Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Harnessing the Pyrazine Moiety for Potent Anti-inflammatory Activity: A Comprehensive Review

Author(s): Kuldeep Singh*, Jeetendra Kumar Gupta, Kamal Shah, Sunam Saha, Marianesan Arockia Babu, Shivendra Kumar and Mohit Agrawal

Volume 28, Issue 3, 2024

Published on: 12 January, 2024

Page: [176 - 184] Pages: 9

DOI: 10.2174/0113852728279887240109110636

Price: $65

Abstract

Inflammation is an intricate physiological reaction that has a vital function in the body's protection against detrimental stimuli. Nevertheless, uncontrolled inflammation may result in the development of long-term conditions, such as arthritis, cardiovascular disorders, and even cancer. Scientists are always searching for new medicinal substances that might efficiently regulate the inflammatory response. Due to its distinctive structure and an extensive array of chemical interactions, the pyrazine moiety has emerged as a viable foundational component for synthesising anti-inflammatory drugs. This review article examines the many methods used to use the potential of pyrazine moiety for its anti-inflammatory capabilities. The paper focuses on the latest progress in the development, creation, and assessment of pyrazine-based compounds, demonstrating their modes of action and links between their structure and activity. This review aims to provide a complete overview of the current knowledge on pyrazine-derived compounds with anti-inflammatory action by gathering and critically analysing the latest research results. Moreover, the essay explores the difficulties and possibilities in this area, which sets the stage for the logical development of advanced anti-inflammatory substances using the pyrazine pattern.

Keywords: Pyrazine moiety, anti-inflammatory, inflammation, therapeutic agents, structure-activity relationships, mechanism of action, drug design.

Graphical Abstract
[1]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review of recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[2]
Chen, Z.; Zhu, Q.; Su, W. A novel sulfonic acid functionalized ionic liquid catalyzed multicomponent synthesis of 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives in water. Tetrahedron Lett., 2011, 52(20), 2601-2604.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.059]
[3]
Sayyafi, M.; Seyyedhamzeh, M.; Khavasi, H.R.; Bazgir, A. One-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron, 2008, 64(10), 2375-2378.
[http://dx.doi.org/10.1016/j.tet.2008.01.006]
[4]
Davarpanah, J.; Kiasat, A.R. Nano Brönsted solid acid containing double-charged diazoniabi-cyclo[2.2.2]octane chloride supported on nano rice husk silica: An efficient catalyst for the one-pot synthesis of phthalazine compounds. RSC Advances, 2015, 5(11), 7986-7993.
[http://dx.doi.org/10.1039/C4RA13263G]
[5]
Zohar, M.; Matzrafi, M.; Abu-Nassar, J.; Khoury, O.; Gaur, R.Z.; Posmanik, R. Subcritical water extraction as a circular economy approach to recover energy and agrochemicals from sewage sludge. J. Environ. Manage., 2021, 285, 112111.
[http://dx.doi.org/10.1016/j.jenvman.2021.112111] [PMID: 33578213]
[6]
Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. ’Current contributions of organofluorine compounds to the agrochemical industry. iScience, 2020, 23(9), 101467.
[http://dx.doi.org/10.1016/j.isci.2020.101467]
[7]
Albanese, V.; Ruzza, C.; Marzola, E.; Bernardi, T.; Fabbri, M.; Fantinati, A.; Trapella, C.; Reinscheid, R.K.; Ferrari, F.; Sturaro, C.; Calò, G.; Amendola, G.; Cosconati, S.; Pacifico, S.; Guerrini, R.; Preti, D. Structure-activity relationship studies on oxazolo[3,4-a]pyrazine derivatives led to the discovery of a novel neuropeptide S receptor antagonist with potent in vivo activity. J. Med. Chem., 2021, 64(7), 4089-4108.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02223] [PMID: 33733768]
[8]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[9]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7(1), 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[10]
Soto-Sánchez, J.; Ospina-Villa, J.D. Current status of quinoxaline and quinoxaline 1,4‐di‐N‐oxides derivatives as potential antiparasitic agents. Chem. Biol. Drug Des., 2021, 98(4), 683-699.
[http://dx.doi.org/10.1111/cbdd.13921] [PMID: 34289242]
[11]
Grunberg, E.; Titsworth, E.H. Chemotherapeutic properties of heterocyclic compounds: Monocyclic compounds with five-membered rings. Annu. Rev. Microbiol., 1973, 27(1), 317-346.
[http://dx.doi.org/10.1146/annurev.mi.27.100173.001533] [PMID: 4584690]
[12]
Murshed, R.; Bansal, S. Additive-assisted optimization in morphology and optoelectronic properties of inorganic mixed Sn-Pb halide perovskites. Materials, 2022, 15(3), 899.
[http://dx.doi.org/10.3390/ma15030899] [PMID: 35160845]
[13]
He, Z.; Rao, W.; Ren, T.; Liu, W.; Xue, Q. The tribochemical study of some N-containing heterocyclic compounds as lubricating oil additives. Tribol. Lett., 2002, 13(2), 87-93.
[http://dx.doi.org/10.1023/A:1020100631716]
[14]
Singh, T.; Singh, R.; Verma, V.K.; Nakayama, K. A study of N, O and S heterocyclic compounds as extreme pressure lubricant additives. Tribol. Int., 1990, 23(1), 41-46.
[15]
Santos, F.S.; Medeiros, N.G.; Affeldt, R.F.; Duarte, R.C.; Moura, S.; Rodembusch, F.S. Small heterocycles as highly luminescent building blocks in the solid state for organic synthesis. New J. Chem., 2016, 40(3), 2785-2791.
[http://dx.doi.org/10.1039/C5NJ02943K]
[16]
Dondoni, A. Heterocycles in organic synthesis: Thiazoles and triazoles as exemplar cases of synthetic auxiliaries. Org. Biomol. Chem., 2010, 8(15), 3366-3385.
[http://dx.doi.org/10.1039/c002586k] [PMID: 20505853]
[17]
Wu, J.; Fan, Q.; Xiong, M.; Wang, Q.; Chen, K.; Liu, H.; Gao, M.; Ye, L.; Guo, X.; Fang, J.; Guo, Q.; Su, W.; Ma, Z.; Tang, Z.; Wang, E.; Ade, H.; Zhang, M. Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy, 2021, 82, 105679.
[http://dx.doi.org/10.1016/j.nanoen.2020.105679]
[18]
Hu, F.; Xue, Y.; Jian, N.; Qu, K.; Lin, K.; Zhu, X.; Wu, T.; Liu, X.; Xu, J.; Lu, B. Pyrazine-EDOT D-A-D type hybrid polymer for patterned flexible electrochromic devices. Electrochim. Acta, 2020, 357, 136859.
[http://dx.doi.org/10.1016/j.electacta.2020.136859]
[19]
Vehlow, K.; Wang, D.; Buchmeiser, M.R.; Blechert, S. Alternating copolymerizations using a Grubbs-type initiator with an unsymmetrical, chiral N-heterocyclic carbene ligand. Angew. Chem. Int. Ed., 2008, 47(14), 2615-2618.
[http://dx.doi.org/10.1002/anie.200704822] [PMID: 18278778]
[20]
Kim, O.; Kim, S.Y.; Ahn, H.; Kim, C.W.; Rhee, Y.M.; Park, M.J. Phase behavior and conductivity of sulfonated block copolymers containing heterocyclic diazole-based ionic liquids. Macromolecules, 2012, 45(21), 8702-8713.
[http://dx.doi.org/10.1021/ma301803f]
[21]
Abdel-Kader, N.S.; Abdel-Latif, S.A.; El-Ansary, A.L.; Sayed, A.G. Spectroscopic studies, density functional theory calculations, non-linear optical properties, biological activity of 1-hydroxy-4-((4-(N-(pyrimidin-2-yl)sulfamoyl)phenyl)diazenyl)-2-naphthoic acid and its chelates with Nickel (II), Copper (II), Zinc (II) and Palladium (II) metal ions. J. Mol. Struct., 2021, 1223, 129203.
[http://dx.doi.org/10.1016/j.molstruc.2020.129203]
[22]
Karcı F. Synthesis of disazo dyes derived from heterocyclic components. Color. Technol., 2005, 121(5), 275-280.
[http://dx.doi.org/10.1111/j.1478-4408.2005.tb00286.x]
[23]
Boger, D.L. Heterocyclic chemistry. J. Pharm. Sci., 1985, 2(74), 233.
[http://dx.doi.org/10.1002/jps.2600740232]
[24]
Flores-Ramos, M.; Ibarra-Velarde, F.; Jung-Cook, H.; Hernández-Campos, A.; Vera-Montenegro, Y.; Castillo, R. Novel triclabendazole prodrug: A highly water soluble alternative for the treatment of fasciolosis. Bioorg. Med. Chem. Lett., 2017, 27(3), 616-619.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.004] [PMID: 28027870]
[25]
Tahlan, S.; Kumar, S.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V.; Pathania, R.; Narasimhan, B. Design, synthesis and biological profile of heterocyclic benzimidazole analogues as prospective antimicrobial and antiproliferative agents. BMC Chem., 2019, 13(1), 50.
[http://dx.doi.org/10.1186/s13065-019-0567-x] [PMID: 31384798]
[26]
Wang, F.; Ren, Y.J.; Dong, M.H. Molecular design, synthesis and anticoagulant activity evaluation of fluorinated dabigatran analogues. Bioorg. Med. Chem., 2016, 24(12), 2739-2753.
[http://dx.doi.org/10.1016/j.bmc.2016.04.038] [PMID: 27166573]
[27]
Škopić, M.K.; Götte, K.; Gramse, C.; Dieter, M.; Pospich, S.; Raunser, S.; Weberskirch, R.; Brunschweiger, A. Micellar brønsted acid mediated synthesis of dna-tagged heterocycles. J. Am. Chem. Soc., 2019, 141(26), 10546-10555.
[http://dx.doi.org/10.1021/jacs.9b05696] [PMID: 31244181]
[28]
Briehn, C.A.; Weyermann, P.; Dervan, P.B. Alternative heterocycles for DNA recognition: The benzimidazole/imidazole pair. Chemistry, 2003, 9(9), 2110-2122.
[http://dx.doi.org/10.1002/chem.200204689] [PMID: 12740860]
[29]
Nadeem, H.R.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.M.; Ranjha, M.M.A.N.; Jooste, L.; Hano, C.; Aadil, R.M. Heterocyclic aromatic amines in meat: Formation, isolation, risk assessment, and inhibitory effect of plant extracts. Foods, 2021, 10(7), 1466.
[http://dx.doi.org/10.3390/foods10071466] [PMID: 34202792]
[30]
Pradeep, S.D.; Sebastian, D.; Gopalakrishnan, A.K.; Manoharan, D.K.; Madhusudhanan, D.T.; Mohanan, P.V. Synthesis and characterization of a novel heterocyclic Schiff base and development of a fluorescent sensor for vitamin B12. J. Fluoresc., 2021, 31(4), 1113-1123.
[http://dx.doi.org/10.1007/s10895-021-02743-y] [PMID: 33963980]
[31]
Dua, R.; Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res. (Faisalabad), 2011, 5(3), 120-144.
[32]
Moser, S.; Krautler, B. In search of bioactivity - phyllobilins, an unexplored class of abundant heterocyclic plant metabolites from breakdown of chlorophyll. Isr. J. Chem., 2019, 59(5), 420-431.
[http://dx.doi.org/10.1002/ijch.201900012]
[33]
Naeeminejad, S.; Assaran Darban, R.; Beigoli, S.; Saberi, M.R.; Chamani, J. Studying the interaction between three synthesized heterocyclic sulfonamide compounds with hemoglobin by spectroscopy and molecular modeling techniques. J. Biomol. Struct. Dyn., 2017, 35(15), 3250-3267.
[http://dx.doi.org/10.1080/07391102.2016.1252283] [PMID: 27771986]
[34]
Pathak, K.V.; Chiu, T.L.; Amin, E.A.; Turesky, R.J. Methemoglobin formation and characterization of hemoglobin adducts of carcinogenic aromatic amines and heterocyclic aromatic amines. Chem. Res. Toxicol., 2016, 29(3), 255-269.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00418] [PMID: 26824300]
[35]
Hülsey, M.J.; Yang, H.; Yan, N. Sustainable routes for the synthesis of renewable heteroatom-containing chemicals. ACS Sustain. Chem. Eng., 2018, 6(5), 5694-5707.
[http://dx.doi.org/10.1021/acssuschemeng.8b00612]
[36]
Garg, S.; Kaur, M.; Malhi, D.S.; Sohal, H.S.; Sharma, A. Recent advances in the synthesis and bioapplications of some oxygen and sulphur containing seven membered heterocyclic compounds. Adv. Org. Synth., 2021, 14, 107-179.
[http://dx.doi.org/10.2174/9789811803741121140005]
[37]
Shaikh, A.R.; Farooqui, M.; Satpute, R.H.; Abed, S. Overview on nitrogen containing compounds and their assessment based on ‘international regulatory standards’. J. Drug Deliv. Ther., 2018, 8(6-s), 424-428.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2156]
[38]
Zhang, W.T.; Sun, J.; Zhu, H.; Yue, R.X.; Zhang, Y.; Niu, F.X.; Rong, L. An efficient synthesis of spiroacridinone derivatives from the facile reaction of isatins, dimedone, and 5‐aminoindazole (6‐aminoindazole or 5‐aminoindole). J. Heterocycl. Chem., 2020, 57(4), 1912-1924.
[http://dx.doi.org/10.1002/jhet.3919]
[39]
Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. Chem. Biodivers., 2004, 1(3), 361-401.
[http://dx.doi.org/10.1002/cbdv.200490033] [PMID: 17191854]
[40]
Conley, J.G.; Wolcott, R.C.; Wong, E. Astrazeneca, prilosec, and nexium: Marketing challenges in the launch of a second-generation drug. Kellogg School Manage. Cases, 2017, 1(1), 1-20.
[http://dx.doi.org/10.1108/case.kellogg.2016.000027]
[41]
Contreras, M.M.; Morales-Soto, A.; Segura-Carretero, A.; Valverde, J. Potential of RP-UHPLC-DAD-MS for the qualitative and quantitative analysis of sofosbuvir in film coated tablets and profiling degradants. J. Pharm. Anal., 2017, 7(4), 208-213.
[http://dx.doi.org/10.1016/j.jpha.2017.04.003] [PMID: 29404040]
[42]
Zeidan, T.A.; Trotta, J.T.; Chiarella, R.A.; Oliveira, M.A.; Hickey, M.B.; Almarsson, Ö.; Remenar, J.F. Polymorphism of dehydro-aripiprazole, the active metabolite of the antipsychotic drug aripiprazole (Abilify). Cryst. Growth Des., 2013, 13(5), 2036-2046.
[http://dx.doi.org/10.1021/cg400104v]
[43]
Kumar, J.A.; Abirami, S.; Trueman, T.E. Multilabel aspect-based sentiment classification for Abilify drug user review. Proceedings of the 11th International Conference on Advanced Computing (ICoAC 2019), 2019, pp. 376-80.
[http://dx.doi.org/10.1109/ICoAC48765.2019.246871]
[44]
Yuan, S.; Qin, J.S.; Li, J.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J.; Zhang, L.; Sun, D.; Alsalme, A.; Cagin, T.; Zhou, H.C. Retrosynthesis of multi-component metal−organic frameworks. Nat. Commun., 2018, 9(1), 808.
[http://dx.doi.org/10.1038/s41467-018-03102-5] [PMID: 29476174]
[45]
Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater., 2016, 1(10), 16068.
[http://dx.doi.org/10.1038/natrevmats.2016.68]
[46]
Pang, Q.; Tu, B.; Li, Q. Metal-organic frameworks with multicomponents in order. Coord. Chem. Rev., 2019, 388, 107-125.
[http://dx.doi.org/10.1016/j.ccr.2019.02.022]
[47]
Liang, R.R.; Zhao, X. Heteropore covalent organic frameworks: A new class of porous organic polymers with well-ordered hierarchical porosities. Org. Chem. Front., 2018, 5(22), 3341-3356.
[http://dx.doi.org/10.1039/C8QO00830B]
[48]
Pawluk, S.A.; Roels, C.A.; Wilby, K.J.; Ensom, M.H.H. A review of pharmacokinetic drug-drug interactions with the anthelmintic medications albendazole and mebendazole. Clin. Pharmacokinet., 2015, 54(4), 371-383.
[http://dx.doi.org/10.1007/s40262-015-0243-9] [PMID: 25691367]
[49]
Li, L.; Chen, W.; Chen, T.; Ren, J.; Xu, Y. Structure-based discovery of PDEs inhibitors. Curr. Top. Med. Chem., 2015, 16(9), 917-933.
[http://dx.doi.org/10.2174/1568026615666150825142134] [PMID: 26303429]
[50]
Loy, N.S.Y.; Kim, S.; Park, C.M. Synthesis of unsymmetrical pyrazines based on α-diazo oxime ethers. Org. Lett., 2015, 17(3), 395-397.
[http://dx.doi.org/10.1021/ol5034173] [PMID: 25590992]
[51]
Ong, K.T.; Liu, Z.Q.; Tay, M.G. Review on the synthesis of pyrazine and its derivatives. Borneo J. Resour. Sci. Technol., 2017, 7(2), 60-75.
[http://dx.doi.org/10.33736/bjrst.591.2017]
[52]
Sivakumar, G.; Bernardo, D.R.; Marchezi, P.E.; Nogueira, A.F. Synthesis and characterization of Vinazene end capped dipyrrolo[2,3-b:20,30-e]pyrazine-2,6(1H,5H)-dione small molecules as NonPOLYCYCLIC aromatic compounds 59 fullerene acceptors for bulk heterojunction organic solar cells. Mater. Chem. Phys., 2020, 240(September), 122176.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122176]
[53]
Mao, M.; Luo, C.; Pollard, T.P.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Yue, J.; Tong, Y.; Yang, G.; Deng, T.; Zhang, M.; Ma, J.; Suo, L.; Borodin, O.; Wang, C. A pyrazine-based polymer for fast-charge batteries. Angew. Chem. Int. Ed., 2019, 58(49), 17820-17826.
[http://dx.doi.org/10.1002/anie.201910916] [PMID: 31571354]
[54]
Lee, J.Y.; Aoyama, T.; Uchiyama, M.; Matsumoto, S. Synthesis and properties of liquid pyrazine dyes. Dyes Pigments, 2020, 174, 108030.
[http://dx.doi.org/10.1016/j.dyepig.2019.108030]
[55]
Podraza, K.F. Synthesis and thermal rearrangement of allylic 3,5,6‐trimethyl‐2‐pyrazinylacetates: A heterocyclic carroll rearrangement. J. Heterocycl. Chem., 1986, 23(2), 581-583.
[http://dx.doi.org/10.1002/jhet.5570230254]
[56]
Gao, J.; Luo, X.; Li, Y.; Gao, R.; Chen, H.; Ji, D. Synthesis and biological evaluation of 2-oxo-pyrazine-3-carboxamide-yl nucleoside analogues and their epimers as inhibitors of influenza A viruses. Chem. Biol. Drug Des., 2015, 85(3), 245-252.
[http://dx.doi.org/10.1111/cbdd.12382] [PMID: 24954298]
[57]
Dolezal, M.; Zitko, J. Pyrazine derivatives: A patent review (June 2012- present). Expert Opin. Ther. Pat., 2015, 25(1), 33-47.
[http://dx.doi.org/10.1517/13543776.2014.982533]
[58]
Kosuge, T.; Kamiya, H. Discovery of a pyrazine in a natural product: Tetramethylpyrazine from cultures of a strain of Bacillus subtilis. Nature, 1962, 193(4817), 776.
[http://dx.doi.org/10.1038/193776a0] [PMID: 14458748]
[59]
Cheeseman, G.W.H.; Werstiuk, E.S.G. Recent advances in pyazine chemistry. Adv. Heterocycl. Chem., 1972, 14, 99-209.
[http://dx.doi.org/10.1016/S0065-2725(08)60953-8]
[60]
Liu, W.; Tang, Y.; Guo, Y.; Sun, B.; Zhu, H.; Xiao, Y.; Dong, D.; Yang, C. Synthesis, characterization and bioactivity determination of ferrocenyl urea derivatives. Appl. Organomet. Chem., 2012, 26(4), 189-193.
[http://dx.doi.org/10.1002/aoc.2837]
[61]
Desouky, O.; Ding, N.; Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci., 2015, 8(2), 247-254.
[http://dx.doi.org/10.1016/j.jrras.2015.03.003]
[62]
Radiopharmaceuticals: Radiation therapy enters the molecular age. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2020/radiopharmaceuticals-cancer-radiation-therapy
[63]
Yahyapour, R.; Salajegheh, A.; Safari, A.; Amini, P.; Rezaeyan, A.; Amraee, A.; Najafi, M. Radiation-induced non-targeted effect and carcinogenesis; Implications in clinical radiotherapy. J. Biomed. Phys. Eng., 2018, 8(4), 435-446.
[PMID: 30568933]
[64]
Ghosh, R.; Hansda, S. Targeted and non-targeted effects of radiation in mammalian cells: An overview. Arch. Biotech. Biomed., 2021, 5(1), 13-19.
[65]
Moghaddam, S.V.; Valizadeh, H. Ionic liquid functionalized cellulose as an efficient heterogeneous catalyst for the facile and green synthesis of benzoxazine, pyrazine and quinoxaline derivatives in aqueous media. J. Indian Chem. Soc., 2016, 13(8), 1517-1524.
[http://dx.doi.org/10.1007/s13738-016-0868-0]
[66]
Mo, K.; Park, J.H.; Kang, S.B.; Kim, Y.; Lee, Y.S.; Lee, J.W. Synthesis of pyrazine via chemoselective reduction of b-keto-a-oximino ester using baker’s yeast. J. Mol. Cat., B Enzym., 2016, 129, 29-34.
[67]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[68]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[69]
Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell, 2006, 124(4), 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[70]
Majno, G.; Joris, I. Cells, tissues and disease; Oxford University Press, 2004.
[71]
Kumar, V.; Cotran, R.S.; Robbins, S.L.; Basic, R. Pathology; Saunders, 2003.
[72]
Czerny, M.; Grosch, W. Potent odorants of raw Arabica coffee. Their changes during roasting. J. Agric. Food Chem., 2000, 48(3), 868-872.
[http://dx.doi.org/10.1021/jf990609n] [PMID: 10725165]
[73]
Toci, A.T.; Azevedo, D.A.; Farah, A. Effect of roasting speed on the volatile composition of coffees with different cup quality. Food Res. Int., 2020, 137, 109546.
[http://dx.doi.org/10.1016/j.foodres.2020.109546] [PMID: 33233171]
[74]
Sanagi, M.M.; Hung, W.P.; Yasir, S.M. Supercritical fluid extraction of pyrazines in roasted cocoa beans. Effect of pod storage period. J. Chromatogr. A, 1997, 785(1-2), 361-367.
[75]
Bramwell, A.F.; Burrell, J.W.K.; Riezebos, G. Characterisation of pyrazines in galbanum oil. Tetrahedron Lett., 1969, 10(37), 3215-3216.
[http://dx.doi.org/10.1016/S0040-4039(01)88391-X]
[76]
Kosuge, T.; Adachi, T.; Kamiya, H. Isolation of tetramethylpyrazine from culture of Bacillus natto, and biosynthetic pathways of tetramethylpyrazine. Nature, 1962, 195(4846), 1103.
[http://dx.doi.org/10.1038/1951103a0] [PMID: 14458746]
[77]
Murray, K.E.; Whitfield, F.B. The occurrence of 3‐alkyl‐2‐methoxypyrazines in raw vegetables. J. Sci. Food Agric., 1975, 26(7), 973-986.
[http://dx.doi.org/10.1002/jsfa.2740260714]
[78]
Dopazo, V.; Luz, C.; Quiles, J.M.; Calpe, J.; Romano, R.; Mañes, J.; Meca, G. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. J. Sci. Food Agric., 2022, 102(3), 898-907.
[http://dx.doi.org/10.1002/jsfa.11422] [PMID: 34240436]
[79]
Miniyar, P.; Murumkar, P.; Patil, P.; Barmade, M.; Bothara, K. Unequivocal role of pyrazine ring in medicinally important compounds: A review. Mini Rev. Med. Chem., 2013, 13(11), 1607-1625.
[http://dx.doi.org/10.2174/1389557511313110007] [PMID: 23544468]
[80]
Dickschat, J.S.; Wickel, S.; Bolten, C.J.; Nawrath, T.; Schulz, S.; Wittmann, C. Pyrazine biosynthesis in Corynebacterium glutamicum. Eur. J. Org. Chem., 2010, 2010(14), 2687-2695.
[http://dx.doi.org/10.1002/ejoc.201000155]
[81]
Akiyama, T.; Enomoto, Y.; Shibamoto, T. A new method of pyrazine synthesis for flavor use. J. Agric. Food Chem., 1978, 26(5), 1176-1179.
[http://dx.doi.org/10.1021/jf60219a057]
[82]
Guilford, T.; Nicol, C.; Rothschild, M.; Moore, B.P. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. Lond., 1987, 31(2), 113-128.
[http://dx.doi.org/10.1111/j.1095-8312.1987.tb01984.x]
[83]
Maga, J.A. Pyrazine update. Food Rev. Int., 1992, 8(4), 479-558.
[http://dx.doi.org/10.1080/87559129209540951]
[84]
Dolezal, M.; Zitko, J. Pyrazine derivatives: A patent review (June 2012–present). Expert Opin. Ther. Pat., 2015, 25(1), 33-47.
[85]
Das, R.; Mehta, D.K. Evaluation and docking study of pyrazine containing 1, 3,4-oxadiazoles clubbed with substituted azetidin-2-one: A new class of potential antimicrobial and antitubercular. Drug Res., 2021, 71(1), 26-35.
[http://dx.doi.org/10.1055/a-1252-2378] [PMID: 33027823]
[86]
Kos, J.; Gonec, T.; Oravec, M.; Jendrzejewska, I.; Jampilek, J. Photosynthesis-inhibiting activity of N-(disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides. Molecules, 2021, 26(14), 4336.
[http://dx.doi.org/10.3390/molecules26144336] [PMID: 34299611]
[87]
Katoh, A.; Yoshida, T.; Ohkanda, J. Synthesis of quinoxaline derivatives bearing the styryl and phenylethynyl groups and application to a fluorescence derivatization reagent. Heterocycles, 2000, 52(2), 911-920.
[http://dx.doi.org/10.3987/COM-99-S61]
[88]
Sessler, J.L.; Maeda, H.; Mizuno, T.; Lynch, V.M.; Furuta, H. Quinoxaline-bridged porphyrinoids. J. Am. Chem. Soc., 2002, 124(45), 13474-13479.
[http://dx.doi.org/10.1021/ja0273750] [PMID: 12418900]
[89]
Carmona-Martínez, V.; Ruiz-Alcaraz, A.J.; Vera, M.; Guirado, A.; Martínez-Esparza, M.; García-Peñarrubia, P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med. Res. Rev., 2019, 39(2), 461-516.
[http://dx.doi.org/10.1002/med.21529] [PMID: 30341778]
[90]
Janković, N.; Milović, E.; Jovanović, J.Đ.; Marković, Z.; Vraneš, M.; Stanojković, T.; Matić, I.; Crnogorac, M.Đ.; Klisurić, O.; Cvetinov, M.; Abbas Bukhari, S.N. A new class of half-sandwich ruthenium complexes containing Biginelli hybrids: Anticancer and anti-SARS-CoV-2 activities. Chem. Biol. Interact., 2022, 363, 110025.
[http://dx.doi.org/10.1016/j.cbi.2022.110025] [PMID: 35752294]
[91]
Janković, N.; Trifunović Ristovski, J.; Vraneš, M.; Tot, A.; Petronijević, J.; Joksimović, N.; Stanojković, T.; Đorđić Crnogorac, M.; Petrović, N.; Boljević, I.; Matić, I.Z.; Bogdanović, G.A.; Mikov, M.; Bugarčić, Z. Discovery of the Biginelli hybrids as novel caspase-9 activators in apoptotic machines: Lipophilicity, molecular docking study, influence on angiogenesis gene and miR-21 expression levels. Bioorg. Chem., 2019, 86, 569-582.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.026] [PMID: 30782575]
[92]
Milović, E.; Petronijević, J.; Joksimović, N.; Beljkaš, M.; Ružić, D.; Nikolić, K.; Vraneš, M.; Tot, A.; Crnogorac, M.Đ.; Stanojković, T.; Janković, N. Anticancer evaluation of the selected tetrahydropyrimidines: 3D-QSAR, cytotoxic activities, mechanism of action, DNA, and BSA interactions. J. Mol. Struct., 2022, 1257, 132621.
[http://dx.doi.org/10.1016/j.molstruc.2022.132621]
[93]
Hara, T.; Norimatsu, N.; Kurushima, H.; Kono, T. Method for producing dichloropyrazine derivative. EP2392566A1 2014, US024832,
[94]
El-Kashef, H.; El-Emary, T.; Verhaeghe, P.; Vanelle, P.; Samy, M. Anticancer and anti-inflammatory activities of some new pyrazolo [3,4-b] pyrazines. Molecules, 2018, 23(10), 2657.
[http://dx.doi.org/10.3390/molecules23102657] [PMID: 30332801]
[95]
Graham, E.S.; Ashton, J.C. Glass, M Cannabinoid receptors: A brief history and “what’s hot”. Front. Biosci., 2009, 14, 944-957.
[http://dx.doi.org/10.2741/3288]
[96]
Dhurwasulu, B.; Grether, U.; Nettekoven, M. Novel pyrazine derivatives as CB2 receptor agonists. MX2015006036A 2014, WO086807,
[97]
Woodward, R.M. Use of opioid receptor antagonist for gastrointestinal tract disorders. MX003310, 2012.
[98]
Bylock, L.A. Oxadiazoles as inhibitors of leukotriene production for combination therapy and their preparation. WO0195879, 2013.
[99]
Kushner, S.; Dalalian, H.; Sanjurjo, J.L.; Bach, F.L., Jr; Safir, S.R.; Smith, V.K., Jr; Williams, J.H. Experimental chemotherapy of tuberculosis. 2. The synthesis of pyrazinamides and related compounds. J. Am. Chem. Soc., 1952, 74(14), 3617-3621.
[http://dx.doi.org/10.1021/ja01134a045]
[100]
Roblin, R.O., Jr; Williams, J.H.; Winnek, P.S.; English, J.P. Chemotherapy: II. Some sulfanilamide heterocycles. J. Am. Chem. Soc., 1940, 62(8), 2002-2005.
[http://dx.doi.org/10.1021/ja01865a027]
[101]
Zeuzem, S.; Andreone, P.; Pol, S.; Lawitz, E.; Diago, M.; Roberts, S.; Focaccia, R.; Younossi, Z.; Foster, G.R.; Horban, A.; Ferenci, P.; Nevens, F.; Müllhaupt, B.; Pockros, P.; Terg, R.; Shouval, D.; van Hoek, B.; Weiland, O.; Van Heeswijk, R.; De Meyer, S.; Luo, D.; Boogaerts, G.; Polo, R.; Picchio, G.; Beumont, M. Telaprevir for retreatment of HCV infection. N. Engl. J. Med., 2011, 364(25), 2417-2428.
[http://dx.doi.org/10.1056/NEJMoa1013086] [PMID: 21696308]
[102]
Cotrel, C.; Jeanmart, C.; Messer, M.N. Pyrrolo(3,4-b)pyrazine derivatives. DE2300491, 1973.
[103]
Clapper, M.L. Chemopreventive activity of oltipraz. Pharmacol. Ther., 1998, 78(1), 17-27.
[http://dx.doi.org/10.1016/S0163-7258(97)00164-2] [PMID: 9593327]
[104]
Boyle, R.G.; Boyce, R.J. Pharmaceutically active pyrazine derivatives. WO072502, 2013.
[105]
Collins, I.; Lainchbury, M.; Matthews, T.P.; Reader, J.C. Preparation of 5-(pyridin-2-ylamino)pyrazine-2-carbonitrile compounds as CHK1 inhibitors. WO068755, 2013.
[106]
Wishart, N.; Bonafoux, D.F.; Frank, K.E. Preparation of imidazopyrrolopyrazine derivatives and analogs for use as protein kinase modulators. US0072470, 2013.
[107]
Ito, Y.; Kushida, I.; Mitasev, B. Fused aminodihydrothiazine derivative salts as BACE1 inhibitors and their preparation. WO015125, 2014.
[108]
Lewis, R.T.; Choquette, D.; Epstein, O. Aminodihydrothiazine and aminodioxodihydrothiazine compounds as beta-secretase antagonists and their preparation. WO059185, 2014.
[109]
Le Clerq, L.C.; Bartolome-Nebreda, J.M.; Conde-Ceide, S.; Van Gool, M.L.M. Inhibitors of phosphodiesterase 10 enzyme. WO009305, 2014.
[110]
Coskran, T.M.; Morton, D.; Menniti, F.S.; Adamowicz, W.O.; Kleiman, R.J.; Ryan, A.M.; Strick, C.A.; Schmidt, C.J.; Stephenson, D.T. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J. Histochem. Cytochem., 2006, 54(11), 1205-1213.
[http://dx.doi.org/10.1369/jhc.6A6930.2006] [PMID: 16864896]
[111]
Galley, G.; Norcross, R.; Pflieger, P. Preparation of pyrazine derivatives as inhibitors of TAARs. WO072257, 2014.
[112]
Charrier, J.D.; Storck, P.H.; Pinder, J.; Studley, J.R. Preparation of pyrazine derivatives useful as inhibitors of ATR kinase. US0115312, 2013.
[113]
Charrier, J.D.; Kay, D. Preparation of pyrazine derivatives useful as inhibitors of ATR kinase. US20130115314, 2013.
[114]
Charrier, J.D.; Durrant, S.J.; Knegtel, R. Preparation of pyrazine derivatives useful as inhibitors of ATR kinase. US20130115310, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy