Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Update to Novel Therapeutic Options for Combating Tuberculosis: Challenges and Future Prospectives

Author(s): Swathi Suresh, Rukaiah Fatma Begum, Ankul Singh S.* and Chitra Vellapandian*

Volume 25, Issue 14, 2024

Published on: 16 January, 2024

Page: [1778 - 1790] Pages: 13

DOI: 10.2174/0113892010246389231012041120

Price: $65

conference banner
Abstract

Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.

Keywords: Tuberculosis, pretomanid, host directed therapy, repurposed drugs, DOTS, bedaquiline.

Graphical Abstract
[1]
Bagcchi, S. WHO’s global tuberculosis report 2022. Lancet Microbe, 2023, 4(1), e20.
[http://dx.doi.org/10.1016/S2666-5247(22)00359-7] [PMID: 36521512]
[2]
Harding, E. WHO global progress report on tuberculosis elimination. Lancet Respir. Med., 2020, 8(1), 19.
[http://dx.doi.org/10.1016/S2213-2600(19)30418-7] [PMID: 31706931]
[3]
Pradipta, I.S.; Houtsma, D.; van Boven, J.F.M.; Alffenaar, J-W.C.; Hak, E. Interventions to improve medication adherence in tuberculosis patients: A systematic review of randomized controlled studies. npj Prim Care. Respir. Med., 2020, 30(1), 21. Available from: https://www.nature.com/articles/s41533-020-0179-x
[4]
Espinal, M.A.; Laszlo, A.; Simonsen, L.; Boulahbal, F.; Kim, S.J.; Reniero, A.; Hoffner, S.; Rieder, H.L.; Binkin, N.; Dye, C.; Williams, R.; Raviglione, M.C. Global trends in resistance to antituberculosis drugs. N. Engl. J. Med., 2001, 344(17), 1294-1303.
[http://dx.doi.org/10.1056/NEJM200104263441706] [PMID: 11320389]
[5]
D, L.S.; Sabarathinam, S.; S, AS. Inhibition of mycobacterium tuberculosis InhA (Enoyl-acyl carrier protein reductase) by synthetic chalcones: A molecular modelling analysis and in-vitro evidence. J. Biomol. Struct. Dyn., 2022, 1-19.
[6]
Arnadottir, T.; Binkin, N.; Cegielski, P.; Espinal, M.; Farmer, P.; Goldfarb, A. Guidelines for establishing dots-plus pilot projects for the management of multidrug-resistant tuberculosis (MDR-TB) scientific panel of the working group on DOTS-Plus for MDR-TB scientific panel of the working group on DOTS-Plus for MDR-TB this document; World Heal Organ, 2000.
[7]
Kashyap, S. Management Of Tuberculosis: Indian Guidelines. Medical. 2018. Available from: https://speciality. medicaldialogues.in/management-of-tuberculosis-indian-guidelines?infinitescroll=1
[8]
Organization WH. Global tuberculosis report. 2018. Available from: https://apps.who.int/iris/handle/10665/274453
[9]
Dadu, A.; Hovhannesyan, A.; Ahmedov, S.; van der Werf, M.J.; Dara, M. Drug-resistant tuberculosis in eastern Europe and central Asia: A time-series analysis of routine surveillance data. Lancet Infect. Dis., 2020, 20(2), 250-258.
[http://dx.doi.org/10.1016/S1473-3099(19)30568-7] [PMID: 31784371]
[10]
World Health OrganizationWHO consolidated guidelines on drug-resistant tuberculosis treatment; World Health Organization, 2019.
[11]
Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; De Marez, T.; van Heeswijk, R.; Lounis, N.; Meyvisch, P.; Andries, K.; McNeeley, D.F. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob. Agents Chemother., 2012, 56(6), 3271-3276.
[http://dx.doi.org/10.1128/AAC.06126-11] [PMID: 22391540]
[12]
Dye, C. Doomsday postponed? preventing and reversing epidemics of drug-resistant tuberculosis. Nat. Rev. Microbiol., 2009, 7(1), 81-87.
[http://dx.doi.org/10.1038/nrmicro2048] [PMID: 19079354]
[13]
Mirsaeidi, M. After 40years, new medicine for combating TB. Int. J. Mycobacteriol., 2013, 2(1), 1-2.
[http://dx.doi.org/10.1016/j.ijmyco.2013.01.004] [PMID: 25045621]
[14]
World Health Organization. Annual Report of Tuberculosis. Annu Glob TB Rep WHO., 2022, 8(1), 1-68.
[15]
Field, S.K.; Fisher, D.; Jarand, J.M.; Cowie, R.L. New treatment options for multidrug-resistant tuberculosis. Ther. Adv. Respir. Dis., 2012, 6(5), 255-268.
[http://dx.doi.org/10.1177/1753465812452193] [PMID: 22763676]
[16]
Burki, T.K. The global cost of tuberculosis. Lancet Respir. Med., 2018, 6(1), 13.
[http://dx.doi.org/10.1016/S2213-2600(17)30468-X] [PMID: 29239796]
[17]
Keam, S.J. Pretomanid: First Approval. Drugs, 2019, 79(16), 1797-1803.
[http://dx.doi.org/10.1007/s40265-019-01207-9] [PMID: 31583606]
[18]
Ryan, N.J.; Lo, J.H. Delamanid: First global approval. Drugs, 2014, 74(9), 1041-1045.
[http://dx.doi.org/10.1007/s40265-014-0241-5] [PMID: 24923253]
[19]
Borisov, S.E.; Dheda, K.; Enwerem, M.; Romero Leyet, R.; D’Ambrosio, L.; Centis, R.; Sotgiu, G.; Tiberi, S.; Alffenaar, J.W.; Maryandyshev, A.; Belilovski, E.; Ganatra, S.; Skrahina, A.; Akkerman, O.; Aleksa, A.; Amale, R.; Artsukevich, J.; Bruchfeld, J.; Caminero, J.A.; Martinez, I.; Codecasa, L.; Dalcolmo, M.; Denholm, J.; Douglas, P.; Duarte, R.; Esmail, A.; Fadul, M.; Filippov, A.; Forsman, L.; Gaga, M.; Garcia-Fuertes, J.A.; García-García, J.M.; Gualano, G.; Jonsson, J.; Kunst, H.; Lau, J.S.; Mastrapa, B.; Troya, J.L.; Manga, S.; Manika, K.; González Montaner, P.; Mullerpattan, J.; Oelofse, S.; Ortelli, M.; Palmero, D.J.; Palmieri, F.; Papalia, A.; Papavasileiou, A.; Payen, M.C.; Pontali, E.; Robalo Cordeiro, C.; Saderi, L.; Sadutshang, T.D.; Sanukevich, T.; Solodovnikova, V.; Spanevello, A.; Topgyal, S.; Toscanini, F.; Tramontana, A.R.; Udwadia, Z.; Viggiani, P.; White, V.; Zumla, A.; Migliori, G.B. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. Eur. Respir. J., 2017, 49(5), 1700387.
[http://dx.doi.org/10.1183/13993003.00387-2017] [PMID: 28529205]
[20]
Zhu, T.; Friedrich, S.O.; Diacon, A.; Wallis, R.S. Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis. Antimicrob. Agents Chemother., 2014, 58(6), 3306-3311.
[http://dx.doi.org/10.1128/AAC.01920-13] [PMID: 24687496]
[21]
de Jager, V.R.; Dawson, R.; van Niekerk, C.; Hutchings, J.; Kim, J.; Vanker, N.; van der Merwe, L.; Choi, J.; Nam, K.; Diacon, A.H. Telacebec (Q203), a new antituberculosis agent. N. Engl. J. Med., 2020, 382(13), 1280-1281.
[http://dx.doi.org/10.1056/NEJMc1913327] [PMID: 32212527]
[22]
Heinrich, N.; Dawson, R.; du Bois, J.; Narunsky, K.; Horwith, G.; Phipps, A.J.; Nacy, C.A.; Aarnoutse, R.E.; Boeree, M.J.; Gillespie, S.H.; Venter, A.; Henne, S.; Rachow, A.; Phillips, P.P.J.; Hoelscher, M.; Diacon, A.H.; Mekota, A.M.; Heinrich, N.; Rachow, A.; Saathoff, E.; Hoelscher, M.; Gillespie, S.; Colbers, A.; van Balen, G.P.; Aarnoutse, R.; Boeree, M.; Bateson, A.; McHugh, T.; Singh, K.; Hunt, R.; Zumla, A.; Nunn, A.; Phillips, P.; Rehal, S.; Dawson, R.; Narunsky, K.; Diacon, A.; du Bois, J.; Venter, A.; Friedrich, S.; Sanne, I.; Mellet, K.; Churchyard, G.; Charalambous, S.; Mwaba, P.; Elias, N.; Mangu, C.; Rojas-Ponce, G.; Mtafya, B.; Maboko, L.; Minja, L.T.; Sasamalo, M.; Reither, K.; Jugheli, L.; Sam, N.; Kibiki, G.; Semvua, H.; Mpagama, S.; Alabi, A.; Adegnika, A.A.; Amukoye, E.; Okwera, A. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J. Antimicrob. Chemother., 2015, 70(5), 1558-1566.
[http://dx.doi.org/10.1093/jac/dku553] [PMID: 25630641]
[23]
Furin, J.J.; Du Bois, J.; van Brakel, E.; Chheng, P.; Venter, A.; Peloquin, C.A.; Alsultan, A.; Thiel, B.A.; Debanne, S.M.; Boom, W.H.; Diacon, A.H.; Johnson, J.L. Early bactericidal activity of AZD5847 in patients with pulmonary tuberculosis. Antimicrob. Agents Chemother., 2016, 60(11), 6591-6599.
[http://dx.doi.org/10.1128/AAC.01163-16] [PMID: 27550361]
[24]
Lewis, J.M.; Sloan, D.J. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther. Clin. Risk Manag., 2015, 11(May), 779-791.
[PMID: 25999726]
[25]
Xiao, S.; Guo, H.; Weiner, W.S.; Maddox, C.; Mao, C.; Gunosewoyo, H.; Pelly, S.; White, E.L.; Rasmussen, L.; Schoenen, F.J.; Aubé, J.; Bishai, W.R.; Lun, S. Revisiting the β-lactams for tuberculosis therapy with a compound-compound synthetic lethality approach. Antimicrob. Agents Chemother., 2019, 63(11), e01319-e19.
[http://dx.doi.org/10.1128/AAC.01319-19] [PMID: 31427291]
[26]
Deshpande, D.; Srivastava, S.; Chapagain, M.; Magombedze, G.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Koeuth, T.; Dheda, K.; Gumbo, T. Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Sci. Adv., 2017, 3(8), e1701102.
[http://dx.doi.org/10.1126/sciadv.1701102] [PMID: 28875168]
[27]
Deshpande, D.; Srivastava, S.; Bendet, P.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Pasipanodya, J.G.; Dheda, K.; Gumbo, T. Antibacterial and sterilizing effect of benzylpenicillin in tuberculosis. Antimicrob. Agents Chemother., 2018, 62(2), e02232-e17.
[http://dx.doi.org/10.1128/AAC.02232-17] [PMID: 29180526]
[28]
Levine, S.R.; Beatty, K.E. Investigating β-lactam drug targets in Mycobacterium tuberculosis using chemical probes. ACS Infect. Dis., 2021, 7(2), 461-470.
[http://dx.doi.org/10.1021/acsinfecdis.0c00809] [PMID: 33470787]
[29]
Barry, V.C.; Conalty, M.L.; Gaffney, E.E. Antituberculosis activity in the phenazine series; isomeric pigments obtained by oxidation of o-phenylenediamine derivatives. J. Pharm. Pharmacol., 1956, 8(12), 1089-1096.
[PMID: 13385818]
[30]
Barry, V.C.; Belton, J.G.; Conalty, M.L.; Denneny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179(4568), 1013-1015.
[http://dx.doi.org/10.1038/1791013a0] [PMID: 13430770]
[31]
Shafran, S.D.; Singer, J.; Zarowny, D.P.; Phillips, P.; Salit, I.; Walmsley, S.L.; Fong, I.W.; Gill, M.J.; Rachlis, A.R.; Lalonde, R.G.; Fanning, M.M.; Tsoukas, C.M. A comparison of two regimens for the treatment of Mycobacterium avium complex bacteremia in AIDS: Rifabutin, ethambutol, and clarithromycin versusrifampin, ethambutol, clofazimine, and ciprofloxacin. Canadian HIV Trials Network Protocol 010 Study Group. N. Engl. J. Med., 1996, 335(6), 377-384.
[http://dx.doi.org/10.1056/NEJM199608083350602] [PMID: 8676931]
[32]
Chaisson, R.E.; Keiser, P.; Pierce, M.; Fessel, W.J.; Ruskin, J.; Lahart, C.; Benson, C.A.; Meek, K.; Siepman, N.; Craft, J.C. Clarithromycin and ethambutol with or without clofazimine for the treatment of bacteremic. AIDS, 1997, 11(3), 311-317.
[http://dx.doi.org/10.1097/00002030-199703110-00008] [PMID: 9147422]
[33]
Yu, W.; Yusuf, B.; Wang, S.; Tian, X.; Hameed, H.M.A.; Lu, Z.; Chiwala, G.; Alam, M.S.; Cook, G.M.; Maslov, D.A.; Zhong, N.; Zhang, T. Sterilizing effects of novel regimens containing TB47, clofazimine, and linezolid in a murine model of tuberculosis. Antimicrob. Agents Chemother., 2021, 65(10), e00706-e00721.
[http://dx.doi.org/10.1128/AAC.00706-21] [PMID: 34280022]
[34]
Gosling, R.D.; Uiso, L.O.; Sam, N.E.; Bongard, E.; Kanduma, E.G.; Nyindo, M.; Morris, R.W.; Gillespie, S.H. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med., 2003, 168(11), 1342-1345.
[http://dx.doi.org/10.1164/rccm.200305-682OC] [PMID: 12917230]
[35]
Pletz, M.W.R.; De Roux, A.; Roth, A.; Neumann, K.H.; Mauch, H.; Lode, H. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: A prospective, randomized study. Antimicrob. Agents Chemother., 2004, 48(3), 780-782.
[http://dx.doi.org/10.1128/AAC.48.3.780-782.2004] [PMID: 14982764]
[36]
Conde, M.B.; Efron, A.; Loredo, C.; De Souza, G.R.M.; Graça, N.P.; Cezar, M.C.; Ram, M.; Chaudhary, M.A.; Bishai, W.R.; Kritski, A.L.; Chaisson, R.E. Moxifloxacin versusethambutol in the initial treatment of tuberculosis: A double-blind, randomised, controlled phase II trial. Lancet, 2009, 373(9670), 1183-1189.
[http://dx.doi.org/10.1016/S0140-6736(09)60333-0] [PMID: 19345831]
[37]
Shapiro, S.D. Matrix metalloproteinase degradation of extracellular matrix: Biological consequences. Curr. Opin. Cell Biol., 1998, 10(5), 602-608.
[http://dx.doi.org/10.1016/S0955-0674(98)80035-5] [PMID: 9818170]
[38]
Chernov, A.V.; Strongin, A.Y. Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer. Biomol. Concepts, 2011, 2(3), 135-147.
[http://dx.doi.org/10.1515/bmc.2011.017] [PMID: 21779312]
[39]
Löffek, S.; Schilling, O.; Franzke, C.W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J., 2011, 38(1), 191-208.
[http://dx.doi.org/10.1183/09031936.00146510] [PMID: 21177845]
[40]
Tsenova, L.; Singhal, A. Effects of host‐directed therapies on the pathology of tuberculosis. J. Pathol., 2020, 250(5), 636-646.
[http://dx.doi.org/10.1002/path.5407] [PMID: 32108337]
[41]
Dorhoi, A.; Kaufmann, S.H.E. Perspectives on host adaptation in response to Mycobacterium tuberculosis: Modulation of inflammation. Semin. Immunol., 2014, 26(6), 533-542.
[http://dx.doi.org/10.1016/j.smim.2014.10.002] [PMID: 25453228]
[42]
Zumla, A.; Rao, M.; Dodoo, E.; Maeurer, M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med., 2016, 14(1), 89.
[http://dx.doi.org/10.1186/s12916-016-0635-1] [PMID: 27301245]
[43]
Ehlers, S.; Schaible, U.E. The granuloma in tuberculosis: Dynamics of a host-pathogen collusion. Front. Immunol., 2013, 3, 411.
[http://dx.doi.org/10.3389/fimmu.2012.00411] [PMID: 23308075]
[44]
Davis, J.M.; Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 2009, 136(1), 37-49.
[http://dx.doi.org/10.1016/j.cell.2008.11.014] [PMID: 19135887]
[45]
van Crevel, R.; Ottenhoff, T.H.M.; van der Meer, J.W.M. Innate immunity to mycobacterium tuberculosis. Adv. Exp. Med. Biol., 2003, 531, 241-247.
[http://dx.doi.org/10.1007/978-1-4615-0059-9_20]
[46]
Dorhoi, A.; Kaufmann, S.H.E. Pathology and immune reactivity: Understanding multidimensionality in pulmonary tuberculosis. Semin. Immunopathol., 2016, 38(2), 153-166.
[http://dx.doi.org/10.1007/s00281-015-0531-3] [PMID: 26438324]
[47]
Flynn, J.L.; Chan, J.; Lin, P.L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol., 2011, 4(3), 271-278.
[http://dx.doi.org/10.1038/mi.2011.14] [PMID: 21430653]
[48]
Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Kushner, N.L.; Parsons, S.; Peixoto, B.; Fallows, D.; Kaplan, G. Spontaneous latency in a rabbit model of pulmonary tuberculosis. Am. J. Pathol., 2012, 181(5), 1711-1724.
[http://dx.doi.org/10.1016/j.ajpath.2012.07.019] [PMID: 22960076]
[49]
Adams, D.O. The structure of mononuclear phagocytes differentiating in vivo. I. Sequential fine and histologic studies of the effect of Bacillus Calmette-Guerin (BCG). Am. J. Pathol., 1974, 76(1), 17-48.
[PMID: 4601921]
[50]
Russell, D.G. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol., 2007, 5(1), 39-47.
[http://dx.doi.org/10.1038/nrmicro1538] [PMID: 17160001]
[51]
Algood, H.M.; Lin, P.L.; Flynn, J.L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis., 2005, 41(3), S189-S193.
[http://dx.doi.org/10.1086/429994] [PMID: 15983898]
[52]
Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol., 2012, 12(5), 352-366.
[http://dx.doi.org/10.1038/nri3211] [PMID: 22517424]
[53]
Reece, S.T.; Kaufmann, S.H.E. Floating between the poles of pathology and protection: Can we pin down the granuloma in tuberculosis? Curr. Opin. Microbiol., 2012, 15(1), 63-70.
[http://dx.doi.org/10.1016/j.mib.2011.10.006] [PMID: 22074861]
[54]
Kim, M.J.; Wainwright, H.C.; Locketz, M.; Bekker, L.G.; Walther, G.B.; Dittrich, C.; Visser, A.; Wang, W.; Hsu, F.F.; Wiehart, U.; Tsenova, L.; Kaplan, G.; Russell, D.G. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med., 2010, 2(7), 258-274.
[http://dx.doi.org/10.1002/emmm.201000079] [PMID: 20597103]
[55]
Benoit, M.; Desnues, B.; Mege, J.L. Macrophage polarization in bacterial infections. J. Immunol., 2008, 181(6), 3733-3739.
[http://dx.doi.org/10.4049/jimmunol.181.6.3733] [PMID: 18768823]
[56]
Cooper, A.M.; Khader, S.A. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol. Rev., 2008, 226(1), 191-204.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00702.x] [PMID: 19161425]
[57]
Dannenberg, A.M. Pathogenesis of Human Pulmonary Tuberculosis; ASM Press: Washington, DC, USA, 2006.
[http://dx.doi.org/10.1128/9781555815684]
[58]
Kaplan, G.; Post, F.A.; Moreira, A.L.; Wainwright, H.; Kreiswirth, B.N.; Tanverdi, M.; Mathema, B.; Ramaswamy, S.V.; Walther, G.; Steyn, L.M.; Barry, C.E., III; Bekker, L.G. Mycobacterium tuberculosis growth at the cavity surface: A microenvironment with failed immunity. Infect. Immun., 2003, 71(12), 7099-7108.
[http://dx.doi.org/10.1128/IAI.71.12.7099-7108.2003] [PMID: 14638800]
[59]
Lenaerts, A.; Barry, C.E., III; Dartois, V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev., 2015, 264(1), 288-307.
[http://dx.doi.org/10.1111/imr.12252] [PMID: 25703567]
[60]
Pennini, M.E.; Pai, R.K.; Schultz, D.C.; Boom, W.H.; Harding, C.V. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-γ-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol., 2006, 176(7), 4323-4330.
[http://dx.doi.org/10.4049/jimmunol.176.7.4323] [PMID: 16547269]
[61]
Dutta, N.K.; Bruiners, N.; Pinn, M.L.; Zimmerman, M.D.; Prideaux, B.; Dartois, V.; Gennaro, M.L.; Karakousis, P.C. Statin adjunctive therapy shortens the duration of TB treatment in mice. J. Antimicrob. Chemother., 2016, 71(6), 1570-1577.
[http://dx.doi.org/10.1093/jac/dkw014] [PMID: 26903278]
[62]
Guerra-De-Blas, P.D.C.; Bobadilla-Del-Valle, M.; Sada-Ovalle, I.; Estrada-García, I.; Torres-González, P.; López-Saavedra, A.; Guzmán-Beltrán, S.; Ponce-de-León, A.; Sifuentes-Osornio, J. Simvastatin enhances the immune response against Mycobacterium tuberculosis. Front. Microbiol., 2019, 10(Sep), 2097.
[http://dx.doi.org/10.3389/fmicb.2019.02097] [PMID: 31616387]
[63]
Miow, Q.H.; Vallejo, A.F.; Wang, Y.; Hong, J.M.; Bai, C.; Teo, F.S.W.; Wang, A.D.Y.; Loh, H.R.; Tan, T.Z.; Ding, Y.; She, H.W.; Gan, S.H.; Paton, N.I.; Lum, J.; Tay, A.; Chee, C.B.E.; Tambyah, P.A.; Polak, M.E.; Wang, Y.T.; Singhal, A.; Elkington, P.T.; Friedland, J.S.; Ong, C.W.M. Doxycycline host-directed therapy in human pulmonary tuberculosis. J. Clin. Invest., 2021, 131(15), e141895.
[http://dx.doi.org/10.1172/JCI141895] [PMID: 34128838]
[64]
Wallis, R.S.; Ginindza, S.; Beattie, T.; Arjun, N.; Likoti, M.; Edward, V.A.; Rassool, M.; Ahmed, K.; Fielding, K.; Ahidjo, B.A.; Vangu, M.D.T.; Churchyard, G. Adjunctive host-directed therapies for pulmonary tuberculosis: A prospective, open-label, phase 2, randomised controlled trial. Lancet Respir. Med., 2021, 9(8), 897-908.
[http://dx.doi.org/10.1016/S2213-2600(20)30448-3] [PMID: 33740465]
[65]
Padmapriydarsini, C.; Mamulwar, M.; Mohan, A.; Shanmugam, P.; Gomathy, N.S.; Mane, A.; Singh, U.B.; Pavankumar, N.; Kadam, A.; Kumar, H.; Suresh, C.; Reddy, D.; Devi, P.; Ramesh, P.M.; Sekar, L.; Jawahar, S.; Shandil, R.K.; Singh, M.; Menon, J.; Guleria, R. Randomized trial of metformin with anti-tuberculosis drugs for early sputum conversion in adults with pulmonary tuberculosis. Clin. Infect. Dis., 2022, 75(3), 425-434.
[http://dx.doi.org/10.1093/cid/ciab964] [PMID: 34849651]
[66]
Ray, K.K.; Seshasai, S.R.; Erqou, S.; Sever, P.; Jukema, J.W.; Ford, I.; Sattar, N. Statins and all-cause mortality in high-risk primary prevention: A meta-analysis of 11 randomized controlled trials involving 65,229 participants. Arch. Intern. Med., 2010, 170(12), 1024-1031.
[http://dx.doi.org/10.1001/archinternmed.2010.182] [PMID: 20585067]
[67]
Blum, A.; Shamburek, R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis, 2009, 203(2), 325-330.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.08.022] [PMID: 18834985]
[68]
Kwak, B.; Mulhaupt, F.; Myit, S.; Mach, F. Statins as a newly recognized type of immunomodulator. Nat. Med., 2000, 6(12), 1399-1402.
[http://dx.doi.org/10.1038/82219] [PMID: 11100127]
[69]
Khurana, V.; Bejjanki, H.R.; Caldito, G.; Owens, M.W. Statins reduce the risk of lung cancer in humans: A large case-control study of US veterans. Chest, 2007, 131(5), 1282-1288.
[http://dx.doi.org/10.1378/chest.06-0931] [PMID: 17494779]
[70]
Rothwell, C.; LeBreton, A.; Young Ng, C.; Lim, J.Y.H.; Liu, W.; Vasudevan, S.; Labow, M.; Gu, F.; Gaither, L.A. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology, 2009, 389(1-2), 8-19.
[http://dx.doi.org/10.1016/j.virol.2009.03.025] [PMID: 19419745]
[71]
Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.M.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis., 2014, 209(5), 754-763.
[http://dx.doi.org/10.1093/infdis/jit550] [PMID: 24133190]
[72]
Skerry, C.; Pinn, M.L.; Bruiners, N.; Pine, R.; Gennaro, M.L.; Karakousis, P.C. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother., 2014, 69(9), 2453-2457.
[http://dx.doi.org/10.1093/jac/dku166] [PMID: 24855121]
[73]
Guerra-De-Blas, P.D.C.; Torres-González, P.; Bobadilla-Del-Valle, M.; Sada-Ovalle, I.; Ponce-De-León-Garduño, A.; Sifuentes-Osornio, J. Potential effect of statins on Mycobacterium tuberculosis Infection. J. Immunol. Res., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/7617023] [PMID: 30581876]
[74]
Chen, Y-T.; Kuo, S-C.; Chao, P-W.; Chang, Y-Y. Use of lipid-lowering agents is not associated with improved outcomes for tuberculosis patients on standard-course therapy: A population-based cohort study. PLoS One, 2019, 14(1), e0210479.
[http://dx.doi.org/10.1371/journal.pone.0210479]
[75]
Su, V.Y.F.; Su, W.J.; Yen, Y.F.; Pan, S.W.; Chuang, P.H.; Feng, J.Y.; Chou, K.T.; Yang, K.Y.; Lee, Y.C.; Chen, T.J. Statin use is associated with a lower risk of TB. Chest, 2017, 152(3), 598-606.
[http://dx.doi.org/10.1016/j.chest.2017.04.170] [PMID: 28479115]
[76]
Yavuz, B.; Ertugrul, D.T.; Cil, H.; Ata, N.; Akin, K.O.; Yalcin, A.A.; Kucukazman, M.; Dal, K.; Hokkaomeroglu, M.S.; Yavuz, B.B.; Tutal, E. Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: A novel pleiotropic effect of statins? Cardiovasc. Drugs Ther., 2009, 23(4), 295-299.
[http://dx.doi.org/10.1007/s10557-009-6181-8] [PMID: 19543962]
[77]
Ertugrul, D.T.; Yavuz, B.; Cil, H.; Ata, N.; Akin, K.O.; Kucukazman, M.; Yalcin, A.A.; Dal, K.; Yavuz, B.B.; Tutal, E. STATIN-D study: Comparison of the influences of rosuvastatin and fluvastatin treatment on the levels of 25 hydroxyvitamin D. Cardiovasc. Ther., 2011, 29(2), 146-152.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00141.x] [PMID: 20370794]
[78]
Adewole, O.O.; Omotoso, B.A.; Ogunsina, M.; Aminu, A.; Odeyemi, A.O.; Awopeju, O.F.; Ayoola, O.; Adedeji, T.; Sogaolu, O.M.; Adewole, T.O.; Jiya, E.; Andero, V.; Obaseki, D.; Akintomide, A.O.; Erhabor, G.E. Atorvastatin accelerates Mycobacterium tuberculosis clearance in pulmonary TB: a randomised phase IIA trial. Int. J. Tuberc. Lung Dis., 2023, 27(3), 226-228.
[http://dx.doi.org/10.5588/ijtld.22.0548] [PMID: 36855033]
[79]
Naik, A.L. Effect of DOTS treatment on Vitamin D levels in pulmonary tuberculosis. J. Clin. Diagn. Res., 2017, 11(4), BC18-BC22.
[http://dx.doi.org/10.7860/JCDR/2017/24501.9759]
[80]
Campbell, G.R.; Spector, S.A. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy, 2012, 8(10), 1523-1525.
[http://dx.doi.org/10.4161/auto.21154] [PMID: 22892387]
[81]
Young, C.; Walzl, G.; Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol., 2020, 13(2), 190-204.
[http://dx.doi.org/10.1038/s41385-019-0226-5] [PMID: 31772320]
[82]
Jolliffe, D.A.; Ganmaa, D.; Wejse, C.; Raqib, R.; Haq, M.A.; Salahuddin, N.; Daley, P.K.; Ralph, A.P.; Ziegler, T.R.; Martineau, A.R. Adjunctive vitamin D in tuberculosis treatment: Meta-analysis of individual participant data. Eur. Respir. J., 2019, 53(3), 1802003.
[http://dx.doi.org/10.1183/13993003.02003-2018] [PMID: 30728208]
[83]
Soeharto, D.A.; Rifai, D.A.; Marsudidjadja, S.; Roekman, A.E.; Assegaf, C.K.; Louisa, M. Vitamin D as an adjunctive treatment to standard drugs in pulmonary tuberculosis patients: An evidence-based case report. Adv. Prev. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/5181847] [PMID: 31321102]
[84]
Ganmaa, D.; Uyanga, B.; Zhou, X.; Gantsetseg, G.; Delgerekh, B.; Enkhmaa, D.; Khulan, D.; Ariunzaya, S.; Sumiya, E.; Bolortuya, B.; Yanjmaa, J.; Enkhtsetseg, T.; Munkhzaya, A.; Tunsag, M.; Khudyakov, P.; Seddon, J.A.; Marais, B.J.; Batbayar, O.; Erdenetuya, G.; Amarsaikhan, B.; Spiegelman, D.; Tsolmon, J.; Martineau, A.R. Vitamin D supplements for prevention of tuberculosis infection and disease. N. Engl. J. Med., 2020, 383(4), 359-368.
[http://dx.doi.org/10.1056/NEJMoa1915176] [PMID: 32706534]
[85]
Wang, J.; Xiong, K.; Wang, Q.; Zhao, S.; Liu, Y.; Ma, A. Adjunctive vitamin A and D during pulmonary tuberculosis treatment: A randomized controlled trial with a 2 × 2 factorial design. Food Funct., 2020, 11(5), 4672-4681.
[http://dx.doi.org/10.1039/C9FO02751C] [PMID: 32406431]
[86]
Yudhawati, R.; Prasanta, N. The role of N-acetyl sistein in pulmonary tuberculosis. J. Respirasi, 2020, 6(1), 27.
[http://dx.doi.org/10.20473/jr.v6-I.1.2020.27-34]
[87]
Teskey, G.; Cao, R.; Islamoglu, H.; Medina, A.; Prasad, C.; Prasad, R.; Sathananthan, A.; Fraix, M.; Subbian, S.; Zhong, L.; Venketaraman, V. The synergistic effects of the glutathione precursor, NAC and first-line antibiotics in the granulomatous response against Mycobacterium tuberculosis. Front. Immunol., 2018, 9(Sep), 2069.
[http://dx.doi.org/10.3389/fimmu.2018.02069] [PMID: 30258443]
[88]
Amaral, E.P.; Conceição, E.L.; Costa, D.L.; Rocha, M.S.; Marinho, J.M.; Cordeiro-Santos, M.; D’Império-Lima, M.R.; Barbosa, T.; Sher, A.; Andrade, B.B. N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol., 2016, 16(1), 251.
[http://dx.doi.org/10.1186/s12866-016-0872-7] [PMID: 27793104]
[89]
Safe, I.P.; Lacerda, M.V.G.; Printes, V.S.; Praia Marins, A.F.; Rebelo Rabelo, A.L.; Costa, A.A. Safety and efficacy of N-acetylcysteine in hospitalized patients with HIV-associated tuberculosis: An open-label, randomized, phase II trial (RIPENACTB Study). PLoS One, 2020, 15(6), e0235381.
[90]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[91]
Prasad, K.; Singh, M.B.; Ryan, H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst. Rev., 2016, 4(4), CD002244.
[PMID: 27121755]
[92]
Roca, F.J.; Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell, 2013, 153(3), 521-534.
[http://dx.doi.org/10.1016/j.cell.2013.03.022] [PMID: 23582643]
[93]
Tobin, D.M.; Vary, J.C., Jr; Ray, J.P.; Walsh, G.S.; Dunstan, S.J.; Bang, N.D.; Hagge, D.A.; Khadge, S.; King, M.C.; Hawn, T.R.; Moens, C.B.; Ramakrishnan, L. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5), 717-730.
[http://dx.doi.org/10.1016/j.cell.2010.02.013] [PMID: 20211140]
[94]
Lai, S.W.; Lin, C.L.; Liao, K.F. Nation-based case-control study investigating the relationship between oral corticosteroids use and pulmonary tuberculosis. Eur. J. Intern. Med., 2017, 43, 53-57.
[http://dx.doi.org/10.1016/j.ejim.2017.05.020] [PMID: 28554781]
[95]
Miller, M.J.; Walz, A.J.; Zhu, H.; Wu, C.; Moraski, G.; Möllmann, U.; Tristani, E.M.; Crumbliss, A.L.; Ferdig, M.T.; Checkley, L.; Edwards, R.L.; Boshoff, H.I. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc., 2011, 133(7), 2076-2079.
[http://dx.doi.org/10.1021/ja109665t] [PMID: 21275374]
[96]
Morake, M.; Coertzen, D.; Ngwane, A.; Wentzel, J.F.; Wong, H.N.; Smit, F.J.; Birkholtz, L.M.; Pietersen, R.D.; Baker, B.; Wiid, I.; N’Da, D.D.; Haynes, R.K. Preliminary evaluation of artemisinin-cholesterol conjugates as potential drugs for the treatment of intractable forms of malaria and tuberculosis. ChemMedChem, 2018, 13(1), 67-77.
[http://dx.doi.org/10.1002/cmdc.201700579] [PMID: 29193799]
[97]
Zhu, C.; Liu, Y.; Hu, L.; Yang, M.; He, Z.G. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J. Biol. Chem., 2018, 293(43), 16741-16750.
[http://dx.doi.org/10.1074/jbc.RA118.002693] [PMID: 30185616]
[98]
Choi, W. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents. J. Clin. Med., 2017, 6(3), 30.
[http://dx.doi.org/10.3390/jcm6030030] [PMID: 28287416]
[99]
Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol., 2020, 30(3), 313-324.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[100]
Golandaj, J.A. Insight into the COVID-19 led slow-down in TB notifications in India. Indian J. Tuberc., 2021, 68(1), 142-145.
[http://dx.doi.org/10.1016/j.ijtb.2020.12.005] [PMID: 33641836]
[101]
Lippincott, C.; Perry, A.; Munk, E.; Maltas, G.; Shah, M. Tuberculosis treatment adherence in the era of COVID-19; Res Sq, 2022.
[102]
Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; Pulmonology, L.D. Pulmonology LD-, 2021 undefined. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects; Elsevier, 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy