Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Dextran-based Drug Delivery Approaches for Lung Diseases: A Review

Author(s): Manisha Kumari, Sanyam Sharma, Navjot Kanwar, Subh Naman and Ashish Baldi*

Volume 21, Issue 11, 2024

Published on: 12 January, 2024

Page: [1474 - 1496] Pages: 23

DOI: 10.2174/0115672018267737231116100812

Price: $65

Abstract

Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today’s world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases.

With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.

Keywords: Asthma, COPD, dextran, dextran derivatives, delivery system, respiratory diseases.

Graphical Abstract
[1]
Soriano, J.B.; Kendrick, P.J.; Paulson, K.R.; Gupta, V.; Abrams, E.M.; Adedoyin, R.A.; Adhikari, T.B.; Advani, S.M.; Agrawal, A.; Ahmadian, E.; Alahdab, F.; Aljunid, S.M.; Altirkawi, K.A.; Alvis-Guzman, N.; Anber, N.H.; Andrei, C.L.; Anjomshoa, M.; Ansari, F.; Antó, J.M.; Arabloo, J.; Athari, S.M.; Athari, S.S.; Awoke, N.; Badawi, A.; Banoub, J.A.M.; Bennett, D.A.; Bensenor, I.M.; Berfield, K.S.S.; Bernstein, R.S.; Bhattacharyya, K.; Bijani, A.; Brauer, M.; Bukhman, G.; Butt, Z.A.; Cámera, L.A.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Choi, J-Y.J.; Christopher, D.J.; Cohen, A.J.; Dandona, L.; Dandona, R.; Dang, A.K.; Daryani, A.; de Courten, B.; Demeke, F.M.; Demoz, G.T.; De Neve, J-W.; Desai, R.; Dharmaratne, S.D.; Diaz, D.; Douiri, A.; Driscoll, T.R.; Duken, E.E.; Eftekhari, A.; Elkout, H.; Endries, A.Y.; Fadhil, I.; Faro, A.; Farzadfar, F.; Fernandes, E.; Filip, I.; Fischer, F.; Foroutan, M.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremedhin, K.B.; Gebremeskel, G.G.; Gezae, K.E.; Ghoshal, A.G.; Gill, P.S.; Gillum, R.F.; Goudarzi, H.; Guo, Y.; Gupta, R.; Hailu, G.B.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Hoang, C.L.; Hole, M.K.; Horita, N.; Hosgood, H.D.; Hostiuc, M.; Househ, M.; Ilesanmi, O.S.; Ilic, M.D.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Jamal, A.A.; Jha, R.P.; Jonas, J.B.; Kabir, Z.; Kasaeian, A.; Kasahun, G.G.; Kassa, G.M.; Kefale, A.T.; Kengne, A.P.; Khader, Y.S.; Khafaie, M.A.; Khan, E.A.; Khan, J.; Khubchandani, J.; Kim, Y-E.; Kim, Y.J.; Kisa, S.; Kisa, A.; Knibbs, L.D.; Komaki, H.; Koul, P.A.; Koyanagi, A.; Kumar, G.A.; Lan, Q.; Lasrado, S.; Lauriola, P.; La Vecchia, C.; Le, T.T.; Leigh, J.; Levi, M.; Li, S.; Lopez, A.D.; Lotufo, P.A.; Madotto, F.; Mahotra, N.B.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Mamun, A.A.; Manafi, N.; Manafi, F.; Mantovani, L.G.; Meharie, B.G.; Meles, H.G.; Meles, G.G.; Menezes, R.G.; Mestrovic, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohammad, K.A.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moradi, M.; Moradi, G.; Morawska, L.; Mousavi, S.M.; Musa, K.I.; Mustafa, G.; Naderi, M.; Naghavi, M.; Naik, G.; Nair, S.; Nangia, V.; Nansseu, J.R.; Nazari, J.; Ndwandwe, D.E.; Negoi, R.I.; Nguyen, T.H.; Nguyen, C.T.; Nguyen, H.L.T.; Nixon, M.R.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Olagunju, T.O.; Oren, E.; Ortiz, J.R.; Owolabi, M.O. P A, M.; Pakhale, S.; Pana, A.; Panda-Jonas, S.; Park, E-K.; Pham, H.Q.; Postma, M.J.; Pourjafar, H.; Poustchi, H.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahman, M.H.U.; Rahman, M.A.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Reitsma, M.B.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rudd, K.E.; Sabde, Y.D.; Sabour, S.; Saddik, B.; Safari, S.; Saleem, K.; Samy, A.M.; Santric-Milicevic, M.M.; Sao Jose, B.P.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sepanlou, S.G.; Shaikh, M.A.; Sheikh, A.; Shigematsu, M.; Shirkoohi, R.; Si, S.; Siabani, S.; Singh, V.; Singh, J.A.; Soljak, M.; Somayaji, R.; Soofi, M.; Soyiri, I.N.; Tefera, Y.M.; Temsah, M-H.; Tesfay, B.E.; Thakur, J.S.; Toma, A.T.; Tortajada-Girbés, M.; Tran, K.B.; Tran, B.X.; Tudor Car, L.; Ullah, I.; Vacante, M.; Valdez, P.R.; van Boven, J.F.M.; Vasankari, T.J.; Veisani, Y.; Violante, F.S.; Wagner, G.R.; Westerman, R.; Wolfe, C.D.A.; Wondafrash, D.Z.; Wondmieneh, A.B.; Yonemoto, N.; Yoon, S-J.; Zaidi, Z.; Zamani, M.; Zar, H.J.; Zhang, Y.; Vos, T. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med., 2020, 8(6), 585-596.
[http://dx.doi.org/10.1016/S2213-2600(20)30105-3] [PMID: 32526187]
[2]
Gould, G.S.; Hurst, J.R.; Trofor, A.; Alison, J.A.; Fox, G.; Kulkarni, M.M.; Wheelock, C.E.; Clarke, M.; Kumar, R. Recognising the importance of chronic lung disease: A consensus statement from the Global Alliance for Chronic Diseases (Lung Diseases group). Respir. Res., 2023, 24(1), 15.
[http://dx.doi.org/10.1186/s12931-022-02297-y] [PMID: 36639661]
[3]
Ho, T.; Cusack, R.P.; Chaudhary, N.; Satia, I.; Kurmi, O.P. Under- and over-diagnosis of COPD: A global perspective. Breathe, 2019, 15(1), 24-35.
[http://dx.doi.org/10.1183/20734735.0346-2018] [PMID: 30838057]
[4]
Zanjbeel, M; Asghar, N; Aslam, M; Khalid, S; Islam, F; Raza, A Quality of life of participants with chronic respiratory disease.,
[5]
Varshosaz, J. Dextran conjugates in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 509-523.
[http://dx.doi.org/10.1517/17425247.2012.673580] [PMID: 22432550]
[6]
Shen, Y.; Wang, X.; Xie, A.; Huang, L.; Zhu, J.; Chen, L. Synthesis of dextran/Se nanocomposites for nanomedicine application. Mater. Chem. Phys., 2008, 109(2-3), 534-540.
[http://dx.doi.org/10.1016/j.matchemphys.2008.01.016]
[7]
Sharma, S.; Naman, S.; Dwivedi, J.; Baldi, A. Dextran for application in dds for lung diseases. In: Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases; Springer, 2023; pp. 297-327.
[http://dx.doi.org/10.1007/978-981-19-7656-8_17]
[8]
Mohan, T.; Kleinschek, K.S. Kargl, R Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr. Polym., 2022, 280, 118875.
[http://dx.doi.org/10.1016/j.carbpol.2021.118875]
[9]
Ioan, C.E.; Aberle, T.; Burchard, W. Structure properties of dextran. 2. Dilute solution. Macromolecules, 2000, 33(15), 5730-5739.
[http://dx.doi.org/10.1021/ma000282n]
[10]
Shigel, K.I. Determination of structural peculiarities of dextran, pulluan and gamma irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr. Res., 2002, 337, 2649-2701.
[11]
Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release, 2000, 69(1), 1-25.
[http://dx.doi.org/10.1016/S0168-3659(00)00302-3] [PMID: 11018543]
[12]
Bachelder, E.M.; Beaudette, T.T.; Broaders, K.E.; Dashe, J.; Fréchet, J.M.J. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc., 2008, 130(32), 10494-10495.
[http://dx.doi.org/10.1021/ja803947s] [PMID: 18630909]
[13]
Gannimani, R.; Walvekar, P.; Naidu, V.R.; Aminabhavi, T.M.; Govender, T. Acetal containing polymers as pH-responsive nano-drug de-livery systems. J. Control. Release, 2020, 328, 736-761.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.044] [PMID: 32980419]
[14]
Meenach, S.A.; Kim, Y.J.; Kauffman, K.J.; Kanthamneni, N.; Bachelder, E.M.; Ainslie, K.M. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery. Mol. Pharm., 2012, 9(2), 290-298.
[http://dx.doi.org/10.1021/mp2003785] [PMID: 22149217]
[15]
Shah, N.K.; Gupta, S.K.; Wang, Z.; Meenach, S.A. Enhancement of macrophage uptake via phosphatidylserine-coated acetalated dextran nanoparticles. J. Drug Deliv. Sci. Technol., 2019, 50, 57-65.
[http://dx.doi.org/10.1016/j.jddst.2019.01.013]
[16]
Wang, Z.; Gupta, S.K.; Meenach, S.A. Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery. Int. J. Pharm., 2017, 525(1), 264-274.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.052] [PMID: 28450166]
[17]
Dellacherie, E.; Bonneaux, F. A new approach to aldehydic dextrans. Polym. Bull., 1993, 31(2), 145-149.
[http://dx.doi.org/10.1007/BF00329959]
[18]
Draye, J.P.; Delaey, B.; Van de Voorde, A.; Van Den Bulcke, A.; De Reu, B.; Schacht, E. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(18), 1677-1687.
[http://dx.doi.org/10.1016/S0142-9612(98)00049-0] [PMID: 9840003]
[19]
Fuentes, M.; Mateo, C.; Fernandez-Lafuente, R.; Guisán, J.M. Aldehyde-dextran-protein conjugates to immobilize amino-haptens: Avoiding cross-reactions in the immunodetection. Enzyme Microb. Technol., 2005, 36(4), 510-513.
[http://dx.doi.org/10.1016/j.enzmictec.2004.11.004]
[20]
Betancor, L.; Fuentes, M.; Dellamora-Ortiz, G.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, C.; Guisán, J.M.; Fernández-Lafuente, R. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J. Mol. Catal., B Enzym., 2005, 32(3), 97-101.
[http://dx.doi.org/10.1016/j.molcatb.2004.11.003]
[21]
Weng, L.; Romanov, A.; Rooney, J.; Chen, W. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials, 2008, 29(29), 3905-3913.
[http://dx.doi.org/10.1016/j.biomaterials.2008.06.025] [PMID: 18639926]
[22]
Weng, L.; Chen, X.; Chen, W. Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules, 2007, 8(4), 1109-1115.
[http://dx.doi.org/10.1021/bm0610065] [PMID: 17358076]
[23]
Yu, L.; Cai, L.; Hu, H.; Zhang, Y. Experiments and synthesis of bone-targeting epirubicin with the water-soluble macromolecular drug delivery systems of oxidized-dextran. J. Drug Target., 2014, 22(4), 343-351.
[http://dx.doi.org/10.3109/1061186X.2013.877467] [PMID: 24405056]
[24]
Huang, Q.; Zhang, L.; Sun, X.; Zeng, K.; Li, J.; Liu, Y.N. Coating of carboxymethyl dextran on liposomal curcumin to improve the anticancer activity. RSC Advances, 2014, 4(103), 59211-59217.
[http://dx.doi.org/10.1039/C4RA11181H]
[25]
Huynh, R.; Chaubet, F.; Jozefonvicz, J. Carboxymethylation of dextran in aqueous alcohol as the first step of the preparation of derivatized dextrans. Angew. Makromol. Chem., 1998, 254(1), 61-65.
[http://dx.doi.org/10.1002/(SICI)1522-9505(19980201)254:1<61::AID-APMC61>3.0.CO;2-0]
[26]
McLean, K.M.; Johnson, G.; Chatelier, R.C.; Beumer, G.J.; Steele, J.G.; Griesser, H.J. Method of immobilization of carboxymethyl-dextran affects resistance to tissue and cell colonization. Colloids Surf. B Biointerfaces, 2000, 18(3-4), 221-234.
[http://dx.doi.org/10.1016/S0927-7765(99)00149-6] [PMID: 10915945]
[27]
Burns, D.L.; Mascioli, E.A.; Bistrian, B.R. Parenteral iron dextran therapy: A review. Nutrition, 1995, 11(2), 163-168.
[PMID: 7647482]
[28]
Martin, L.E.; Bates, C.M.; Beresford, C.R.; Donaldson, J.D. McDONALD, F.F.; Dunlop, D.; Sheard, P.; London, E.; Twigg, G.D. The pharmacology of an iron-dextran intramuscular haematinic. Br. J. Pharmacol. Chemother., 1955, 10(3), 375-382.
[http://dx.doi.org/10.1111/j.1476-5381.1955.tb00887.x] [PMID: 13269718]
[29]
Dhaneshwar, S.; Kandpal, M.; Gairola, N.; Kadam, S.S. Dextran: A promising macromolecular drug carrier. Indian J. Pharm. Sci., 2006, 68(6), 705-714.
[http://dx.doi.org/10.4103/0250-474X.31000]
[30]
Soliman, S.M.A.; Colombeau, L.; Nouvel, C.; Babin, J.; Six, J.L. Amphiphilic photosensitive dextran-g-poly(o-nitrobenzyl acrylate) glycopolymers. Carbohydr. Polym., 2016, 136, 598-608.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.061] [PMID: 26572392]
[31]
Son, S.; Rao, N.V.; Ko, H.; Shin, S.; Jeon, J.; Han, H.S.; Nguyen, V.Q.; Thambi, T.; Suh, Y.D.; Park, J.H. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. Int. J. Biol. Macromol., 2018, 110, 399-405.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.048] [PMID: 29133095]
[32]
Lee, J.S.; Jung, Y.J.; Doh, M.J.; Kim, Y.M. Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid. Drug Dev. Ind. Pharm., 2001, 27(4), 331-336.
[http://dx.doi.org/10.1081/DDC-100103732] [PMID: 11411900]
[33]
Miao, K.H.; Guthmiller, K.B. Dextran., 2022, 70, 5-8.
[34]
Wasiak, I.; Kulikowska, A.; Janczewska, M.; Michalak, M.; Cymerman, I.A.; Nagalski, A.; Kallinger, P.; Szymanski, W.W.; Ciach, T. Dextran nanoparticle synthesis and properties. PLoS One, 2016, 11(1), e0146237.
[http://dx.doi.org/10.1371/journal.pone.0146237] [PMID: 26752182]
[35]
Bhavani, A.L.; Nisha, J. Dextran-the polysaccharide with versatile uses. Int. J. Pharm. Biol. Sci., 2010, 1(4), 569-573.
[36]
Gelin, L.E. Studies in anemia of injury. Acta Chir. Scand. Suppl., 1956, 210, 1-130.
[PMID: 13339042]
[37]
Thorsén, G. Aggregation, Sedimentation and Intravascular Sludging of Erythrocytes: Interrelation Between Suspension Stability and Colloids in Suspension Fluid: An Experimental Study; Norsdedt, 1950.
[38]
Schwartz, S.I.; Shay, H.P.; Beebe, H.; Rob, C. Effect of low molecular weight dextran on venous flow. Surgery, 1964, 55(1), 106-112.
[PMID: 14114255]
[39]
Winfrey, E.W., III; Foster, J.H. FOSTER JH. Low molecular weight dextran in small artery surgery: Antithrombogenic effect. Arch. Surg., 1964, 88(1), 78-82.
[http://dx.doi.org/10.1001/archsurg.1964.01310190080009] [PMID: 14072539]
[40]
Foster, J.H.; Killen, D.A.; Jolly, P.C.; Kirtley, J.H. Low molecular weight dextran in vascular surgery: Prevention of early thrombosis following arterial reconstruction in 85 cases. Ann. Surg., 1966, 163(5), 764-770.
[http://dx.doi.org/10.1097/00000658-196605000-00013] [PMID: 5930459]
[41]
Bergentz, S.E.; Eiken, O.; Gelin, L.E. Rheomacrodex in vascular surgery. J. Cardiovasc. Surg., 1963, 4, 388-392.
[PMID: 13970660]
[42]
Davis, J.H.; Benson, J.W.; Wolfe, M.; Nelson, B.; Abbott, W.E. The effect of capillary permeability on the maintenance of plasma volume following the administration of dextran and albumin; Surgical forum, 1955.
[43]
Ragaller, M.J.R.; Theilen, H.; Koch, T. Volume replacement in critically ill patients with acute renal failure. J. Am. Soc. Nephrol., 2001, 12(Suppl. 1), S33-S39.
[http://dx.doi.org/10.1681/ASN.V12suppl_1s33] [PMID: 11251029]
[44]
Millican, R.C.; Stohlman, E.F.; Mowry, R.W. A comparison of plasma substitutes (dextran, polyvinylpyrrolidone and oxypolygelatin) with saline therapy in treatment of experimental tourniquet and burn shock in mice. Am. J. Physiol., 1952, 170(1), 173-178.
[http://dx.doi.org/10.1152/ajplegacy.1952.170.1.173] [PMID: 12985881]
[45]
de Raucourt, E.; Mauray, S.; Chaubet, F.; Maiga-Revel, O.; Jozefowicz, M.; Fischer, A.M. Anticoagulant activity of dextran derivatives. J. Biomed. Mater. Res., 1998, 41(1), 49-57.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199807)41:1<49::AID-JBM6>3.0.CO;2-Q] [PMID: 9641623]
[46]
Mauzac, M.; Jozefonvicz, J. Anticoagulant activity of dextran derivatives. Part I: Synthesis and characterization. Biomaterials, 1984, 5(5), 301-304.
[http://dx.doi.org/10.1016/0142-9612(84)90078-4] [PMID: 6207865]
[47]
Dai, F.; Du, M.; Liu, Y.; Liu, G.; Liu, Q.; Zhang, X. Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(16), 2240-2247.
[http://dx.doi.org/10.1039/C3TB21732A] [PMID: 32261712]
[48]
Chen, C.C.; Sheeran, P.S.; Wu, S.Y.; Olumolade, O.O.; Dayton, P.A.; Konofagou, E.E. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. J. Control. Release, 2013, 172(3), 795-804.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.025] [PMID: 24096019]
[49]
Xiao, F.; Nicholson, C.; Hrabe, J.; Hrabĕtová, S. Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extra cellular space by integrative optical imaging. Biophys. J., 2008, 95(3), 1382-1392.
[http://dx.doi.org/10.1529/biophysj.107.124743] [PMID: 18456831]
[50]
Khan, M.S.; Gowda, B.H.J.; Nasir, N.; Wahab, S.; Pichika, M.R.; Sahebkar, A.; Kesharwani, P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm., 2023, 643, 123276.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123276] [PMID: 37516217]
[51]
Li, L.; Wang, C.; Huang, Q.; Xiao, J.; Zhang, Q.; Cheng, Y. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(16), 2474-2480.
[http://dx.doi.org/10.1039/C8TB00091C] [PMID: 32254464]
[52]
Chung, H.J.; Kim, H.J.; Hong, S.T. Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment. Appl. Biol. Chem., 2019, 62(1), 24.
[http://dx.doi.org/10.1186/s13765-019-0432-6]
[53]
Prasher, P.; Sharma, M.R.; Wich, P.; Jha, N.K.; Singh, S.K.; Chellappan, D.K.; Dua, K. Can dextran-based nanoparticles mitigate inflammatory lung diseases? Future Med. Chem., 2021, 13, 2027-2031.
[54]
Nácher-Vázquez, M.; Ballesteros, N.; Canales, Á.; Rodríguez Saint-Jean, S.; Pérez-Prieto, S.I.; Prieto, A.; Aznar, R.; López, P. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydr. Polym., 2015, 124, 292-301.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.020] [PMID: 25839823]
[55]
Pramanik, S.; Mohanto, S.; Manne, R.; Rajendran, R.R.; Deepak, A.; Edapully, S.J.; Patil, T.; Katari, O. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm., 2021, 18(10), 3671-3718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[56]
Poole, P.; Sathananthan, K.; Fortescue, R. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev., 2019, 5, CD001287.
[http://dx.doi.org/10.1002/14651858.CD001287.pub6]
[57]
Balde, A.; Kim, S.K.; Benjakul, S.; Nazeer, R.A. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. Int. J. Biol. Macromol., 2022, 220, 1464-1479.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.116] [PMID: 36116588]
[58]
Feng, W.; Garrett, H.; Speert, D.P.; King, M. Improved clearability of cystic fibrosis sputum with dextran treatment in vitro. Am. J. Respir. Crit. Care Med., 1998, 157(3), 710-714.
[http://dx.doi.org/10.1164/ajrccm.157.3.9703059] [PMID: 9517580]
[59]
Prasher, P.; Sharma, M.; Singh, S.K.; Haghi, M.; MacLoughlin, R.; Chellappan, D.K.; Gupta, G.; Paudel, K.R.; Hansbro, P.M. George Oliver, B.G.; Wich, P.R.; Dua, K. Advances and applications of dextran-based nanomaterials targeting inflammatory respiratory diseases. J. Drug Deliv. Sci. Technol., 2022, 74, 103598.
[http://dx.doi.org/10.1016/j.jddst.2022.103598]
[60]
Steckel, H.; Eskandar, F.; Witthohn, K. The effect of formulation variables on the stability of nebulized aviscumine. Int. J. Pharm., 2003, 257(1-2), 181-194.
[http://dx.doi.org/10.1016/S0378-5173(03)00126-1] [PMID: 12711173]
[61]
Hulbert, W.C.; Forster, B.B.; Mehta, J.G.; Man, S.F.P.; Molday, R.S.; Walker, B.A.; Walker, D.C.; Hogg, J.C. Study of airway epithelial permeability with dextran. J. Electron Microsc. Tech., 1989, 11(2), 137-142.
[http://dx.doi.org/10.1002/jemt.1060110208] [PMID: 2468752]
[62]
Waters, R.C.; Hochhaus, G. Characterization of a dextran-budesonide prodrug for inhalation therapy. Eur. J. Pharm. Sci., 2019, 129, 58-67.
[http://dx.doi.org/10.1016/j.ejps.2018.11.038] [PMID: 30521945]
[63]
Lee, Y.; Kim, I.H.; Kim, J.; Yoon, J.H.; Shin, Y.H.; Jung, Y.; Kim, Y.M. Evaluation of dextran-flufenamic acid ester as a polymeric colon-specific prodrug of flufenamic acid, an anti-inflammatory drug, for chronotherapy. J. Drug Target., 2011, 19(5), 336-343.
[http://dx.doi.org/10.3109/1061186X.2010.499462] [PMID: 20615092]
[64]
Joshy, K.S.; George, A.; Snigdha, S.; Joseph, B.; Kalarikkal, N.; Pothen, L.A.; Thomas, S. Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery. Mater. Sci. Eng. C, 2018, 93, 864-872.
[http://dx.doi.org/10.1016/j.msec.2018.08.015] [PMID: 30274122]
[65]
Kiruthika, V.; Maya, S.; Suresh, M.K.; Anil Kumar, V.; Jayakumar, R.; Biswas, R. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf. B Biointerfaces, 2015, 127, 33-40.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.012] [PMID: 25645750]
[66]
Kang, S.; Son, Y.; Shin, I.S.; Moon, C.; Lee, M.Y.; Lim, K.S.; Park, S.J.; Lee, C.G.; Jo, W.S.; Lee, H.J.; Kim, J.S. Effect of abdominal irradiation in mice model of inflammatory bowel disease. Radiat. Prot. Dosimetry, 2023, 199(6), 564-571.
[http://dx.doi.org/10.1093/rpd/ncad051] [PMID: 36917812]
[67]
Yazici, H.; Alpaslan, E.; Webster, T.J. The role of dextran coatings on the cytotoxicity properties of ceria nanoparticles toward bone cancer cells. J. Miner. Met. Mater. Soc., 2015, 67(4), 804-810.
[http://dx.doi.org/10.1007/s11837-015-1336-5]
[68]
Shcherbakov, A.B.; Zholobak, N.M.; Spivak, N.Y.; Ivanov, V.K. Advances and prospects of using nanocrystalline ceria in cancer theranostics. Russ. J. Inorg. Chem., 2014, 59(13), 1556-1575.
[http://dx.doi.org/10.1134/S003602361413004X]
[69]
Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm., 2012, 81(3), 463-469.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.007] [PMID: 22561955]
[70]
Guan, X.; Zhang, W. Applications of chitosan in pulmonary drug delivery. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.87932]
[71]
Huang, G.; Huang, H. Application of dextran as nanoscale drug carriers. Nanomedicine, 2018, 13(24), 3149-3158.
[http://dx.doi.org/10.2217/nnm-2018-0331] [PMID: 30516091]
[72]
Veronese, F.M.; Morpurgo, M. Bioconjugation in pharmaceutical chemistry. Farmaco, 1999, 54(8), 497-516.
[http://dx.doi.org/10.1016/S0014-827X(99)00066-X] [PMID: 10510847]
[73]
Rastogi, A.; Yadav, K.; Mishra, A.; Singh, M.S.; Chaudhary, S.; Manohar, R.; Parmar, A.S. Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems. Nanotechnol. Rev., 2022, 11(1), 544-574.
[http://dx.doi.org/10.1515/ntrev-2022-0032]
[74]
Sudo, E.; Boyd, W.A.; King, M. Effects of dextran sulfate on tracheal mucociliary velocity in dogs. J. Aerosol Med., 2000, 13(2), 87-96.
[http://dx.doi.org/10.1089/089426800418613] [PMID: 11010598]
[75]
Gracia, R.; Marradi, M.; Cossío, U.; Benito, A.; Pérez-San Vicente, A.; Gómez-Vallejo, V.; Grande, H.J.; Llop, J.; Loinaz, I. Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(6), 1143-1147.
[http://dx.doi.org/10.1039/C6TB02773C] [PMID: 32263583]
[76]
Rosenberg, S.R.; Kalhan, R. Recent advances in the management of chronic obstructive pulmonary disease. F1000 Res., 2017, 6, 863.
[http://dx.doi.org/10.12688/f1000research.9819.1] [PMID: 28663790]
[77]
Muralidharan, P.; Hayes, D., Jr; Black, S.M.; Mansour, H.M. Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway. Mol. Syst. Des. Eng., 2016, 1(1), 48-65.
[http://dx.doi.org/10.1039/C5ME00004A] [PMID: 27774309]
[78]
Kelly, R.F.; Murar, J.; Hong, Z.; Nelson, D.P.; Hong, F.; Varghese, A.; Weir, E.K. Low potassium dextran lung preservation solution reduces reactive oxygen species production. Ann. Thorac. Surg., 2003, 75(6), 1705-1710.
[http://dx.doi.org/10.1016/S0003-4975(03)00173-5] [PMID: 12822603]
[79]
Chiaramoni, N.S.; Gasparri, J.; Speroni, L.; Taira, M.C.; Alonso, S.V. Biodistribution of liposome/DNA systems after subcutaneous and intraperitoneal inoculation. J. Liposome Res., 2010, 20(3), 191-201.
[http://dx.doi.org/10.3109/08982100903244518] [PMID: 19845441]
[80]
Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomedicine, 2010, 5, 37-49.
[PMID: 20161986]
[81]
Alexescu, T.; Tarmure, S.; Negrean, V.; Cosnarovici, M.; Ruta, V.; Popovici, I.; Para, I.; Perne, M.; Orasan, O.; Todea, D. Nanoparticles in the treatment of chronic lung diseases. J. Mind Med. Sci., 2019, 6(2), 224-231.
[http://dx.doi.org/10.22543/7674.62.P224231]
[82]
Tan, Y.Y.; Yap, P.K.; Xin Lim, G.L.; Mehta, M.; Chan, Y.; Ng, S.W.; Kapoor, D.N.; Negi, P.; Anand, K.; Singh, S.K.; Jha, N.K.; Lim, L.C.; Madheswaran, T.; Satija, S.; Gupta, G.; Dua, K.; Chellappan, D.K. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem. Biol. Interact., 2020, 329, 109221.
[http://dx.doi.org/10.1016/j.cbi.2020.109221] [PMID: 32768398]
[83]
Altikatoglu, M.; Basaran, Y.; Arioz, C.; Ogan, A.; Kuzu, H. Glucose oxidase-dextran conjugates with enhanced stabilities against temperature and pH. Appl. Biochem. Biotechnol., 2010, 160(8), 2187-2197.
[http://dx.doi.org/10.1007/s12010-009-8812-8] [PMID: 20054664]
[84]
Zhong, G.; Zhang, S.; Li, Y.; Liu, X.; Gao, R.; Miao, Q.; Zhen, Y. A tandem scFv-based fusion protein and its enediyne-energized analogue show intensified therapeutic efficacy against lung carcinoma xenograft in athymic mice. Cancer Lett., 2010, 295(1), 124-133.
[http://dx.doi.org/10.1016/j.canlet.2010.02.020] [PMID: 20303650]
[85]
Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl., 2021, 2(March), 100067.
[http://dx.doi.org/10.1016/j.carpta.2021.100067]
[86]
Byrne, A.L.; Marais, B.J.; Mitnick, C.D.; Lecca, L.; Marks, G.B. Tuberculosis and chronic respiratory disease: A systematic review. Int. J. Infect. Dis., 2015, 32, 138-146.
[http://dx.doi.org/10.1016/j.ijid.2014.12.016] [PMID: 25809770]
[87]
Kushwaha, S. Targeted macrophages delivery of antitubercular agent through solid lipid nanoparticles. Lett. Appl. NanoBioSci., 2022, 12(1), 3.
[http://dx.doi.org/10.33263/LIANBS121.003]
[88]
Byron, P.R.; Patton, J.S. Drug delivery via the respiratory tract. J. Aerosol Med., 1994, 7(1), 49-75.
[http://dx.doi.org/10.1089/jam.1994.7.49] [PMID: 10147058]
[89]
Theng, B.K.G. Polysaccharides. In: Developments in Clay Science; , 2012; 4, pp. 351-390.
[90]
Smola, M.; Vandamme, T.; Sokolowski, A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine, 2008, 3(1), 1-19.
[PMID: 18488412]
[91]
Kaewprapan, K.; Inprakhon, P.; Marie, E.; Durand, A. Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems. Carbohydr. Polym., 2012, 88(3), 875-881.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.030]
[92]
Tang, Y.; Li, Y.; Xu, R.; Li, S.; Hu, H.; Xiao, C.; Wu, H.; Zhu, L.; Ming, J.; Chu, Z.; Xu, H.; Yang, X.; Li, Z. Self-assembly of folic acid dextran conjugates for cancer chemotherapy. Nanoscale, 2018, 10(36), 17265-17274.
[http://dx.doi.org/10.1039/C8NR04657C] [PMID: 30191943]
[93]
Tarvirdipour, S.; Vasheghani-Farahani, E.; Soleimani, M.; Bardania, H. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int. J. Pharm., 2016, 501(1-2), 331-341.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.012] [PMID: 26875475]
[94]
Ying, F. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int. J. Nanomedicine, 2018, 13, 5673-5683.
[95]
Lv, W.; Xu, J.; Wang, X.; Li, X.; Xu, Q.; Xin, H. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano, 2018, 12(6), 5417-5426.
[http://dx.doi.org/10.1021/acsnano.8b00477] [PMID: 29869497]
[96]
Alhaique, F.; Casadei, M.A.; Cencetti, C.; Coviello, T.; Di Meo, C.; Matricardi, P.; Montanari, E.; Pacelli, S.; Paolicelli, P. From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. J. Drug Deliv. Sci. Technol., 2016, 32, 88-99.
[http://dx.doi.org/10.1016/j.jddst.2015.09.018]
[97]
Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104, 302-314.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[98]
Zhou, Y.; Wang, S.; Ying, X.; Wang, Y.; Geng, P.; Deng, A.; Yu, Z. Doxorubicin-loaded redox-responsive micelles based on dextran and indomethacin for resistant breast cancer. Int. J. Nanomedicine, 2017, 12, 6153-6168.
[http://dx.doi.org/10.2147/IJN.S141229] [PMID: 28883726]
[99]
Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem., 2018, 239, 1210-1218.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.075] [PMID: 28873542]
[100]
Jafari, M.; Kaffashi, B. Synthesis and characterization of a novel solvent-free dextran-HEMA-PNIPAM thermosensitive nanogel. J. Macromol. Sci. Part A Pure Appl. Chem., 2016, 53(2), 68-74.
[http://dx.doi.org/10.1080/10601325.2016.1120173]
[101]
Nakajima, N.; Sugai, H.; Tsutsumi, S.; Hyon, S.H. Self-degradable bioadhesive. Polym Prepr Japan., 2006, 55(1), 1998.
[102]
Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Li, Q.; Xie, H.; Gao, J.; Shuai, X.; Wang, G.; Wang, Z.; Wang, L. Sericin/Dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl. Mater. Interfaces, 2016, 8(10), 6411-6422.
[http://dx.doi.org/10.1021/acsami.6b00959] [PMID: 26900631]
[103]
Chen, X.; Chen, L.; Yao, X.; Zhang, Z.; He, C.; Zhang, J.; Chen, X. Dual responsive supramolecular nanogels for intracellular drug delivery. Chem. Commun., 2014, 50(29), 3789-3791.
[http://dx.doi.org/10.1039/c4cc00016a] [PMID: 24519486]
[104]
Ma, S.; Zhou, J.; Wali, A.R.M.; He, Y.; Xu, X.; Tang, J.Z.; Gu, Z. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. J. Mater. Sci. Mater. Med., 2015, 26(8), 219.
[http://dx.doi.org/10.1007/s10856-015-5550-z] [PMID: 26238777]
[105]
Fu, Y.; Li, Y.; Li, G.; Yang, L.; Yuan, Q.; Tao, L.; Wang, X. Adaptive chitosan hollow microspheres as efficient drug carrier. Biomacromolecules, 2017, 18(7), 2195-2204.
[http://dx.doi.org/10.1021/acs.biomac.7b00592] [PMID: 28558194]
[106]
Hou, X.; Liu, Y. Preparation and drug controlled release of porous octyl-dextran microspheres. J. Biomater. Sci. Polym. Ed., 2015, 26(15), 1051-1066.
[http://dx.doi.org/10.1080/09205063.2015.1077917] [PMID: 26230155]
[107]
Zhang, R.; Jia, X.; Pei, M.; Liu, P. Facile preparation of pH/reduction dual-responsive prodrug microspheres with high drug content for tumor intracellular triggered release of DOX. React. Funct. Polym., 2017, 116(116), 24-30.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.05.002]
[108]
Pekarek, K.J.; Jacob, J.S.; Mathiowitz, E. Double-walled polymer microspheres for controlled drug release. Nature, 1994, 367(6460), 258-260.
[http://dx.doi.org/10.1038/367258a0] [PMID: 8121490]
[109]
Broaders, K.E.; Grandhe, S.; Fréchet, J.M.J. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc., 2011, 133(4), 756-758.
[http://dx.doi.org/10.1021/ja110468v] [PMID: 21171594]
[110]
Kauffman, K.J.; Kanthamneni, N.; Meenach, S.A.; Pierson, B.C.; Bachelder, E.M.; Ainslie, K.M. Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression. Int. J. Pharm., 2012, 422(1-2), 356-363.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.034] [PMID: 22037446]
[111]
Chen, N.; Gallovic, M.D.; Tiet, P.; Ting, J.P.Y.; Ainslie, K.M.; Bachelder, E.M. Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. J. Control. Release, 2018, 289, 114-124.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.020] [PMID: 30261204]
[112]
Graf, M.; Ziegler, C.E.; Gregoritza, M.; Goepferich, A.M. Hydrogel microspheres evading alveolar macrophages for sustained pulmonary protein delivery. Int. J. Pharm., 2019, 566, 652-661.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.019] [PMID: 31181308]
[113]
Kwon, G.S.; Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev., 1996, 21(2), 107-116.
[http://dx.doi.org/10.1016/S0169-409X(96)00401-2]
[114]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev., 2012, 64(Suppl.), 37-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.013] [PMID: 11251249]
[115]
Kwon, G.S.; Furgeson, D.Y. Biodegradable polymers for drug delivery systems. In: Biomedical Polymers; Woodhead Publishing Limited, 2007.
[http://dx.doi.org/10.1533/9781845693640.83]
[116]
Zhang, X.; Burt, H.M.; Mangold, G.; Dexter, D.; Hoff, D.V.; Mayer, L.; Hunter, W.L. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs, 1997, 8(7), 696-701.
[http://dx.doi.org/10.1097/00001813-199708000-00008] [PMID: 9311446]
[117]
Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm., 2010, 392(1-2), 1-19.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.017] [PMID: 20223286]
[118]
Du, Y.Z.; Weng, Q.; Yuan, H.; Hu, F.Q. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano, 2010, 4(11), 6894-6902.
[http://dx.doi.org/10.1021/nn100927t] [PMID: 20939508]
[119]
Nikolaizik, W.H.; Vietzke, D.; Ratjen, F. A pilot study to compare tobramycin 80 mg injectable preparation with 300 mg solution for inhalation in cystic fibrosis patients. Can. Respir. J., 2008, 15(5), 259-262.
[http://dx.doi.org/10.1155/2008/202464] [PMID: 18716688]
[120]
Kuehl, P.J.; Cherrington, A.; Dobry, D.E.; Edgerton, D.; Friesen, D.T.; Hobbs, C.; Leach, C.L.; Murri, B.; Neal, D.; Lyon, D.K.; Vodak, D.T.; Reed, M.D. Biologic comparison of inhaled insulin formulations: Exubera™ and novel spray-dried engineered particles of dextran-10. AAPS PharmSciTech, 2014, 15(6), 1545-1550.
[http://dx.doi.org/10.1208/s12249-014-0181-0] [PMID: 25106135]
[121]
Rosière, R.; Van Woensel, M.; Langer, I.; Mathieu, V.; Amighi, K.; Wauthoz, N. Nanomicelle-based dry powders for inhalation for targeted delivery to lung cancer cells : In vitro evaluation and in vivo local pulmonary tolerance on healthy mice. Europ. Conf. Pharmaceut., 2015.
[122]
Kadota, K.; Yanagawa, Y.; Tachikawa, T.; Deki, Y.; Uchiyama, H.; Shirakawa, Y.; Tozuka, Y. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int. J. Pharm., 2019, 555, 280-290.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.055] [PMID: 30471373]
[123]
Figueiredo-Junior, A.T.; Valença, S.S.; Finotelli, P.V.; Anjos, F.F.; de Brito-Gitirana, L.; Takiya, C.M.; Lanzetti, M. Treatment with bixin-loaded polymeric nanoparticles prevents cigarette smoke-induced acute lung inflammation and oxidative stress in mice. Antioxidants, 2022, 11(7), 1293.
[http://dx.doi.org/10.3390/antiox11071293] [PMID: 35883784]
[124]
Nainwal, N.; Sharma, Y.; Jakhmola, V. Dry powder inhalers of antitubercular drugs. Tuberculosis, 2022, 135, 102228.
[http://dx.doi.org/10.1016/j.tube.2022.102228] [PMID: 35779497]
[125]
Mary, J. The effects of anoxia on the newborn and adult rat lung. J. Geotech. Geoenvironmental. Eng. ASCE., 1964, 137(84), 641-645.
[126]
El-Sherbiny, I.M.; Elbaz, N.M.; Sedki, M.; Elgammal, A.; Yacoub, M.H. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine, 2017, 12(4), 387-402.
[http://dx.doi.org/10.2217/nnm-2016-0341] [PMID: 28078950]
[127]
Blanco-Cabra, N.; Movellan, J.; Marradi, M.; Gracia, R.; Salvador, C.; Dupin, D.; Loinaz, I.; Torrents, E. Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. NPJ Biofilms Microbiomes, 2022, 8(1)
[128]
Vadakkan, M.V.; Binil Raj, S.S.; Kartha, C.C.; Vinod Kumar, G.S. Cationic, amphiphilic dextran nanomicellar clusters as an excipient for dry powder inhaler formulation. Acta Biomater., 2015, 23, 172-188.
[http://dx.doi.org/10.1016/j.actbio.2015.05.019] [PMID: 26013041]
[129]
Shkurupiy, V.A.; Chernova, T.G.; Nadeev, A.P. Granulomatous inflammation in the lungs of mice with systemic candidiasis receiving a composition of amphotericin B and dialdehyde dextran. Bull. Exp. Biol. Med., 2008, 146(6), 829-831.
[http://dx.doi.org/10.1007/s10517-009-0410-9] [PMID: 19513397]
[130]
Shkurupiy, V.A.; Kozyaev, M.A.; Potapova, O.V. Morphological study of the efficiency of isoniazid and dialdehyde dextran composition in the treatment of mice with BCG granulomatosis. Bull. Exp. Biol. Med., 2008, 146(6), 853-856.
[http://dx.doi.org/10.1007/s10517-009-0401-x] [PMID: 19513404]
[131]
Almasi, T.; Jabbari, K.; Gholipour, N.; Mokhtari Kheirabadi, A.; Beiki, D.; Shahrokhi, P.; Akhlaghi, M. Synthesis, characterization, and in vitro and in vivo68Ga radiolabeling of thiosemicarbazone Schiff base derived from dialdehyde dextran as a promising blood pool imaging agent. Int. J. Biol. Macromol., 2019, 125, 915-921.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.133] [PMID: 30572040]
[132]
Jin, F.; Cheng, Y.; Toda, K. Distribution model for the intact urokinase and urokinases modified by soluble macromolecules in rat and mouse bodies. Radioisotopes, 1988, 37(8), 441-447.
[http://dx.doi.org/10.3769/radioisotopes.37.8_441] [PMID: 2464842]
[133]
Li, B.; Liu, X.; Li, L.; Zhang, S.; Li, Y.; Li, D.; Zhen, Y. A tumor-targeting dextran-apoprotein conjugate integrated with enediyne chromophore shows highly potent antitumor efficacy. Polym. Chem., 2014, 5(19), 5680-5688.
[http://dx.doi.org/10.1039/C4PY00532E]
[134]
Richmond, H.G. Induction of sarcoma in the rat by iron-dextran complex. BMJ, 1959, 1(5127), 947-940.
[http://dx.doi.org/10.1136/bmj.1.5127.947] [PMID: 13638595]
[135]
Potapova, O.V.; Cherdantseva, L.A.; Kovner, A.V.; Sharkova, T.V.; Troitskii, A.V.; Shestopalov, A.M.; Shkurupy, V.A. Preventive effects of oxidized dextran on functional activity of pulmonary macrophages in mice infected with influenza a virus. Bull. Exp. Biol. Med., 2018, 165(1), 57-60.
[http://dx.doi.org/10.1007/s10517-018-4098-6] [PMID: 29796811]
[136]
Chis, A.A.; Arseniu, A.M.; Morgovan, C.; Dobrea, C.M.; Frum, A.; Juncan, A.M.; Butuca, A.; Ghibu, S.; Gligor, F.G.; Rus, L.L. Biopolymeric prodrug systems as potential antineoplastic therapy. Pharmaceutics, 2022, 14(9), 1773.
[http://dx.doi.org/10.3390/pharmaceutics14091773] [PMID: 36145522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy