amino Acids, 2023, 55(6), 713-729.
[http://dx.doi.org/10.1007/s00726-023-03271-8] [PMID: 37142771]
[142]
Ho, T.N.T.; Turner, A.; Pham, S.H.; Nguyen, H.T.; Nguyen, L.T.T.; Nguyen, L.T.; Dang, T.T. Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon, 2023, 230, 107173.
[http://dx.doi.org/10.1016/j.toxicon.2023.107173] [PMID: 37211058]
[143]
Handley, T.N.G.; Wang, C.K.; Harvey, P.J.; Lawrence, N.; Craik, D.J. Cyclotide structures revealed by NMR, with a little help from X-ray crystallography. ChemBioChem, 2020, 21(24), 3463-3475.
[http://dx.doi.org/10.1002/cbic.202000315] [PMID: 32656966]
[144]
Saether, O.; Craik, D.J.; Campbell, I.D.; Sletten, K.; Juul, J.; Norman, D.G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry, 1995, 34(13), 4147-4158.
[http://dx.doi.org/10.1021/bi00013a002] [PMID: 7703226]
[145]
Colgrave, M.L.; Craik, D.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: The importance of the cyclic cystine knot. Biochemistry, 2004, 43(20), 5965-5975.
[http://dx.doi.org/10.1021/bi049711q] [PMID: 15147180]
[146]
Senthilkumar, B.; Rajasekaran, R. Analysis of the structural stability among cyclotide members through cystine knot fold that underpins its potential use as a drug scaffold. Int. J. Pept. Res. Ther., 2017, 23(1), 1-11.
[http://dx.doi.org/10.1007/s10989-016-9537-5]
[147]
Mehta, L.; Dhankhar, R.; Gulati, P.; Kapoor, R.K.; Mohanty, A.; Kumar, S. Natural and grafted cyclotides in cancer therapy: An insight. J. Pept. Sci., 2020, 26(4-5), e3246.
[http://dx.doi.org/10.1002/psc.3246] [PMID: 32141199]
[148]
He, W.; Chan, L.Y.; Zeng, G.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides, 2011, 32(8), 1719-1723.
[http://dx.doi.org/10.1016/j.peptides.2011.06.016] [PMID: 21723349]
[149]
Tang, J.; Wang, C.K.; Pan, X.; Yan, H.; Zeng, G.; Xu, W.; He, W.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides, 2010, 31(8), 1434-1440.
[http://dx.doi.org/10.1016/j.peptides.2010.05.004] [PMID: 20580652]
[150]
Du, Q.; Chan, L.Y.; Gilding, E.K.; Henriques, S.T.; Condon, N.D.; Ravipati, A.S.; Kaas, Q.; Huang, Y.H.; Craik, D.J. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J. Biol. Chem., 2020, 295(32), 10911-10925.
[http://dx.doi.org/10.1074/jbc.RA120.012627] [PMID: 32414842]
[151]
Dang, T.T.; Chan, L.Y.; Huang, Y.H.; Nguyen, L.T.T.; Kaas, Q.; Huynh, T.; Craik, D.J. Exploring the sequence diversity of cyclotides from Vietnamese Viola species. J. Nat. Prod., 2020, 83(6), 1817-1828.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01218] [PMID: 32437150]
[152]
Dang, T.T.; Chan, L.Y.; Tombling, B.J.; Harvey, P.J.; Gilding, E.K.; Craik, D.J. In planta discovery and chemical synthesis of bracelet cystine knot peptides from Rinorea bengalensis. J. Nat. Prod., 2021, 84(2), 395-407.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01065] [PMID: 33570395]
[153]
Chan, L.Y.; Craik, D.J.; Daly, N.L. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci. Rep., 2016, 6(1), 35347.
[http://dx.doi.org/10.1038/srep35347] [PMID: 27734947]
[154]
Gunasekera, S.; Foley, F.M.; Clark, R.J.; Sando, L.; Fabri, L.J.; Craik, D.J.; Daly, N.L. Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J. Med. Chem., 2008, 51(24), 7697-7704.
[http://dx.doi.org/10.1021/jm800704e] [PMID: 19053834]
[155]
Getz, J.A.; Cheneval, O.; Craik, D.J.; Daugherty, P.S. Design of a cyclotide antagonist of neuropilin-1 and -2 that potently inhibits endothelial cell migration. ACS Chem. Biol., 2013, 8(6), 1147-1154.
[http://dx.doi.org/10.1021/cb4000585] [PMID: 23537207]
[156]
Ji, Y.; Majumder, S.; Millard, M.; Borra, R.; Bi, T.; Elnagar, A.Y.; Neamati, N.; Shekhtman, A.; Camarero, J.A. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J. Am. Chem. Soc., 2013, 135(31), 11623-11633.
[http://dx.doi.org/10.1021/ja405108p] [PMID: 23848581]
[157]
Ravipati, A.S.; Henriques, S.T.; Poth, A.G.; Kaas, Q.; Wang, C.K.; Colgrave, M.L.; Craik, D.J. Lysine-rich cyclotides: A new subclass of circular knotted proteins from Violaceae. ACS Chem. Biol., 2015, 10(11), 2491-2500.
[http://dx.doi.org/10.1021/acschembio.5b00454] [PMID: 26322745]
[158]
Troeira Henriques, S.; Huang, Y.H.; Chaousis, S.; Wang, C.K.; Craik, D.J. Anticancer and toxic properties of cyclotides are dependent on phosphatidylethanolamine phospholipid targeting. ChemBioChem, 2014, 15(13), 1956-1965.
[http://dx.doi.org/10.1002/cbic.201402144] [PMID: 25099014]
[159]
Herrmann, A.; Burman, R.; Mylne, J.S.; Karlsson, G.; Gullbo, J.; Craik, D.J.; Clark, R.J.; Göransson, U. The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry, 2008, 69(4), 939-952.
[http://dx.doi.org/10.1016/j.phytochem.2007.10.023] [PMID: 18191970]
[160]
Lindholm, P.; Göransson, U.; Johansson, S.; Claeson, P.; Gullbo, J.; Larsson, R.; Bohlin, L.; Backlund, A. Cyclotides: A novel type of cytotoxic agents. Mol. Cancer Ther., 2002, 1(6), 365-369.
[PMID: 12477048]
[161]
Tang, J.; Wang, C.K.; Pan, X.; Yan, H.; Zeng, G.; Xu, W.; He, W.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of bioactive cyclotides from Viola labridorica. Helv. Chim. Acta, 2010, 93(11), 2287-2295.
[http://dx.doi.org/10.1002/hlca.201000115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy