Generic placeholder image

Journal of Photocatalysis

Editor-in-Chief

ISSN (Print): 2665-976X
ISSN (Online): 2665-9778

Research Article

Kinetic Analysis of Solvent Effect in the Photocatalytic, Aerobic Oxidation of Benzyl Alcohol over P25

Author(s): Nosaibeh Nosrati-Ghods, Nicholas Stuart Featherstone and Eric van Steen*

Volume 4, 2024

Published on: 12 January, 2024

Article ID: e120124225598 Pages: 14

DOI: 10.2174/012665976X272707231206063253

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Photocatalysis is of particular importance in the oxidation of alcohols to aldehydes to increase the conversion of benzyl alcohol oxidation to benzaldehyde at high selectivity, which could be useful for the pharmaceutical and perfumery industries.

Objective: The oxidation of benzyl alcohol over P25 was investigated in various solvents (water, benzotrifluoride, toluene and acetonitrile).

Methods: The reaction was performed in an isothermal slurry batch reactor in the presence and absence of UV-light. The products were analysed using GC-FID; the deposits formed on the catalyst was analysed using TGA and FTIR.

Results: In the presence of light, the reaction was very selective for the formation of benzaldehyde (e.g., 99% selectivity at 53% conversion using acetonitrile as a solvent), whereas, in the absence of light, the formation of higher molecular weight products was observed (e.g., 22% selectivity at 1.7% conversion using acetonitrile as a solvent). It was observed that the activity in the absence of oxygen was initially high, but it dropped rapidly from initially 0.4 to 0 mmol g-1 h-1 after 2-4 h (using acetonitrile as a solvent). This was attributed to the activity of the few oxidized sites present on P25.

Conclusion: Acetonitrile appears to be the most effective solvent, as it seems to interact least with the catalytically active sites. The photocatalytic oxidation of benzyl alcohol over P25 does not only yield products in the solution, but also deposits on the surface. The deposits can be removed in an oxidative environment or an inert environment.

Keywords: Photo-oxidation, benzyl alcohol, benzaldehyde, TiO2-P25, solvent effects, deposits.

[1]
Augugliaro, V.; Kisch, H.; Loddo, V.; López-Muñoz, M.J.; Márquez-Álvarez, C.; Palmisano, G.; Palmisano, L.; Parrino, F.; Yurdakal, S. Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide. Appl. Catal. A Gen., 2008, 349(1-2), 189-197.
[http://dx.doi.org/10.1016/j.apcata.2008.07.038]
[2]
Li, C.J.; Xu, G.R.; Zhang, B.; Gong, J.R. High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl. Catal. B, 2012, 115-116, 201-208.
[http://dx.doi.org/10.1016/j.apcatb.2011.12.003]
[3]
Augugliaro, V.; Palmisano, L. Green oxidation of alcohols to carbonyl compounds by heterogeneous photocatalysis. ChemSusChem, 2010, 3(10), 1135-1138.
[http://dx.doi.org/10.1002/cssc.201000156] [PMID: 20830724]
[4]
Rüther, T.; Bond, A.M.; Jackson, W.R. Solar light induced photocatalytic oxidation of benzyl alcohol using heteropolyoxometalate catalysts of the type [S 2 M 18 O 62] 4−. Green Chem., 2003, 5(4), 364-366.
[http://dx.doi.org/10.1039/B306521A]
[5]
Kunene, A.; Leteba, G.; van Steen, E. Liquid phase oxidation of benzyl alcohol over pt and pt–ni alloy supported on TiO2: Using O2 or H2O2 as oxidant? Catal. Lett., 2022, 152(6), 1760-1768.
[http://dx.doi.org/10.1007/s10562-021-03760-z]
[6]
Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today, 2009, 147(1), 1-59.
[http://dx.doi.org/10.1016/j.cattod.2009.06.018]
[7]
Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res., 2004, 8(3-4), 501-551.
[http://dx.doi.org/10.1016/S1093-0191(03)00032-7]
[8]
Ibhadon, A.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 2013, 3(1), 189-218.
[http://dx.doi.org/10.3390/catal3010189]
[9]
Jo, W.K.; Tayade, R.J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Ind. Eng. Chem. Res., 2014, 53(6), 2073-2084.
[http://dx.doi.org/10.1021/ie404176g]
[10]
Pirola, C.; Bianchi, C.L.; Gatto, S.; Ardizzone, S.; Cappelletti, G. Pressurized photo-reactor for the degradation of the scarcely biodegradable DPC cationic surfactant in water. Chem. Eng. J., 2013, 225, 416-422.
[http://dx.doi.org/10.1016/j.cej.2013.03.116]
[11]
Jo, W.K.; Tayade, R.J. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chin. J. Catal., 2014, 35(11), 1781-1792.
[http://dx.doi.org/10.1016/S1872-2067(14)60205-9]
[12]
Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev., 2018, 81, 536-551.
[http://dx.doi.org/10.1016/j.rser.2017.08.020]
[13]
Capelo-Martínez, J.L.; Ximénez-Embún, P.; Madrid, Y.; Cámara, C. Advanced oxidation processes for sample treatment in atomic spectrometry. Trends Analyt. Chem., 2004, 23(4), 331-340.
[http://dx.doi.org/10.1016/S0165-9936(04)00401-7]
[14]
Piera, J.; Bäckvall, J.E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach. Angew. Chem. Int. Ed., 2008, 47(19), 3506-3523.
[http://dx.doi.org/10.1002/anie.200700604] [PMID: 18383499]
[15]
Tzirakis, M.; Lykakis, I.; Panagiotou, G.; Bourikas, K.; Lycourghiotis, A.; Kordulis, C.; Orfanopoulos, M. Decatungstate catalyst supported on silica and γ-alumina: Efficient photocatalytic oxidation of benzyl alcohols. J. Catal., 2007, 252(2), 178-189.
[http://dx.doi.org/10.1016/j.jcat.2007.09.023]
[16]
Loddo, V.; Roda, G.C.; Parrino, F. Kinetic Aspects of Heterogeneous Catalytic versus Photocatalytic Reactions; Elsevier B.V., 2019.
[http://dx.doi.org/10.1016/B978-0-444-64015-4.00007-9]
[17]
Larson, S.A.; Falconer, J.L. Initial reaction steps in photocatalytic oxidation of aromatics. Catal. Lett., 1997, 44(1/2), 57-65.
[http://dx.doi.org/10.1023/A:1018920907725]
[18]
Blount, M.C.; Falconer, J.L. Steady-state surface species during toluene photocatalysis. Appl. Catal. B, 2002, 39(1), 39-50.
[http://dx.doi.org/10.1016/S0926-3373(01)00152-7]
[19]
Augugliaro, V.; Palmisano, G.; Palmisano, L.; Soria, J. Heterogeneous photocatalysis and catalysis: An overview of their distinctive features. In: Heterogeneous Photocatalysis Relationships with Heterogeneous Catalysis and Perspectives; Marinakis, K.K., Ed.; Joseph P. Hayton: Palermo, Italy, 2019; pp. 1-24.
[20]
Marugán, J.; López-Muñoz, M.J.; Gernjak, W.; Malato, S. Fe/TiO 2/pH Interactions in Solar Degradation of Imidacloprid with TiO 2/SiO 2 Photocatalysts at Pilot-Plant Scale. Ind. Eng. Chem. Res., 2006, 45(26), 8900-8908.
[http://dx.doi.org/10.1021/ie061033b]
[21]
Yurdakal, S.; Palmisano, G.; Loddo, V.; Alagöz, O.; Augugliaro, V.; Palmisano, L. Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chem., 2009, 11(4), 510-516.
[http://dx.doi.org/10.1039/b819862d]
[22]
Zhang, Y. Modeling and design of photocatalytic reactors for air purification., theses and dissertations; University of South Florida, 2013.
[23]
Gassim, F.A.Z.G.; Alkhateeb, A.N.; Hussein, F.H. Photocatalytic oxidation of benzyl alcohol using pure and sensitized anatase. Desalination, 2007, 209(1-3), 342-349.
[http://dx.doi.org/10.1016/j.desal.2007.04.049]
[24]
Xie, M.; Dai, X.; Meng, S.; Fu, X.; Chen, S. Selective oxidation of aromatic alcohols to corresponding aromatic aldehydes using In2S3 microsphere catalyst under visible light irradiation. Chem. Eng. J., 2014, 245, 107-116.
[http://dx.doi.org/10.1016/j.cej.2014.02.029]
[25]
Song, H.; Liu, Z.; Wang, Y.; Zhang, N.; Qu, X.; Guo, K.; Xiao, M.; Gai, H. Template-free synthesis of hollow TiO2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde. GEE, 2019, 4(3), 278-286.
[http://dx.doi.org/10.1016/j.gee.2018.09.001]
[26]
She, H.; Zhou, H.; Li, L.; Wang, L.; Huang, J.; Wang, Q. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol. ACS Sustain. Chem.& Eng., 2018, 6(9), 11939-11948.
[http://dx.doi.org/10.1021/acssuschemeng.8b02217]
[27]
Ouyang, W.; Kuna, E.; Yepez, A.; Balu, A.; Romero, A.; Colmenares, J.; Luque, R. Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation. Nanomaterials, 2016, 6(5), 93.
[http://dx.doi.org/10.3390/nano6050093] [PMID: 28335221]
[28]
Tamiolakis, I.; Lykakis, I.N.; Armatas, G.S. Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: Selective aerobic oxidation of benzyl alcohols. Catal. Today, 2015, 250, 180-186.
[http://dx.doi.org/10.1016/j.cattod.2014.03.047]
[29]
Imamura, K.; Tsukahara, H.; Hamamichi, K.; Seto, N.; Hashimoto, K.; Kominami, H. Simultaneous production of aromatic aldehydes and dihydrogen by photocatalytic dehydrogenation of liquid alcohols over metal-loaded titanium(IV) oxide under oxidant- and solvent-free conditions. Appl. Catal. A Gen., 2013, 450, 28-33.
[http://dx.doi.org/10.1016/j.apcata.2012.09.051]
[30]
Linsebigler, A.L.; Lu, G.; Yates, J.T. Jr Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3), 735-758.
[http://dx.doi.org/10.1021/cr00035a013]
[31]
Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. Selective amine oxidation using Nb 2 O 5 photocatalyst and O 2. ACS Catal., 2011, 1(10), 1150-1153.
[http://dx.doi.org/10.1021/cs200318n]
[32]
Leong, K.H.; Monash, P.; Ibrahim, S.; Saravanan, P. Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Sol. Energy, 2014, 101, 321-332.
[http://dx.doi.org/10.1016/j.solener.2014.01.006]
[33]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev., 2014, 114(19), 9919-9986.
[http://dx.doi.org/10.1021/cr5001892] [PMID: 25234429]
[34]
Ouidri, S.; Khalaf, H. Synthesis of benzaldehyde from toluene by a photocatalytic oxidation using TiO2-pillared clays. J. Photochem. Photobiol. Chem., 2009, 207(2-3), 268-273.
[http://dx.doi.org/10.1016/j.jphotochem.2009.07.019]
[35]
Pan, R.; Pan, S.; Zhou, J.; Wu, Y. Surface-modification of indium tin oxide nanoparticles with titanium dioxide by a nonaqueous process and its photocatalytic properties. Appl. Surf. Sci., 2009, 255(6), 3642-3647.
[http://dx.doi.org/10.1016/j.apsusc.2008.10.010]
[36]
Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y. Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity. J. Catal., 2010, 274(1), 76-83.
[http://dx.doi.org/10.1016/j.jcat.2010.06.006]
[37]
Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Xie, T.; Wang, D.; Guo, C.; Zhao, J.; Zhu, H. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem., 2010, 12(3), 414-419.
[http://dx.doi.org/10.1039/b921696k]
[38]
Zheng, C.; He, G.; Xiao, X.; Lu, M.; Zhong, H.; Zuo, X.; Nan, J. Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation. Appl. Catal. B, 2017, 205, 201-210.
[http://dx.doi.org/10.1016/j.apcatb.2016.12.026]
[39]
Bellardita, M.; García-López, E.I.; Marcì, G.; Krivtsov, I.; García, J.R.; Palmisano, L. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl. Catal. B, 2018, 220, 222-233.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.033]
[40]
Wang, Y.; Hang, K.; Anderson, N.A.; Lian, T. Comparison of electron transfer dynamics in molecule-to-nanoparticle and intramolecular charge transfer complexes. J. Phys. Chem. B, 2003, 107(35), 9434-9440.
[http://dx.doi.org/10.1021/jp034935o]
[41]
Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Photocatalytic one-electron oxidation of biphenyl derivatives strongly coupled with the TiO2 surface. Langmuir, 2004, 20(7), 2753-2759.
[http://dx.doi.org/10.1021/la0361262] [PMID: 15835148]
[42]
Higashimoto, S.; Kitao, N.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J. Catal., 2009, 266(2), 279-285.
[http://dx.doi.org/10.1016/j.jcat.2009.06.018]
[43]
Zhang, P.; Wu, P.; Bao, S.; Wang, Z.; Tian, B.; Zhang, J. Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem. Eng. J., 2016, 306, 1151-1161.
[http://dx.doi.org/10.1016/j.cej.2016.08.015]
[44]
Kunene, A.; van Heerden, T.; Gambu, T.G.; van Steen, E. Liquid phase, aerobic oxidation of benzyl alcohol over the catalyst system (Pt/TiO 2 +H 2 O). ChemCatChem, 2020, 12(19), 4760-4764.
[http://dx.doi.org/10.1002/cctc.202000759]
[45]
Tripathy, J.; Loget, G.; Altomare, M.; Schmuki, P. Polydopamine-coated TiO<SUB>2</SUB> nanotubes for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde under visible light. J. Nanosci. Nanotechnol., 2016, 16(5), 5353-5358.
[http://dx.doi.org/10.1166/jnn.2016.12595] [PMID: 27483930]
[46]
Tong, J.; Zhang, Q.; Bo, L.; Su, L.; Wang, Q. Effectively photocatalytic aerobic oxidation of benzyl alcohol catalyzed by spinel Co–Ni ferrite under visible light irradiation. J. Sol-Gel Sci. Technol., 2015, 76(1), 19-26.
[http://dx.doi.org/10.1007/s10971-015-3745-x]
[47]
Ye, X.; Dai, X.; Meng, S.; Fu, X.; Chen, S. A Novel CDS/g- C3N4 composite photocatalyst: Preparation, characterization and photocatalytic performance with different reaction solvents under visible light irradiation. Chin. J. Chem., 2017, 35(2), 217-225.
[http://dx.doi.org/10.1002/cjoc.201600251]
[48]
Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO 2 into solar fuels. Chem. Rev., 2019, 119(6), 3962-4179.
[http://dx.doi.org/10.1021/acs.chemrev.8b00400] [PMID: 30763077]
[49]
Jing, Y.; Jiang, J.; Yan, B.; Lu, S.; Jiao, J.; Xue, H.; Yang, G.; Zheng, G. Activation of dioxygen by cobaloxime and nitric oxide for efficient tempo-catalyzed oxidation of alcohols. Adv. Synth. Catal., 2011, 353(7), 1146-1152.
[http://dx.doi.org/10.1002/adsc.201100067]
[50]
Zhang, M.; Wang, Q.; Chen, C.; Zang, L.; Ma, W.; Zhao, J. Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. Angew. Chem. Int. Ed., 2009, 48(33), 6081-6084.
[http://dx.doi.org/10.1002/anie.200900322] [PMID: 19343745]
[51]
Hao, H.; Zhang, L.; Wang, W.; Qiao, S.; Liu, X. Photocatalytic hydrogen evolution coupled with efficient selective benzaldehyde production from benzyl alcohol aqueous solution over ZnS-Nix Sy composites. ACS Sustain. Chem.& Eng., 2019, 7(12), 10501-10508.
[http://dx.doi.org/10.1021/acssuschemeng.9b01017]
[52]
Jing, K.; Ma, W.; Ren, Y.; Xiong, J.; Guo, B.; Song, Y.; Liang, S.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B, 2019, 243, 10-18.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.027]
[53]
Zhang, B.; Li, J.; Gao, Y.; Chong, R.; Wang, Z.; Guo, L.; Zhang, X.; Li, C. To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst. J. Catal., 2017, 345, 96-103.
[http://dx.doi.org/10.1016/j.jcat.2016.11.023]
[54]
She, H.; Li, L.; Sun, Y.; Wang, L.; Huang, J.; Zhu, G.; Wang, Q. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation. Appl. Surf. Sci., 2018, 457, 1167-1173.
[http://dx.doi.org/10.1016/j.apsusc.2018.07.045]
[55]
Zhang, N.; Fu, X.; Xu, Y.J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst. J. Mater. Chem., 2011, 21(22), 8152-8158.
[http://dx.doi.org/10.1039/c1jm10100e]
[56]
Hosseini Monfared, H.; Abbasi, V.; Rezaei, A.; Ghorbanloo, M.; Aghaei, A. A heterogenized vanadium oxo-aroylhydrazone catalyst for efficient and selective oxidation of hydrocarbons with hydrogen peroxide. Trans. Met. Chem., 2012, 37(1), 85-92.
[http://dx.doi.org/10.1007/s11243-011-9561-4]
[57]
Mobinikhaledi, A.; Zendehdel, M.; Safari, P. Effect of substituents and encapsulation on the catalytic activity of copper(II) complexes of two tridentate Schiff base ligands based on thiophene: benzyl alcohol and phenol oxidation reactions. Trans. Met. Chem., 2014, 39(4), 431-442.
[http://dx.doi.org/10.1007/s11243-014-9817-x]
[58]
Ma, J.; Yu, X.; Liu, X.; Li, H.; Hao, X.; Li, J. The preparation and photocatalytic activity of Ag-Pd/g-C3N4 for the coupling reaction between benzyl alcohol and aniline. Molecular Catalysis, 2019, 476110533
[http://dx.doi.org/10.1016/j.mcat.2019.110533]
[59]
Haynes, W.M.; Lide, D.R.; Bruno, T.J. Eds.; Chemistry and Physics, 95th ed.; CRC Press: Oakville, 2014.
[60]
Jakob, A.; Grilc, M.; Teržan, J.; Likozar, B. Solubility temperature dependence of bio-based levulinic acid, furfural, and hydroxymethylfurfural in water, nonpolar, polar aprotic and protic solvents. Processes, 2021, 9(6), 924.
[http://dx.doi.org/10.3390/pr9060924]
[61]
Schirmer, R.E. Modern Methods of Pharmaceutical Analysis, 2nd ed; CRC Press, 1990.
[62]
Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed; WILE Y-VCH Verlag GmbH & Co: Weinheim, 2011.
[63]
Franco, C.; Olmsted, J., III Photochemical determination of the solubility of oxygen in various media. Talanta, 1990, 37(9), 905-909.
[http://dx.doi.org/10.1016/0039-9140(90)80251-A] [PMID: 18965040]
[64]
Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data; CRC Press: Boca Raton, 2010.
[65]
Pásztói, B.; Trötschler, T.M.; Szabó, Á.; Kerscher, B.; Tenhu, H.; Mülhaupt, R.; Iván, B. Quasiliving cationic ring-opening polymerization of 2-ethyl-2-oxazoline in benzotrifluoride, as an alternative reaction medium. Polymer, 2021, 212123165
[66]
[67]
Li, A.; Tang, S.; Tan, P.; Liu, C.; Liang, B. Measurement and prediction of oxygen solubility in toluene at temperatures from 298.45 K to 393.15 K and pressures up to 1.0 MPa. J. Chem. Eng. Data, 2007, 52(6), 2339-2344.
[http://dx.doi.org/10.1021/je700330c]
[68]
Yang, Y.; Miller, D.J.; Hawthorne, S.B. Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures. J. Chem. Eng. Data, 1997, 42(5), 908-913.
[http://dx.doi.org/10.1021/je960395v]
[69]
Geng, M.; Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta, 2010, 74(19), 5631-5640.
[http://dx.doi.org/10.1016/j.gca.2010.06.034]
[70]
Wu, G.; Cao, E.; Kuhn, S.; Gavriilidis, A. A novel approach for measuring gas solubility in liquids using a tube‐in‐tube membrane contactor. Chem. Eng. Technol., 2017, 40(12), 2346-2350.
[http://dx.doi.org/10.1002/ceat.201700196]
[71]
Banerjee, S. Solubility Mixtures Water., 1984, 18, 587-591.
[72]
Nosaka, Y.; Nosaka, A.Y. Reconsideration of Intrinsic Band Alignments within Anatase and Rutile TiO 2. J. Phys. Chem. Lett., 2016, 7(3), 431-434.
[http://dx.doi.org/10.1021/acs.jpclett.5b02804] [PMID: 26842358]
[73]
Guo, T.; Bai, Z.; Wu, C.; Zhu, T. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation. Appl. Catal. B, 2008, 79(2), 171-178.
[http://dx.doi.org/10.1016/j.apcatb.2007.09.033]
[74]
Ultra Vitalux 300 W 230 V E27. In: Technical Data; , 2008.
[75]
Prausnitz, J.M. Regular solution theory for gas‐liquid solutions. AIChE J., 1958, 4(3), 269-272.
[http://dx.doi.org/10.1002/aic.690040307]
[76]
del Carmen Grande, M.; Juliá, J.A.; Barrero, C.R.; Marschoff, C.M.; Bianchi, H.L. The (water+acetonitrile) mixture revisited: A new approach for calculating partial molar volumes. J. Chem. Thermodyn., 2006, 38(6), 760-768.
[http://dx.doi.org/10.1016/j.jct.2005.08.009]
[77]
Göksu, H.; Burhan, H.; Mustafov, S.D.; Şen, F. Oxidation of benzyl alcohol compounds in the presence of carbon hybrid supported platinum nanoparticles (Pt@CHs) in oxygen atmosphere. Sci. Rep., 2020, 10(1), 5439.
[http://dx.doi.org/10.1038/s41598-020-62400-5] [PMID: 32214224]
[78]
Li, H.; Liu, R.; Lian, S.; Liu, Y.; Huang, H.; Kang, Z. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale, 2013, 5(8), 3289-3297.
[http://dx.doi.org/10.1039/c3nr00092c] [PMID: 23467384]
[79]
Augugliaro, V.; Coluccia, S.; Loddo, V.; Marchese, L.; Martra, G.; Palmisano, L.; Schiavello, M. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: Mechanistic aspects and FT-IR investigation. Appl. Catal. B, 1999, 20(1), 15-27.
[http://dx.doi.org/10.1016/S0926-3373(98)00088-5]
[80]
Sleiman, M.; Conchon, P.; Ferronato, C.; Chovelon, J.M. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Appl. Catal. B, 2009, 86(3-4), 159-165.
[http://dx.doi.org/10.1016/j.apcatb.2008.08.003]
[81]
Mao, Y.; Bakac, A. Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen. J. Phys. Chem., 1996, 100(10), 4219-4223.
[http://dx.doi.org/10.1021/jp9529376]
[82]
Marcì, G.; Addamo, M.; Augugliaro, V.; Coluccia, S.; García-López, E.; Loddo, V.; Martra, G.; Palmisano, L.; Schiavello, M. Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J. Photochem. Photobiol. Chem., 2003, 160(1-2), 105-114.
[http://dx.doi.org/10.1016/S1010-6030(03)00228-4]
[83]
Mueller, R.; Kammler, H.K.; Wegner, K.; Pratsinis, S.E. OH surface density of SiO 2 and TiO 2 by thermogravimetric analysis. Langmuir, 2003, 19(1), 160-165.
[http://dx.doi.org/10.1021/la025785w]
[84]
Mathew, T.; Vijayaraj, M.; Pai, S.; Tope, B.; Hegde, S.; Rao, B.; Gopinath, C. A mechanistic approach to phenol methylation on Cu1−xCoxFe2O4: FTIR study. J. Catal., 2004, 227(1), 175-185.
[http://dx.doi.org/10.1016/j.jcat.2004.07.005]
[85]
Bratož, S.; Hadži, D.; Sheppard, N. The infra-red absorption bands associated with the COOH and COOD Groups in dimeric carboxylic acid-II. The Region from 3700 to 1500 Cm-1. Spectrochim. Acta, 1956, 8, 249-261.
[86]
Wang, L.Y.; Zhang, Y.H.; Zhao, L.J. Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate. J. Phys. Chem. A, 2005, 109(4), 609-614.
[http://dx.doi.org/10.1021/jp0458811] [PMID: 16833386]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy