Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Harnessing Chimeric Antigen Receptor-engineered Invariant Natural Killer T Cells: Therapeutic Strategies for Cancer and the Tumor Microenvironment

Author(s): Yiqing Wang and Yan-Ruide Li*

Volume 25, Issue 15, 2024

Published on: 16 January, 2024

Page: [2001 - 2011] Pages: 11

DOI: 10.2174/0113892010265228231116073012

Price: $65

Open Access Journals Promotions 2
Abstract

Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has emerged as a revolutionary approach for cancer treatment, especially for hematologic cancers. However, CAR-T therapy has some limitations, including cytokine release syndrome (CRS), immune cellassociated neurologic syndrome (ICANS), and difficulty in targeting solid tumors and delivering allogeneic cell therapy due to graft-versus-host disease (GvHD). Therefore, it is important to explore other cell sources for CAR engineering. Invariant natural killer T (iNKT) cells are a potential target, as they possess powerful antitumor ability and do not recognize mismatched major histocompatibility complexes (MHCs) and protein antigens, thus avoiding the risk of GvHD. CAR-engineered iNKT (CAR-iNKT) cell therapy offers a promising new approach to cancer immunotherapy by overcoming the drawbacks of CAR-T cell therapy while retaining potent antitumor capabilities. This review summarizes the current CAR-iNKT cell products, their functions and phenotypes, and their potential for off-the-shelf cancer immunotherapy.

Keywords: Invariant natural killer T cell, chimeric antigen receptor, cancer immunotherapy, tumor microenvironment, genetic engineering, autologous therapy, allogeneic therapy, graft-versus-host disease, off-the-shelf cancer therapy.

Graphical Abstract
[1]
Labanieh, L.; Majzner, R.G.; Mackall, C.L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng., 2018, 2(6), 377-391.
[http://dx.doi.org/10.1038/s41551-018-0235-9] [PMID: 31011197]
[2]
Rotolo, R.; Leuci, V.; Donini, C.; Cykowska, A.; Gammaitoni, L.; Medico, G.; Valabrega, G.; Aglietta, M.; Sangiolo, D. CAR-based strategies beyond T lymphocytes: Integrative opportunities for cancer adoptive immunotherapy. Int. J. Mol. Sci., 2019, 20(11), 2839.
[http://dx.doi.org/10.3390/ijms20112839] [PMID: 31212634]
[3]
Kriegsmann, K.; Kriegsmann, M.; von Bergwelt-Baildon, M.; Cremer, M.; Witzens-Harig, M. NKT cells-New players in CAR cell immunotherapy? Eur. J. Haematol., 2018, 101(6), 750-757.
[http://dx.doi.org/10.1111/ejh.13170] [PMID: 30187578]
[4]
Wolf, B.J.; Choi, J.E.; Exley, M.A. Novel approaches to exploiting invariant NKT cells in cancer immunotherapy. Front. Immunol., 2018, 9, 384.
[http://dx.doi.org/10.3389/fimmu.2018.00384] [PMID: 29559971]
[5]
Terabe, M.; Berzofsky, J.A. Tissue-specific roles of NKT cells in tumor immunity. Front. Immunol., 2018, 9, 1838.
[http://dx.doi.org/10.3389/fimmu.2018.01838] [PMID: 30158927]
[6]
Zarobkiewicz, M.K.; Morawska, I.; Michalski, A.; Roliński, J.; Bojarska-Junak, A. NKT and NKT-like cells in autoimmune neuroinflammatory diseases—Multiple Sclerosis, Myasthenia Gravis and Guillain-Barre Syndrome. Int. J. Mol. Sci., 2021, 22(17), 9520.
[http://dx.doi.org/10.3390/ijms22179520] [PMID: 34502425]
[7]
Kinjo, Y.; Ueno, K. iNKT cells in microbial immunity: Recognition of microbial glycolipids. Microbiol. Immunol., 2011, 55(7), 472-482.
[http://dx.doi.org/10.1111/j.1348-0421.2011.00338.x] [PMID: 21434991]
[8]
Delfanti, G.; Dellabona, P.; Casorati, G.; Fedeli, M. Adoptive immunotherapy with engineered inkt cells to target cancer cells and the suppressive microenvironment. Front. Med., 2022, 9, 897750.
[http://dx.doi.org/10.3389/fmed.2022.897750] [PMID: 35615083]
[9]
Bae, E.A.; Seo, H.; Kim, I.K.; Jeon, I.; Kang, C.Y. Roles of NKT cells in cancer immunotherapy. Arch. Pharm. Res., 2019, 42(7), 543-548.
[http://dx.doi.org/10.1007/s12272-019-01139-8] [PMID: 30859410]
[10]
Motohashi, S.; Okamoto, Y.; Yoshino, I.; Nakayama, T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin. Immunol., 2011, 140(2), 167-176.
[http://dx.doi.org/10.1016/j.clim.2011.01.009] [PMID: 21349771]
[11]
Liu, Y.; Wang, G.; Chai, D.; Dang, Y.; Zheng, J.; Li, H. iNKT: A new avenue for CAR-based cancer immunotherapy. Transl. Oncol., 2022, 17, 101342.
[http://dx.doi.org/10.1016/j.tranon.2022.101342] [PMID: 35063813]
[12]
Rivière, I.; Sadelain, M. Chimeric antigen receptors: A cell and gene therapy perspective. Mol. Ther., 2017, 25(5), 1117-1124.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.034] [PMID: 28456379]
[13]
Bollino, D.; Webb, T.J. Chimeric antigen receptor–engineered natural killer and natural killer T cells for cancer immunotherapy. Transl. Res., 2017, 187, 32-43.
[http://dx.doi.org/10.1016/j.trsl.2017.06.003] [PMID: 28651074]
[14]
Sadelain, M.; Brentjens, R.; Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov., 2013, 3(4), 388-398.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0548] [PMID: 23550147]
[15]
Jaspers, J.E.; Brentjens, R.J. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol. Ther., 2017, 178, 83-91.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.012] [PMID: 28342824]
[16]
Sadelain, M. CAR therapy: the CD19 paradigm. J. Clin. Invest., 2015, 125(9), 3392-3400.
[http://dx.doi.org/10.1172/JCI80010] [PMID: 26325036]
[17]
Gumperz, J.E.; Miyake, S.; Yamamura, T.; Brenner, M.B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med., 2002, 195(5), 625-636.
[http://dx.doi.org/10.1084/jem.20011786] [PMID: 11877485]
[18]
Rotolo, A.; Caputo, V.S.; Holubova, M.; Baxan, N.; Dubois, O.; Chaudhry, M.S.; Xiao, X.; Goudevenou, K.; Pitcher, D.S.; Petevi, K.; Kachramanoglou, C.; Iles, S.; Naresh, K.; Maher, J.; Karadimitris, A. Enhanced Anti-lymphoma Activity of CAR19-iNKT Cells Underpinned by Dual CD19 and CD1d Targeting. Cancer Cell, 2018, 34(4), 596-610.e11.
[http://dx.doi.org/10.1016/j.ccell.2018.08.017] [PMID: 30300581]
[19]
Sallusto, F.; Impellizzieri, D.; Basso, C.; Laroni, A.; Uccelli, A.; Lanzavecchia, A.; Engelhardt, B. T‐cell trafficking in the central nervous system. Immunol. Rev., 2012, 248(1), 216-227.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01140.x] [PMID: 22725964]
[20]
Kim, C.; Butcher, E.; Johnston, B. Distinct subsets of human Vα24-invariant NKT cells: cytokine responses and chemokine receptor expression. Trends Immunol., 2002, 23(11), 516-519.
[http://dx.doi.org/10.1016/S1471-4906(02)02323-2] [PMID: 12401396]
[21]
Tian, G.; Courtney, A.N.; Jena, B.; Heczey, A.; Liu, D.; Marinova, E.; Guo, L.; Xu, X.; Torikai, H.; Mo, Q.; Dotti, G.; Cooper, L.J.; Metelitsa, L.S. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J. Clin. Invest., 2016, 126(6), 2341-2355.
[http://dx.doi.org/10.1172/JCI83476] [PMID: 27183388]
[22]
Simonetta, F.; Lohmeyer, J.K.; Hirai, T.; Maas-Bauer, K.; Alvarez, M.; Wenokur, A.S.; Baker, J.; Aalipour, A.; Ji, X.; Haile, S.; Mackall, C.L.; Negrin, R.S. Allogeneic CAR invariant natural killer T cells exert potent antitumor effects through host CD8 T-cell cross-priming. Clin. Cancer Res., 2021, 27(21), 6054-6064.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1329] [PMID: 34376537]
[23]
Kuhn, N.F.; Lopez, A.V.; Li, X.; Cai, W.; Daniyan, A.F.; Brentjens, R.J. CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function. Nat. Commun., 2020, 11(1), 6171.
[http://dx.doi.org/10.1038/s41467-020-19833-3] [PMID: 33268774]
[24]
Drent, E.; Poels, R.; Ruiter, R.; van de Donk, N.W.C.J.; Zweegman, S.; Yuan, H.; de Bruijn, J.; Sadelain, M.; Lokhorst, H.M.; Groen, R.W.J.; Mutis, T.; Themeli, M. Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor–engineered T cells. Clin. Cancer Res., 2019, 25(13), 4014-4025.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2559] [PMID: 30979735]
[25]
Kared, H.; Martelli, S.; Ng, T.P.; Pender, S.L.F.; Larbi, A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother., 2016, 65(4), 441-452.
[http://dx.doi.org/10.1007/s00262-016-1803-z] [PMID: 26850637]
[26]
Poels, R.; Drent, E.; Lameris, R.; Katsarou, A.; Themeli, M.; van der Vliet, H.J.; de Gruijl, T.D.; van de Donk, N.W.C.J.; Mutis, T. Preclinical evaluation of invariant natural killer T Cells modified with CD38 or BCMA chimeric antigen receptors for multiple myeloma. Int. J. Mol. Sci., 2021, 22(3), 1096.
[http://dx.doi.org/10.3390/ijms22031096] [PMID: 33499253]
[27]
Drent, E.; Groen, R.W.J.; Noort, W.A.; Themeli, M.; Lammerts van Bueren, J.J.; Parren, P.W.H.I.; Kuball, J.; Sebestyen, Z.; Yuan, H.; de Bruijn, J.; van de Donk, N.W.C.J.; Martens, A.C.M.; Lokhorst, H.M.; Mutis, T. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101(5), 616-625.
[http://dx.doi.org/10.3324/haematol.2015.137620] [PMID: 26858358]
[28]
Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J., 2021, 11(4), 69.
[http://dx.doi.org/10.1038/s41408-021-00459-7] [PMID: 33824268]
[29]
Metelitsa, L.S.; Wu, H.W.; Wang, H.; Yang, Y.; Warsi, Z.; Asgharzadeh, S.; Groshen, S.; Wilson, S.B.; Seeger, R.C. Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J. Exp. Med., 2004, 199(9), 1213-1221.
[http://dx.doi.org/10.1084/jem.20031462] [PMID: 15123743]
[30]
Heczey, A.; Liu, D.; Tian, G.; Courtney, A.N.; Wei, J.; Marinova, E.; Gao, X.; Guo, L.; Yvon, E.; Hicks, J.; Liu, H.; Dotti, G.; Metelitsa, L.S. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood, 2014, 124(18), 2824-2833.
[http://dx.doi.org/10.1182/blood-2013-11-541235] [PMID: 25049283]
[31]
Xu, X.; Huang, W.; Heczey, A.; Liu, D.; Guo, L.; Wood, M.; Jin, J.; Courtney, A.N.; Liu, B.; Di Pierro, E.J.; Hicks, J.; Barragan, G.A.; Ngai, H.; Chen, Y.; Savoldo, B.; Dotti, G.; Metelitsa, L.S. NKT cells coexpressing a GD2-specific chimeric antigen receptor and il15 show enhanced in vivo persistence and antitumor activity against neuroblastoma. Clin. Cancer Res., 2019, 25(23), 7126-7138.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0421] [PMID: 31484667]
[32]
Heczey, A.; Xu, X.; Courtney, A.N.; Tian, G.; Barragan, G.A.; Guo, L.; Amador, C.M.; Ghatwai, N.; Rathi, P.; Wood, M.S.; Li, Y.; Zhang, C.; Demberg, T.; Di Pierro, E.J.; Sher, A.C.; Zhang, H.; Mehta, B.; Thakkar, S.G.; Grilley, B.; Wang, T.; Weiss, B.D.; Montalbano, A.; Subramaniam, M.; Xu, C.; Sachar, C.; Wells, D.K.; Dotti, G.; Metelitsa, L.S. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. Nat. Med., 2023, 29(6), 1379-1388.
[http://dx.doi.org/10.1038/s41591-023-02363-y] [PMID: 37188782]
[33]
Hwang, SS; Lim, J; Yu, Z; Kong, P; Sefik, E; Xu, H; Harman, CCD; Kim, LK; Lee, GR; Li, HB Flavell, RA mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science , 1979, 367(6483), 1255-1260. 2020 Mar 13
[34]
Aladağ, E.; Kelkitli, E.; Göker, H. Acute graft-versus-host disease: A brief review. Turk. J. Haematol., 2020, 37(1), 1-4.
[http://dx.doi.org/10.4274/tjh.galenos.2019.2019.0157] [PMID: 31475512]
[35]
Mammadli, M.; Huang, W.; Harris, R.; Sultana, A.; Cheng, Y.; Tong, W.; Pu, J.; Gentile, T.; Dsouza, S.; Yang, Q.; Bah, A.; August, A.; Karimi, M. Targeting Interleukin-2-Inducible T-Cell Kinase (ITK) Differentiates GVL and GVHD in Allo-HSCT. Front. Immunol., 2020, 11, 593863.
[http://dx.doi.org/10.3389/fimmu.2020.593863] [PMID: 33324410]
[36]
Li, Y.R.; Zhou, Y.; Kim, Y.J.; Zhu, Y.; Ma, F.; Yu, J.; Wang, Y.C.; Chen, X.; Li, Z.; Zeng, S.; Wang, X.; Lee, D.; Ku, J.; Tsao, T.; Hardoy, C.; Huang, J.; Cheng, D.; Montel-Hagen, A.; Seet, C.S.; Crooks, G.M.; Larson, S.M.; Sasine, J.P.; Wang, X.; Pellegrini, M.; Ribas, A.; Kohn, D.B.; Witte, O.; Wang, P.; Yang, L. Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Rep. Med., 2021, 2(11), 100449.
[http://dx.doi.org/10.1016/j.xcrm.2021.100449] [PMID: 34841295]
[37]
Zhu, Y.; Smith, D.J.; Zhou, Y.; Li, Y.R.; Yu, J.; Lee, D.; Wang, Y.C.; Di Biase, S.; Wang, X.; Hardoy, C.; Ku, J.; Tsao, T.; Lin, L.J.; Pham, A.T.; Moon, H.; McLaughlin, J.; Cheng, D.; Hollis, R.P.; Campo-Fernandez, B.; Urbinati, F.; Wei, L.; Pang, L.; Rezek, V.; Berent-Maoz, B.; Macabali, M.H.; Gjertson, D.; Wang, X.; Galic, Z.; Kitchen, S.G.; An, D.S.; Hu-Lieskovan, S.; Kaplan-Lefko, P.J.; De Oliveira, S.N.; Seet, C.S.; Larson, S.M.; Forman, S.J.; Heath, J.R.; Zack, J.A.; Crooks, G.M.; Radu, C.G.; Ribas, A.; Kohn, D.B.; Witte, O.N.; Yang, L. Development of hematopoietic stem cell-engineered invariant natural killer T cell therapy for cancer. Cell Stem Cell, 2019, 25(4), 542-557.e9.
[http://dx.doi.org/10.1016/j.stem.2019.08.004] [PMID: 31495780]
[38]
Li, Y.R.; Zeng, S.; Dunn, Z.S.; Zhou, Y.; Li, Z.; Yu, J.; Wang, Y.C.; Ku, J.; Cook, N.; Kramer, A.; Yang, L. Off-the-shelf third-party HSC-engineered iNKT cells for ameliorating GvHD while preserving GvL effect in the treatment of blood cancers. iScience, 2022, 25(9), 104859.
[http://dx.doi.org/10.1016/j.isci.2022.104859] [PMID: 36034226]
[39]
Karadimitris, A.; Ripoll-Fiol, C.; Guerra, J.C. Invariant NKT cells as a platform for CAR immunotherapy and prevention of acute Graft-versus-Host Disease. HemaSphere, 2019, 3(Suppl.), 31-34.
[http://dx.doi.org/10.1097/HS9.0000000000000220] [PMID: 35309781]
[40]
Shiao, S.L.; Ganesan, A.P.; Rugo, H.S.; Coussens, L.M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev., 2011, 25(24), 2559-2572.
[http://dx.doi.org/10.1101/gad.169029.111] [PMID: 22190457]
[41]
Song, L.; Asgharzadeh, S.; Salo, J.; Engell, K.; Wu, H.; Sposto, R.; Ara, T.; Silverman, A.M.; DeClerck, Y.A.; Seeger, R.C.; Metelitsa, L.S. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Invest., 2009, 119(6), 1524-1536.
[http://dx.doi.org/10.1172/JCI37869] [PMID: 19411762]
[42]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[43]
Gordon, S.R.; Maute, R.L.; Dulken, B.W.; Hutter, G.; George, B.M.; McCracken, M.N.; Gupta, R.; Tsai, J.M.; Sinha, R.; Corey, D.; Ring, A.M.; Connolly, A.J.; Weissman, I.L. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655), 495-499.
[http://dx.doi.org/10.1038/nature22396] [PMID: 28514441]
[44]
Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X. Tumor-associated macrophages: Recent insights and therapies. Front. Oncol., 2020, 10, 188.
[http://dx.doi.org/10.3389/fonc.2020.00188] [PMID: 32161718]
[45]
Metelitsa, L.S. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin. Immunol., 2011, 140(2), 119-129.
[http://dx.doi.org/10.1016/j.clim.2010.10.005] [PMID: 21095162]
[46]
Li, Y.R.; Wilson, M.; Yang, L. Target tumor microenvironment by innate T cells. Front. Immunol., 2022, 13, 999549.
[http://dx.doi.org/10.3389/fimmu.2022.999549] [PMID: 36275727]
[47]
Cortesi, F.; Delfanti, G.; Grilli, A.; Calcinotto, A.; Gorini, F.; Pucci, F.; Lucianò, R.; Grioni, M.; Recchia, A.; Benigni, F.; Briganti, A.; Salonia, A.; De Palma, M.; Bicciato, S.; Doglioni, C.; Bellone, M.; Casorati, G.; Dellabona, P. Bimodal CD40/Fas-dependent crosstalk between iNKT cells and tumor-associated macrophages impairs prostate cancer progression. Cell Rep., 2018, 22(11), 3006-3020.
[http://dx.doi.org/10.1016/j.celrep.2018.02.058] [PMID: 29539427]
[48]
Li, Y.R.; Brown, J.; Yu, Y.; Lee, D.; Zhou, K.; Dunn, Z.S.; Hon, R.; Wilson, M.; Kramer, A.; Zhu, Y.; Fang, Y.; Yang, L. Targeting immunosuppressive tumor-associated macrophages using innate T cells for enhanced antitumor reactivity. Cancers (Basel), 2022, 14(11), 2749.
[http://dx.doi.org/10.3390/cancers14112749] [PMID: 35681730]
[49]
Krijgsman, D.; Hokland, M.; Kuppen, P.J.K. The role of natural killer T cells in cancer-A phenotypical and functional approach. Front. Immunol., 2018, 9, 367.
[http://dx.doi.org/10.3389/fimmu.2018.00367] [PMID: 29535734]
[50]
Bendelac, A.; Savage, P.B.; Teyton, L. The biology of NKT cells. Annu. Rev. Immunol., 2007, 25(1), 297-336.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141711] [PMID: 17150027]
[51]
Smyth, M.J.; Godfrey, D.I. NKT cells and tumor immunity-A double-edged sword. Nat. Immunol., 2000, 1(6), 459-460.
[http://dx.doi.org/10.1038/82698] [PMID: 11101862]
[52]
Cui, G.; Shimba, A.; Jin, J.; Ogawa, T.; Muramoto, Y.; Miyachi, H.; Abe, S.; Asahi, T.; Tani-ichi, S.; Dijkstra, J.M.; Iwamoto, Y.; Kryukov, K.; Zhu, Y.; Takami, D.; Hara, T.; Kitano, S.; Xu, Y.; Morita, H.; Zhang, M.; Zreka, L.; Miyata, K.; Kanaya, T.; Okumura, S.; Ito, T.; Hatano, E.; Takahashi, Y.; Watarai, H.; Oike, Y.; Imanishi, T.; Ohno, H.; Ohteki, T.; Minato, N.; Kubo, M.; Holländer, G.A.; Ueno, H.; Noda, T.; Shiroguchi, K.; Ikuta, K. A circulating subset of iNKT cells mediates antitumor and antiviral immunity. Sci. Immunol., 2022, 7(76), eabj8760.
[http://dx.doi.org/10.1126/sciimmunol.abj8760] [PMID: 36269840]
[53]
Leadbetter, E.A.; Karlsson, M.C.I. Invariant natural killer T cells balance B cell immunity. Immunol. Rev., 2021, 299(1), 93-107.
[http://dx.doi.org/10.1111/imr.12938] [PMID: 33438287]
[54]
Maher, J.; Brentjens, R.J.; Gunset, G.; Rivière, I.; Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol., 2002, 20(1), 70-75.
[http://dx.doi.org/10.1038/nbt0102-70] [PMID: 11753365]
[55]
Imai, C.; Mihara, K.; Andreansky, M.; Nicholson, I.C.; Pui, C-H.; Geiger, T.L.; Campana, D. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia, 2004, 18(4), 676-684.
[http://dx.doi.org/10.1038/sj.leu.2403302] [PMID: 14961035]
[56]
Schmidts, A.; Maus, M.V. Making CAR T cells a solid option for solid tumors. Front. Immunol., 2018, 9, 2593.
[http://dx.doi.org/10.3389/fimmu.2018.02593] [PMID: 30467505]
[57]
Yeku, O.O.; Purdon, T.J.; Koneru, M.; Spriggs, D.; Brentjens, R.J. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep., 2017, 7(1), 10541.
[http://dx.doi.org/10.1038/s41598-017-10940-8] [PMID: 28874817]
[58]
De Santo, C.; Salio, M.; Masri, S.H.; Lee, L.Y.H.; Dong, T.; Speak, A.O.; Porubsky, S.; Booth, S.; Veerapen, N.; Besra, G.S.; Gröne, H.J.; Platt, F.M.; Zambon, M.; Cerundolo, V. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus–induced myeloid-derived suppressor cells in mice and humans. J. Clin. Invest., 2008, 118(12), 4036-4048.
[http://dx.doi.org/10.1172/JCI36264] [PMID: 19033672]
[59]
Jacoby, E.; Yang, Y.; Qin, H.; Chien, C.D.; Kochenderfer, J.N.; Fry, T.J. Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD. Blood, 2016, 127(10), 1361-1370.
[http://dx.doi.org/10.1182/blood-2015-08-664250] [PMID: 26660684]
[60]
Pillai, A.B.; George, T.I.; Dutt, S.; Teo, P.; Strober, S. Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J. Immunol., 2007, 178(10), 6242-6251.
[http://dx.doi.org/10.4049/jimmunol.178.10.6242] [PMID: 17475852]
[61]
Brudno, J.N.; Kochenderfer, J.N. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev., 2019, 34, 45-55.
[http://dx.doi.org/10.1016/j.blre.2018.11.002] [PMID: 30528964]
[62]
Simon, B.; Wiesinger, M.; März, J.; Wistuba-Hamprecht, K.; Weide, B.; Schuler-Thurner, B.; Schuler, G.; Dörrie, J.; Uslu, U. The generation of CAR-Transfected natural killer T cells for the immunotherapy of melanoma. Int. J. Mol. Sci., 2018, 19(8), 2365.
[http://dx.doi.org/10.3390/ijms19082365] [PMID: 30103488]
[63]
Shah, N.N.; Fry, T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol., 2019, 16(6), 372-385.
[http://dx.doi.org/10.1038/s41571-019-0184-6] [PMID: 30837712]
[64]
Smith, D.J.; Liu, S.; Ji, S.; Li, B.; McLaughlin, J.; Cheng, D.; Witte, O.N.; Yang, L. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc. Natl. Acad. Sci. USA, 2015, 112(5), 1523-1528.
[http://dx.doi.org/10.1073/pnas.1424877112] [PMID: 25605948]
[65]
Fujii S ichiro, Shimizu K, Okamoto Y, Kunii N, Nakayama T, Motohashi S, Taniguchi M. NKT cells as an ideal anti-tumor immunotherapeutic. Front. Immunol., 2013, 4.
[66]
Rapoport, A.P.; Stadtmauer, E.A.; Binder-Scholl, G.K.; Goloubeva, O.; Vogl, D.T.; Lacey, S.F.; Badros, A.Z.; Garfall, A.; Weiss, B.; Finklestein, J.; Kulikovskaya, I.; Sinha, S.K.; Kronsberg, S.; Gupta, M.; Bond, S.; Melchiori, L.; Brewer, J.E.; Bennett, A.D.; Gerry, A.B.; Pumphrey, N.J.; Williams, D. Tayton- Martin, H.K.; Ribeiro, L.; Holdich, T.; Yanovich, S.; Hardy, N.; Yared, J.; Kerr, N.; Philip, S.; Westphal, S.; Siegel, D.L.; Levine, B.L.; Jakobsen, B.K.; Kalos, M.; June, C.H. NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med., 2015, 21(8), 914-921.
[http://dx.doi.org/10.1038/nm.3910] [PMID: 26193344]
[67]
Schuster, S.J.; Svoboda, J.; Dwivedy Nasta, S.; Porter, D.L.; Chong, E.A.; Landsburg, D.J.; Mato, A.R.; Lacey, S.F.; Melenhorst, J.J.; Chew, A.; Hasskarl, J.; Shah, G.D.; Wasik, M.A.; Marcucci, K.T.; Zheng, Z.; Levine, B.L.; June, C.H. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood, 2015, 126(23), 183-183.
[http://dx.doi.org/10.1182/blood.V126.23.183.183]
[68]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[69]
Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.T.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Raffeld, M.; Feldman, S.; Lu, L.; Li, Y.F.; Ngo, L.T.; Goy, A.; Feldman, T.; Spaner, D.E.; Wang, M.L.; Chen, C.C.; Kranick, S.M.; Nath, A.; Nathan, D.A.N.; Morton, K.E.; Toomey, M.A.; Rosenberg, S.A. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol., 2015, 33(6), 540-549.
[http://dx.doi.org/10.1200/JCO.2014.56.2025] [PMID: 25154820]
[70]
Zeltsman, M.; Dozier, J.; McGee, E.; Ngai, D.; Adusumilli, P.S. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl. Res., 2017, 187, 1-10.
[http://dx.doi.org/10.1016/j.trsl.2017.04.004] [PMID: 28502785]
[71]
Park, J.R.; DiGiusto, D.L.; Slovak, M.; Wright, C.; Naranjo, A.; Wagner, J.; Meechoovet, H.B.; Bautista, C.; Chang, W.C.; Ostberg, J.R.; Jensen, M.C. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther., 2007, 15(4), 825-833.
[http://dx.doi.org/10.1038/sj.mt.6300104] [PMID: 17299405]
[72]
Sinha, P.; Clements, V.K.; Bunt, S.K.; Albelda, S.M.; Ostrand-Rosenberg, S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J. Immunol., 2007, 179(2), 977-983.
[http://dx.doi.org/10.4049/jimmunol.179.2.977] [PMID: 17617589]
[73]
Turtle, C.J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Cherian, S.; Chen, X.; Wood, B.; Lozanski, A.; Byrd, J.C.; Heimfeld, S.; Riddell, S.R.; Maloney, D.G. Durable molecular remissions in chronic lymphocytic leukemia treated With CD19-Specific chimeric antigen receptor–Modified T cells after failure of Ibrutinib. J. Clin. Oncol., 2017, 35(26), 3010-3020.
[http://dx.doi.org/10.1200/JCO.2017.72.8519] [PMID: 28715249]
[74]
Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; Roshal, M.; Maslak, P.; Davila, M.; Brentjens, R.J.; Sadelain, M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic Leukemia. N. Engl. J. Med., 2018, 378(5), 449-459.
[http://dx.doi.org/10.1056/NEJMoa1709919] [PMID: 29385376]
[75]
Gust, J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; Chen, J.; Chung, D.; Harju-Baker, S.; Özpolat, T.; Fink, K.R.; Riddell, S.R.; Maloney, D.G.; Turtle, C.J. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with cd19 car-t cells. Cancer Discov., 2017, 7(12), 1404-1419.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0698] [PMID: 29025771]
[76]
Sanber, K.; Savani, B.; Jain, T. Graft‐ versus ‐host disease risk after chimeric antigen receptor T‐cell therapy: the diametric opposition of T cells. Br. J. Haematol., 2021, 195(5), 660-668.
[http://dx.doi.org/10.1111/bjh.17544] [PMID: 34036558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy