Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Comprehensive Review on Niosomes as a Strategy in Targeted Drug Delivery: Pharmaceutical, and Herbal Cosmetic Applications

Author(s): Sakshi Saharawat and Sushma Verma*

Volume 21, Issue 11, 2024

Published on: 15 January, 2024

Page: [1460 - 1473] Pages: 14

DOI: 10.2174/0115672018269199231121055548

Price: $65

Abstract

Niosomes are newly developed, self-assembling sac-like transporters that deliver medication at a specific site in a focused manner, increasing availability in the body and prolonging healing effects. Niosome discovery has increased drugs’ therapeutic effectiveness while also reducing adverse effects.

This article aims to concentrate on the increase in the worldwide utilization of niosomal formulation. This overview presents a thorough perspective of niosomal investigation up until now, encompassing categories and production techniques, their significance in pharmaceutical transportation, and cosmetic use.

The thorough literature review revealed that extensive attention has been given to developing nanocarriers for drug delivery as they hold immense endeavor to attain targeted delivery to the affected area simultaneously shielding the adjacent healthy tissue. Many reviews and research papers have been published that demonstrate the interest of scientists in niosomes. Phytoconstituents, which possess antioxidant, antibiotic, anti-inflammatory, wound healing, anti-acne, and skin whitening properties, are also encapsulated into niosome. Their flexibility allows for the incorporation of various therapeutic agents, including small molecules, proteins, and peptides making them adaptable for different types of drugs. Niosomes can be modified with ligands, enhancing their targeting capabilities.

A flexible drug delivery mechanism provided by non-ionic vesicles, which are self-assembling vesicular nano-carriers created from hydrating non-ionic surfactant, cholesterol, or amphiphilic compounds along comprehensive applications such as transdermal and brain-targeted delivery.

Keywords: Niosomes, applications, drug targeting, method of preparation, drug delivery, phytoconstituents, cosmetics.

Graphical Abstract
[1]
Pham, T.T.; Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. Liposome and niosome preparation using a membrane contactor for scale-up. Colloids Surf. B Biointerfaces, 2012, 94, 15-21.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.036] [PMID: 22326648]
[2]
Mehta, S.K.; Jindal, N. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf. B Biointerfaces, 2013, 101, 434-441.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.006] [PMID: 23010052]
[3]
Pando, D.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation and characterization of niosomes containing resveratrol. J. Food Eng., 2013, 117(2), 227-234.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.020]
[4]
Waddad, A.Y.; Abbad, S.; Yu, F. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int. J. Pharm., 2013, 456(2), 446-458.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.040] [PMID: 23998955]
[5]
Nowroozi, F.; Almasi, A.; Javidi, J.; Haeri, A.; Dadashzadeh, S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iranian journal of pharmaceutical Research. Iran. J. Pharm. Res., 2018, 17(2), 1-11.
[PMID: 31011337]
[6]
Temprom, L.; Krongsuk, S.; Thapphasaraphong, S.; Priperm, A.; Namuangruk, S. A novel preparation and characterization of melatonin loaded niosomes based on using a ball milling method. Mater. Today Commun., 2022, 31, 103340.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103340]
[7]
Muzzalupo, R.; Pérez, L.; Pinazo, A.; Tavano, L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int. J. Pharm., 2017, 529(1-2), 245-252.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.083] [PMID: 28668583]
[8]
Zeng, W.; Li, Q.; Wan, T. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf. B Biointerfaces, 2016, 141, 28-35.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.014] [PMID: 26820107]
[9]
Kattar, A.; Quelle-Regaldie, A.; Sánchez, L.; Concheiro, A.; Alvarez-Lorenzo, C. Formulation and characterization of epalrestat-loaded polysorbate 60 cationic niosomes for ocular delivery. Pharmaceutics, 2023, 15(4), 1247.
[http://dx.doi.org/10.3390/pharmaceutics15041247] [PMID: 37111732]
[10]
Joshi, G.; Singh, A.K.; Upadhyay, P.; Tiwari, A. Formulation and evaluation of tropicamide loaded niosomes. J. Drug Deliv. Ther., 2019, 9(3-s), 69-75.
[11]
El-Far, S.W.; Abo El-Enin, H.A.; Abdou, E.M.; Nafea, O.E.; Abdelmonem, R. Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies. Pharmaceuticals, 2022, 15(7), 816.
[http://dx.doi.org/10.3390/ph15070816] [PMID: 35890115]
[12]
Saleh, A.; Pirouzifard, M. Alizadeh khaledabad M, Almasi H. Optimization and Characterization of Lippia citriodora Essential Oil Loaded Niosomes: A Novel Plant-based Food Nano Preservative. Colloids Surf. A Physicochem. Eng. Asp., 2022, 650, 129480.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129480]
[13]
Elhissi, A.; Hidayat, K.; Phoenix, D.A. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int. J. Pharm., 2013, 444(1-2), 193-199.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.040] [PMID: 23299083]
[14]
Mittal, S.; Chaudhary, A.; Chaudhary, A.; Kumar, A. Proniosomes: The effective and efficient drug-carrier system. Ther. Deliv., 2020, 11(2), 125-137.
[http://dx.doi.org/10.4155/tde-2019-0065] [PMID: 31937205]
[15]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[16]
Sammour, R.; Taher, M.; Chatterjee, B.; Shahiwala, A.; Mahmood, S. Optimization of aceclofenac proniosomes by using different carriers, part 1: Development and characterization. Pharmaceutics, 2019, 11(7), 350.
[http://dx.doi.org/10.3390/pharmaceutics11070350] [PMID: 31323799]
[17]
Manosroi, A.; Jantrawut, P.; Manosroi, J. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int. J. Pharm., 2008, 360(1-2), 156-163.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.033] [PMID: 18539416]
[18]
Abdelkader, H.; Ismail, S.; Kamal, A.; Alany, R.G. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J. Pharm. Sci., 2011, 100(5), 1833-1846.
[http://dx.doi.org/10.1002/jps.22422] [PMID: 21246556]
[19]
Zhang, Y.; Cao, F.; Ullah, A. A comparative study of niosomal and elastic niosomal carbomer hydrogel for transcutaneous vaccine delivery. Mater. Today Commun., 2022, 31, 103738.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103738]
[20]
Paolino, D.; Cosco, D.; Muzzalupo, R.; Trapasso, E.; Picci, N.; Fresta, M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int. J. Pharm., 2008, 353(1-2), 233-242.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.037] [PMID: 18191509]
[21]
Saini, N.; Sodhi, R.K.; Bajaj, L. Intravaginal administration of metformin hydrochloride loaded cationic niosomes amalgamated with thermosensitive gel for the treatment of polycystic ovary syndrome: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2016, 144, 161-169.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.016] [PMID: 27085048]
[22]
Aboul-Einien, M.H.; Kandil, S.M.; Abdou, E.M.; Diab, H.M.; Zaki, M.S.E. Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. J. Liposome Res., 2020, 30(1), 54-67.
[http://dx.doi.org/10.1080/08982104.2019.1585448] [PMID: 30821553]
[23]
Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: Novel sustained release nonionic stable vesicular systems — An overview. Adv. Colloid Interface Sci., 2012, 183-184, 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[24]
Ag Seleci, D.; Seleci, M.; Walter, J.G.; Stahl, F.; Scheper, T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/7372306]
[25]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through the blood-brain barrier. Adv. Pharmacol. Sci., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[26]
Essa, E. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J. Pharm., 2010, 4(4), 227.
[http://dx.doi.org/10.4103/0973-8398.76752]
[27]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[28]
Shaker, D.S.; Shaker, M.A.; Hanafy, M.S. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. Int. J. Pharm., 2015, 493(1-2), 285-294.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.041] [PMID: 26200748]
[29]
Muzzalupo, R.; Tavano, L.; Lai, F.; Picci, N. Niosomes containing hydroxyl additives as percutaneous penetration enhancers: Effect on the transdermal delivery of sulfadiazine sodium salt. Colloids Surf. B Biointerfaces, 2014, 123, 207-212.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.017] [PMID: 25260220]
[30]
Thabet, Y.; Elsabahy, M.; Eissa, N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods, 2022, 199, 9-15.
[http://dx.doi.org/10.1016/j.ymeth.2021.05.004] [PMID: 34000392]
[31]
Ugorji, O.L.; Umeh, O.N.C.; Agubata, C.O.; Adah, D.; Obitte, N.C.; Chukwu, A. The effect of niosome preparation methods in encapsulating 5-fluorouracil and real time cell assay against HCT-116 colon cancer cell line. Heliyon, 2022, 8(12), e12369.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12369] [PMID: 36582708]
[32]
Bendas, E.R.; Abdullah, H.; El-Komy, M.H.M.; Kassem, M.A.A. Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus. Int. J. Pharm., 2013, 458(2), 287-295.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.042] [PMID: 24184035]
[33]
Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull., 2011, 34(7), 945-953.
[http://dx.doi.org/10.1248/bpb.34.945] [PMID: 21719996]
[34]
Escudero, I.; Geanta, R.M.; Ruiz, M.O.; Benito, J.M. Formulation and characterization of Tween 80/cholestherol niosomes modified with tri-n-octylmethylammonium chloride (TOMAC) for carboxylic acids entrapment. Colloids Surf. A Physicochem. Eng. Asp., 2014, 461, 167-177.
[http://dx.doi.org/10.1016/j.colsurfa.2014.07.042]
[35]
Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int. J. Pharm., 2008, 352(1-2), 248-255.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.013] [PMID: 18036754]
[36]
Abd-Elbary, A.; El-laithy, H.M.; Tadros, M.I. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Int. J. Pharm., 2008, 357(1-2), 189-198.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.056] [PMID: 18339494]
[37]
García-Manrique, P.; Machado, N.D.; Fernández, M.A.; Blanco-López, M.C.; Matos, M.; Gutiérrez, G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf. B Biointerfaces, 2020, 186, 110711.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110711] [PMID: 31864114]
[38]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Sci., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[39]
El-Menshawe, S.F. A novel approach to topical acetazolamide/PEG 400 ocular niosomes. J. Drug Deliv. Sci. Technol., 2012, 22(4), 295-299.
[http://dx.doi.org/10.1016/S1773-2247(12)50049-3]
[40]
Zubairu, Y.; Negi, L.M.; Iqbal, Z.; Talegaonkar, S. Design and development of novel bioadhesive niosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations. Asian J Pharma Sci, 2015, 10(4), 322-330.
[http://dx.doi.org/10.1016/j.ajps.2015.02.001]
[41]
Alemi, A.; Zavar Reza, J.; Haghiralsadat, F. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J. Nanobiotechnology, 2018, 16(1), 28.
[http://dx.doi.org/10.1186/s12951-018-0351-4] [PMID: 29571289]
[42]
Sharma, V.; Anandhakumar, S.; Sasidharan, M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery. Mater. Sci. Eng. C, 2015, 56, 393-400.
[http://dx.doi.org/10.1016/j.msec.2015.06.049] [PMID: 26249606]
[43]
Abu Hajleh, M.N.; Abu-Huwaij, R. AL-Samydai A, Al-Halaseh LK, Al-Dujaili EA. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects. J. Cosmet. Dermatol., 2021, 20(12), 3818-3828.
[http://dx.doi.org/10.1111/jocd.14441] [PMID: 34510691]
[44]
Junyaprasert, V.B.; Singhsa, P.; Suksiriworapong, J.; Chantasart, D. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int. J. Pharm., 2012, 423(2), 303-311.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.032] [PMID: 22155414]
[45]
Akbari, J.; Saeedi, M.; Enayatifard, R. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol., 2020, 60, 102035.
[http://dx.doi.org/10.1016/j.jddst.2020.102035]
[46]
Sabry, S. El hakim Ramadan A, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats. J. Drug Deliv. Sci. Technol., 2021, 61, 102163.
[http://dx.doi.org/10.1016/j.jddst.2020.102163]
[47]
D’Angelo, R.W.O.; Gonçalves, M.M.; Fachi, M.M.; Vilhena, R.O.; Pontarolo, R.; Maluf, D.F. UPLC–QToF-MS characterization of blackberry extracts of cultivars ‘Tupy’,‘Guarani’, and ‘Xavante’: Development of extract-loaded niosomes. Rev. Bras. Farmacogn., 2020, 30(4), 519-527.
[http://dx.doi.org/10.1007/s43450-020-00076-8]
[48]
Pinto, CS; Dos Santos, EP; Mansur, CR Niosomes as nano-delivery systems in the pharmaceutical field. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2016, 33(2)
[49]
Manosroi, J.; Chankhampan, C.; Kitdamrongtham, W. In vivo anti‐ageing activity of cream containing niosomes loaded with purple glutinous rice (Oryza sativa Linn.) extract. Int. J. Cosmet. Sci., 2020, 42(6), 622-631.
[http://dx.doi.org/10.1111/ics.12658] [PMID: 32812663]
[50]
Kandil, S.M.; Soliman, I.I.; Diab, H.M.; Bedair, N.I.; Mahrous, M.H.; Abdou, E.M. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients. Drug Deliv., 2022, 29(1), 534-547.
[http://dx.doi.org/10.1080/10717544.2022.2036872] [PMID: 35156490]
[51]
Radmard, A.; Saeedi, M.; Morteza-Semnani, K.; Hashemi, S.M.H.; Nokhodchi, A. An eco-friendly and green formulation in lipid nanotechnology for delivery of a hydrophilic agent to the skin in the treatment and management of hyperpigmentation complaints: Arbutin niosome (Arbusome). Colloids Surf. B Biointerfaces, 2021, 201, 111616.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111616] [PMID: 33618082]
[52]
Jamal, M.; Imam, S.S.; Aqil, M.; Amir, M.; Mir, S.R.; Mujeeb, M. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems. Int. Immunopharmacol., 2015, 29(2), 361-369.
[http://dx.doi.org/10.1016/j.intimp.2015.10.029] [PMID: 26545446]
[53]
Inal, O.; Amasya, G.; Sezgin Bayindir, Z.; Yuksel, N. Development and quality assessment of glutathione tripeptide loaded niosome containing carbopol emulgels as nanocosmeceutical formulations. Int. J. Biol. Macromol., 2023, 241, 124651.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124651] [PMID: 37119885]
[54]
Manosroi, A.; Boonpisuttinant, K.; Winitchai, S.; Manosroi, W.; Manosroi, J. Free radical scavenging and tyrosinase inhibition activity of physic nut (Jatropha curcas Linn.) seed oil entrapped in niosomes. Curr. Nanosci., 2011, 7(5), 825-829.
[http://dx.doi.org/10.2174/157341311797483709]
[55]
Tavano, L.; Muzzalupo, R.; Picci, N.; de Cindio, B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Colloids Surf. B Biointerfaces, 2014, 114, 144-149.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.055] [PMID: 24176892]
[56]
Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces, 2015, 128, 398-404.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.037] [PMID: 25766923]
[57]
Machado, N.D.; Gutiérrez, G.; Matos, M.; Fernández, M.A. Preservation of the antioxidant capacity of resveratrol via encapsulation in niosomes. Foods, 2021, 10(5), 988.
[http://dx.doi.org/10.3390/foods10050988] [PMID: 33946473]
[58]
Rezaeiroshan, A.; Saeedi, M.; Morteza-Semnani, K.; Akbari, J.; Gahsemi, M.; Nokhodchi, A. Development of trans-Ferulic acid niosome: An optimization and an in-vivo study. J. Drug Deliv. Sci. Technol., 2020, 59, 101854.
[http://dx.doi.org/10.1016/j.jddst.2020.101854]
[59]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm. Sci., 2017, 106(2), 423-445.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[60]
Limphapayom, W.; Loylerd, K.; Leabwan, N.; Sukhasem, S. Encapsulation of alpha-mangostin in cosmetic production by using nanotechnology. InInternational Symposium on Durian and Other Humid Tropical Fruits, 2015, 189-192.
[61]
Manosroi, A.; Chankhampan, C.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur. J. Pharm. Sci., 2013, 48(3), 474-483.
[http://dx.doi.org/10.1016/j.ejps.2012.12.010] [PMID: 23266464]
[62]
Qumbar, M. Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother., 2017, 93, 255-266.
[http://dx.doi.org/10.1016/j.biopha.2017.06.043] [PMID: 28738502]
[63]
Zhang, Y.; Zhang, K.; Wu, Z. Evaluation of transdermal salidroside delivery using niosomes viain vitro cellular uptake. Int. J. Pharm., 2015, 478(1), 138-146.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.018] [PMID: 25448576]
[64]
Aljuffali, I.; Hsu, C.Y.; Lin, Y.K.; Fang, J.Y. Cutaneous delivery of natural antioxidants: The enhancement approaches. Curr. Pharm. Des., 2015, 21(20), 2745-2757.
[http://dx.doi.org/10.2174/1381612821666150428125428] [PMID: 25925121]
[65]
Singh, S.; Parashar, P.; Kanoujia, J.; Singh, I.; Saha, S.; Saraf, S.A. Transdermal potential and anti-gout efficacy of Febuxostat from niosomal gel. J. Drug Deliv. Sci. Technol., 2017, 39, 348-361.
[http://dx.doi.org/10.1016/j.jddst.2017.04.020]
[66]
Allam, A.; El-Mokhtar, M.A.; Elsabahy, M. Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J. Pharm. Pharmacol., 2019, 71(8), 1209-1221.
[http://dx.doi.org/10.1111/jphp.13106] [PMID: 31124593]
[67]
Fetih, G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J. Drug Deliv. Sci. Technol., 2016, 35, 8-15.
[http://dx.doi.org/10.1016/j.jddst.2016.06.002]
[68]
Paradkar, M.U.; Parmar, M. Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery. J. Drug Deliv. Sci. Technol., 2017, 39, 113-122.
[http://dx.doi.org/10.1016/j.jddst.2017.03.005]
[69]
Khatoon, M.; Shah, K.U.; Din, F.U. Proniosomes derived niosomes: Recent advancements in drug delivery and targeting. Drug Deliv., 2017, 24(2), 56-69.
[http://dx.doi.org/10.1080/10717544.2017.1384520] [PMID: 29130758]
[70]
Khan, M.I.; Madni, A.; Peltonen, L. Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. Eur. J. Pharm. Sci., 2016, 95, 88-95.
[http://dx.doi.org/10.1016/j.ejps.2016.09.002] [PMID: 27600819]
[71]
Maestrelli, F.; Mura, P.; González-Rodríguez, M.L. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus. Int. J. Pharm., 2017, 530(1-2), 430-439.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.083] [PMID: 28778628]
[72]
Ibrahim, M.M.; Shehata, T.M. Tramadol HCl encapsulated niosomes for extended analgesic effect following oral administration. J. Drug Deliv. Sci. Technol., 2018, 46, 14-18.
[http://dx.doi.org/10.1016/j.jddst.2018.04.011]
[73]
Marianecci, C.; Paolino, D.; Celia, C.; Fresta, M.; Carafa, M.; Alhaique, F. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: Characterization and interaction with human lung fibroblasts. J. Control. Release, 2010, 147(1), 127-135.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.022] [PMID: 20603167]
[74]
Moazeni, E.; Gilani, K.; Sotoudegan, F. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J. Microencapsul., 2010, 27(7), 618-627.
[http://dx.doi.org/10.3109/02652048.2010.506579] [PMID: 20681747]
[75]
Alsaadi, M.; Italia, J.L.; Mullen, A.B. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection. J. Control. Release, 2012, 160(3), 685-691.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.004] [PMID: 22516093]
[76]
Demirbolat, G.M.; Aktas, E.; Coskun, G.P.; Erdogan, O.; Cevik, O. New approach to formulate methotrexate-loaded niosomes: In vitro characterization and cellular effectiveness. J. Pharm. Innov., 2021, 1-6.
[77]
Bragagni, M.; Mennini, N.; Furlanetto, S.; Orlandini, S.; Ghelardini, C.; Mura, P. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B. Eur. J. Pharm. Biopharm., 2014, 87(1), 73-79.
[http://dx.doi.org/10.1016/j.ejpb.2014.01.006] [PMID: 24462793]
[78]
Tavano, L.; Aiello, R.; Ioele, G.; Picci, N.; Muzzalupo, R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties. Colloids Surf. B Biointerfaces, 2014, 118, 7-13.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.016] [PMID: 24709252]
[79]
AL Qtaish N, Gallego I, Villate-Beitia I, et al. Niosome-based approach for in situ gene delivery to retina and brain cortex as immune-privileged tissues. Pharmaceutics, 2020, 12(3), 198.
[http://dx.doi.org/10.3390/pharmaceutics12030198] [PMID: 32106545]
[80]
Puras, G.; Mashal, M.; Zárate, J. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release, 2014, 174, 27-36.
[http://dx.doi.org/10.1016/j.jconrel.2013.11.004] [PMID: 24231407]
[81]
Villate-Beitia, I.; Gallego, I.; Martínez-Navarrete, G. Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration. Int. J. Pharm., 2018, 550(1-2), 388-397.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.035] [PMID: 30009984]
[82]
Carballo-Pedrares, N.; Kattar, A.; Concheiro, A.; Alvarez-Lorenzo, C.; Rey-Rico, A. Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells. Mater. Sci. Eng. C, 2021, 128, 112307.
[http://dx.doi.org/10.1016/j.msec.2021.112307] [PMID: 34474858]
[83]
Tavano, L.; Vivacqua, M.; Carito, V.; Muzzalupo, R.; Caroleo, M.C.; Nicoletta, F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surf. B Biointerfaces, 2013, 102, 803-807.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.019] [PMID: 23107959]
[84]
Kassem, M.A.; El-Sawy, H.S.; Abd-Allah, F.I.; Abdelghany, T.M.; El-Say, K.M. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design. J. Pharm. Sci., 2017, 106(1), 111-122.
[http://dx.doi.org/10.1016/j.xphs.2016.07.007] [PMID: 27544432]
[85]
De, A.; Venkatesh, N.; Senthil, M.; Sanapalli, B.K.R.; Shanmugham, R.; Karri, V.V.S.R. Smart niosomes of temozolomide for enhancement of brain targeting. Nanobiomedicine (Rij), 2018, 5.
[http://dx.doi.org/10.1177/1849543518805355] [PMID: 30344765]
[86]
Khazaeli, P.; Sharifi, I.; Talebian, E.; Heravi, G.; Moazeni, E.; Mostafavi, M. Anti-leishmanial effect of itraconazole niosome on in vitro susceptibility of Leishmania tropica. Environ. Toxicol. Pharmacol., 2014, 38(1), 205-211.
[http://dx.doi.org/10.1016/j.etap.2014.04.003] [PMID: 24956400]
[87]
Zidan, A.S.; Habib, M.J. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels. J. Pharm. Sci., 2014, 103(3), 952-964.
[http://dx.doi.org/10.1002/jps.23867] [PMID: 24464823]
[88]
Moghddam, S.R.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C, 2016, 69, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[89]
Pandey, S.S.; Shah, K.M.; Maulvi, F.A. Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. J. Drug Deliv. Sci. Technol., 2021, 63, 102441.
[http://dx.doi.org/10.1016/j.jddst.2021.102441]
[90]
Alclantar, N.; Williams, E.C.; Toomey, R. Niosome hydrogel drug delivery. U.S. Patent 20100068264, 2010.
[91]
Smith, G.; Shenoy, D.B.; Lee, R.W. Adjuvant and vaccine compositions. U.S. Patent 20100226932, 2007.
[92]
Alclantar, N.; Dearborn, K.; Van Aukar, M.; Toomey, R.; Hood, E. Niosome hydro gel drug delivery. U.S. Patent 20080050445, 2008.
[93]
Hood, E.; Strom, J.A.; Van Aukar, M. Ultrasound enhancement of drug release across non-ionic surfactant membranes. U.S. Patent 20060292211, 2011.
[94]
Van Aukar, M.; Plaas, A.; Hood, E. Immunotargeting of nonionic surfactant vesicles. U.S. Patent 20070172520, 2007.
[95]
Yang, C.C.; Le, Y.C.; Liu, C.C. Compositions and methods of enhanced transdermal delivery of steroidal compounds and preparation methods. U.S. Patent 20050239747, 2005.
[96]
Aleksandrovich Bazikov, I; Grigorevich, KK; Anastasovna, SZ Dental gel having niosomes for treatment of inflammatory and dystrophic periodontal diseases. R.U. Patent 2582290C2, 2016.
[97]
Morrison, E. Unilamellar niosomes having high kow pharmacological compounds solvated theren and a method for the preparation thereof. U.S. Patent 2016/0184228A1, 2016.
[98]
Igor, B. Aleksandrovich Method for making transdermal patch containing Peg-12 dimethicone niosomes. R.U. Patent 2539397C2, 2015.
[99]
Aleksandrovich, BI Doxorubicin and organosilicon nanoparticles niosomes-based pharmaceutical gel for skin cancer treating R.U. Patent 2600164C2, 2016.
[100]
Cheillan, S.; Guerin, S.C.L.; Cano, C.A. Composition comprising an association of niosomes and C-glycoside derivative, Crocus sativus extract and/or Crocus sativus Flower extract, for regulating skin pigmentation. Publication, 2019, B1(FR3032115)
[101]
Aleksandrovich, IB; Dalkhatovich, BM; Nasyrovich, AA; Zakirovich, VA Transdermal anthelmintic agent of silicone niosomes with albendazole R.U. Patent 2541156C1, 2015.
[102]
Alexandrovich Bazikov, I; Aksyonov, AV; Aleksandrovich Aksyonov, N; Maltsev, AN; Smirnov, AN Pharmaceutical niosomal gel based on N-Hydroxy-2-(2-(naphthalene-2-Yl)-1h-Indole-3-Yl-2- Phenylacetamide with anti-tumour Activity to Glioblastoma. R.U. Patent 2627449C2, 2017.
[103]
Tampa, N.A. Alcantar Marzenna Wiranowska: Rana Falahat, Ryan G. Toomey. Enhanced targeted drug delivery system via chitosan hydrogel and chlorotoxin. U.S. Patent 9522114B1, 2016.
[104]
Hossainy, S.; Davalan, D.; Trollsas, M.; Stankus, J.; Khong, Y.M.; Wan, J. Drug delivery system and method of treatment of vascular diseases using photodynamic therapy. U.S. Patent 9572795B2, 2017.
[105]
Shah, J.; Nair, A.B.; Shah, H.; Jacob, S.; Shehata, T.M.; Morsy, M.A. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian Journal of Pharmaceutical Sciences, 2020, 15(6), 786-796.
[http://dx.doi.org/10.1016/j.ajps.2019.05.001] [PMID: 33363633]
[106]
Gugleva, V.; Titeva, S.; Rangelov, S.; Momekova, D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int. J. Pharm., 2019, 567, 118431.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.022] [PMID: 31207279]
[107]
Allam, A.; Elsabahy, M.; El Badry, M.; Eleraky, N.E. Betaxolol‐loaded niosomes integrated within pH‐sensitive in situ forming gel for management of glaucoma. Int. J. Pharm., 2021, 598, 120380.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120380] [PMID: 33609725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy