Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Chemistry, Isolation, and Pharmaceutical Applications of Inulin

Author(s): Pankaj V. Dangre*, Kunal S. Kotkar, Awadhut D. Pimple and Satish S. Meshram

Volume 20, Issue 1, 2025

Published on: 11 January, 2024

Page: [8 - 17] Pages: 10

DOI: 10.2174/0115748855274579240103042126

open access plus

Abstract

Inulin (IN) is a prebiotic oligosaccharide reported in diverse sources of nature. The major sources encompass chicory, Jerusalem artichoke, onions, barley, garlic, rye, and wheat. The literature also reported its promising biological activities, e.g., antidiabetic, anticancer, antioxidant, immuneregulator and prebiotic for improving intestinal function, regulation of blood lipids, and so on. IN’s molecular flexibility, stabilization, and drug-targeting potential make it a unique polymer in pharmaceutical sciences and biomedical engineering. Further, its nutritional value and diagnostic application also widen its scope in food and medical sciences. The hydroxyl groups present in its structure offer chemical modifications, which could benefit advanced drug delivery such as controlled and sustained drug delivery, enhancement of bioavailability, cellular uptake, etc. This work reviews the isolation and purification of IN. The study also provides glimpses of the chemistry, chemical modification, and applications in pharmaceutical sciences and drug delivery.

Keywords: Inulin, prebiotics, drug targeting, food science, drug delivery, biomedical engineering.

Graphical Abstract
[1]
Valicente VM, Peng CH, Pacheco KN, et al. Ultraprocessed foods and obesity risk: A critical review of reported mechanisms. Adv Nutr 2023; 14(4): 718-38.
[http://dx.doi.org/10.1016/j.advnut.2023.04.006] [PMID: 37080461]
[2]
Ahmed W, Rashid S. Functional and therapeutic potential of inulin: A comprehensive review. Crit Rev Food Sci Nutr 2019; 59(1): 1-13.
[http://dx.doi.org/10.1080/10408398.2017.1355775] [PMID: 28799777]
[3]
Ko H, Sung BH, Kim MJ, Sohn JH, Bae JH. Fructan biosynthesis by yeast cell factories. J Microbiol Biotechnol 2022; 32(11): 1373-81.
[http://dx.doi.org/10.4014/jmb.2207.07062] [PMID: 36310357]
[4]
Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3): 92.
[http://dx.doi.org/10.3390/foods8030092] [PMID: 30857316]
[5]
Van den Abbeele P, Duysburgh C, Ghyselinck J, et al. Fructans with varying degree of polymerization enhance the selective growth of bifidobacterium animalis subsp. lactis BB-12 in the human gut microbiome in vitro. Appl Sci 2021; 11(2): 598.
[http://dx.doi.org/10.3390/app11020598]
[6]
Wang X, Zhang P, Zhang X. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 2021; 26(19): 6076.
[http://dx.doi.org/10.3390/molecules26196076] [PMID: 34641619]
[7]
Śliżewska K, Markowiak-Kopeć P, Śliżewska W. The role of probiotics in cancer prevention. Cancers 2020; 13(1): 20.
[http://dx.doi.org/10.3390/cancers13010020] [PMID: 33374549]
[8]
Fernandes J, Vogt J, Wolever TMS. Inulin increases short-term markers for colonic fermentation similarly in healthy and hyperinsulinaemic humans. Eur J Clin Nutr 2011; 65(12): 1279-86.
[http://dx.doi.org/10.1038/ejcn.2011.116] [PMID: 21712835]
[9]
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and its application in drug delivery. Pharmaceuticals 2021; 14(9): 855.
[http://dx.doi.org/10.3390/ph14090855] [PMID: 34577554]
[10]
Carlson JL, Erickson JM, Lloyd BB, Slavin JL. Health effects and sources of prebiotic dietary fiber. Curr Dev Nutr 2018; 2(3): nzy005.
[http://dx.doi.org/10.1093/cdn/nzy005] [PMID: 30019028]
[11]
Leenen CHM, Dieleman LA. Inulin and oligofructose in chronic inflammatory bowel disease. J Nutr 2007; 137(11): 2572S-5S.
[http://dx.doi.org/10.1093/jn/137.11.2572S] [PMID: 17951505]
[12]
Franck A. Technological functionality of inulin and oligofructose. Br J Nutr 2002; 87(S2): S287-91.
[http://dx.doi.org/10.1079/BJN/2002550] [PMID: 12088531]
[13]
Sun S, Hou YN, Wei W, et al. Perturbation of clopyralid on bio-denitrification and nitrite accumulation: Long-term performance and biological mechanism. Environm Sci Ecotechnol 2022; 9: 100144.
[http://dx.doi.org/10.1016/j.ese.2021.100144] [PMID: 36157855]
[14]
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132: 852-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.188] [PMID: 30926495]
[15]
Adachi A. Author index. In: Handbook of Hydrocolloids. Woodhead Publishing 2021.
[16]
Teferra TF. Possible actions of inulin as prebiotic polysaccharide: A review. Food Front 2021; 2(4): 407-16.
[http://dx.doi.org/10.1002/fft2.92]
[17]
Hughes SR, Qureshi N, López-Núñez JC, et al. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J Microbiol Biotechnol 2017; 33(4): 78.
[http://dx.doi.org/10.1007/s11274-017-2241-6] [PMID: 28341907]
[18]
Shoaib M, Shehzad A, Omar M, et al. Inulin: Properties, health benefits and food applications. Carbohydr Polym 2016; 147: 444-54.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.020] [PMID: 27178951]
[19]
Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr Polym 2015; 130: 405-19.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.026] [PMID: 26076642]
[20]
Abdella A, Al-Saman M, Abou-Elazm FI, El-Far SW. Rhizopus oryzae inulinase production and characterization with application in chicory root saccharification. Microbiol Res 2023; 14(1): 297-315.
[http://dx.doi.org/10.3390/microbiolres14010024]
[21]
Apolinário AC, de Carvalho EM, de Lima Damasceno BPG, et al. Extraction, isolation and characterization of inulin from Agave sisalana boles. Ind Crops Prod 2017; 108: 355-62.
[http://dx.doi.org/10.1016/j.indcrop.2017.06.045]
[22]
Moro TMA. Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. In: Food Research International. Elsevier 2021.
[23]
Zeaiter Z, Regonesi ME, Cavini S, Labra M, Sello G, Di Gennaro P. Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. BioMed Res Int 2019; 2019: 1-8.
[http://dx.doi.org/10.1155/2019/1083952] [PMID: 31662964]
[24]
Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 2019; 8(11): 523.
[http://dx.doi.org/10.3390/foods8110523] [PMID: 31652773]
[25]
Sherova NT. Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions. Int Food Res J 2018; 25
[26]
Ma JF, Hou YN, Guo J, et al. Rational design of biogenic PdxAuy nanoparticles with enhanced catalytic performance for electrocatalysis and azo dyes degradation. Environ Res 2022; 204(Pt B): 112086.
[http://dx.doi.org/10.1016/j.envres.2021.112086] [PMID: 34562479]
[27]
Alles MJL, Tessaro IC, Noreña CPZ. Concentration and purification of yacon (smallanthus sonchifolius) root fructooligosaccharides using membrane technology. Food Technol Biotechnol 2015; 53(2): 190-200.
[PMID: 27904348]
[28]
Redondo-Cuenca A, Herrera-Vázquez SE, Condezo-Hoyos L, Gómez-Ordóñez E, Rupérez P. Inulin extraction from common inulin-containing plant sources. Ind Crops Prod 2021; 170: 113726.
[http://dx.doi.org/10.1016/j.indcrop.2021.113726]
[29]
Stökle K, Jung D, Kruse A. Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts. Biomass Convers Biorefin 2023; 13(1): 159-70.
[http://dx.doi.org/10.1007/s13399-020-01108-y]
[30]
Maumela P, van Rensburg E, Chimphango AFA, Görgens JF. Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). J Food Sci Technol 2020; 57(2): 775-86.
[http://dx.doi.org/10.1007/s13197-019-04110-z] [PMID: 32116386]
[31]
Zhang X, Zhu X, Shi X, Hou Y, Yi Y. Extraction and purification of inulin from jerusalem artichoke with response surface method and ion exchange resins. ACS Omega 2022; 7(14): 12048-55.
[http://dx.doi.org/10.1021/acsomega.2c00302] [PMID: 35449954]
[32]
Soto-Maldonado C, Zúñiga-Hansen ME, Olivares A. Data of co-extraction of inulin and phenolic compounds from globe artichoke discards, using different conditioning conditions of the samples and extraction by maceration. Data Brief 2020; 31: 105986.
[http://dx.doi.org/10.1016/j.dib.2020.105986] [PMID: 32695856]
[33]
Escobar-Ledesma FR, Sánchez-Moreno VE, Vera E, Ciobotă V, Jentzsch PV, Jaramillo LI. Extraction of inulin from andean plants: An approach to non-traditional crops of ecuador. Molecules 2020; 25(21): 5067.
[http://dx.doi.org/10.3390/molecules25215067] [PMID: 33139590]
[34]
Chen Y, Su JY, Yang CY. Ultrasound-assisted aqueous extraction of chlorogenic acid and cynarin with the impact of inulin from burdock (Arctium lappa L.) roots. Antioxidants 2022; 11(7): 1219.
[http://dx.doi.org/10.3390/antiox11071219] [PMID: 35883710]
[35]
Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr 2019; 6: 78.
[http://dx.doi.org/10.3389/fnut.2019.00078] [PMID: 31214595]
[36]
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics. Molecules 2022; 27(18): 5947.
[http://dx.doi.org/10.3390/molecules27185947] [PMID: 36144679]
[37]
Young ID, Latousakis D, Juge N. The immunomodulatory properties of β-2,6 fructans: A comprehensive review. Nutrients 2021; 13(4): 1309.
[http://dx.doi.org/10.3390/nu13041309] [PMID: 33921025]
[38]
Kaur N, Gupta AK. Applications of inulin and oligofructose in health and nutrition. J Biosci 2002; 27(7): 703-14.
[http://dx.doi.org/10.1007/BF02708379] [PMID: 12571376]
[39]
Spizzirri UG, Altimari I, Puoci F, Parisi OI, Iemma F, Picci N. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydr Polym 2011; 84(1): 517-23.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.015]
[40]
Palumbo FS, Fiorica C, Di Stefano M, et al. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydr Polym 2015; 122: 408-16.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.002] [PMID: 25817685]
[41]
Afinjuomo F, Barclay TG, Song Y, Parikh A, Petrovsky N, Garg S. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. React Func Poly 2018; 134: 104-1.
[42]
Ferreira L, Carvalho R, Gil MH, Dordick JS. Enzymatic synthesis of inulin-containing hydrogels. Biomacromolecules 2002; 3(2): 333-41.
[http://dx.doi.org/10.1021/bm010150h] [PMID: 11888320]
[43]
Castelli F, Sarpietro MG, Micieli D, Ottimo S, Pitarresi G, Tripodo G, et al. Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: PH and loading effect. Europ J Pharmaceut Sci 2008; 35((1-2)): 76-85.
[44]
Safari JB, Bapolisi AM, Krause RWM. Development of ph-sensitive chitosan-g-poly(acrylamide-co-acrylic acid) hydrogel for controlled drug delivery of tenofovir disoproxil fumarate. Polymers 2021; 13(20): 3571.
[http://dx.doi.org/10.3390/polym13203571] [PMID: 34685332]
[45]
Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G. New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In vitro release of glutathione and oxytocin. J Biomater Sci Polym Ed 2011; 22(1-3): 313-28.
[http://dx.doi.org/10.1163/092050609X12609582084086] [PMID: 20557715]
[46]
Malkawi R, Malkawi WI, Al-Mahmoud Y, Tawalbeh J. Current trends on solid dispersions: Past, present, and future. Adv Pharmacol Pharm Sci 2022; 2022: 1-17.
[http://dx.doi.org/10.1155/2022/5916013] [PMID: 36317015]
[47]
Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm 2017; 43(11): 1743-58.
[http://dx.doi.org/10.1080/03639045.2017.1342654] [PMID: 28673096]
[48]
van Drooge DJ, Hinrichs WLJ, Frijlink HW. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions. J Control Release 2004; 97(3): 441-52.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.018] [PMID: 15212876]
[49]
Hinrichs WLJ, Sanders NN, De Smedt SC, Demeester J, Frijlink HW. Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexes. J Control Rel 2005; 103(2): 465-79.
[50]
Hufnagel B, Muellner V, Hlatky K, et al. Chemically modified inulin for intestinal drug delivery - A new dual bioactivity concept for inflammatory bowel disease treatment. Carbohydr Polym 2021; 252(May): 117091.
[http://dx.doi.org/10.1016/j.carbpol.2020.117091] [PMID: 33183582]
[51]
Rizwan M, Yahya R, Hassan A, et al. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017; 9(12): 137.
[http://dx.doi.org/10.3390/polym9040137] [PMID: 30970818]
[52]
Usman M, Zhang C, Jagannath P, Mehmood A. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. 2020. Available from:https://cdn.who.int/media/docs/default-source/whhd-2021/scientific-publications/2.jhi_5may2021.pdf?sfvrsn=6526a2a5_5
[53]
Jain AK, Sood V, Bora M, Vasita R, Katti DS. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydr Polym 2014; 112(4): 225-34.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.087] [PMID: 25129739]
[54]
Xue M, Wang J, Huang M. Inulin-modified liposomes as a novel delivery system for cinnamaldehyde. Foods 2022; 11(10): 1467.
[http://dx.doi.org/10.3390/foods11101467] [PMID: 35627037]
[55]
Amjadi S, Almasi H, Hamishehkar H, Alizadeh Khaledabad M, Lim LT. Cationic inulin as a new surface decoration hydrocolloid for improving the stability of liposomal nanocarriers. Colloids Surf B Biointerfaces 2022; 213: 112401.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112401] [PMID: 35151992]
[56]
Hanafy N, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018; 10(7): 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[57]
Tripodo G, Pasut G, Trapani A, et al. Inulin-D-α-tocopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin. Biomacromolecules 2015; 16(2): 550-7.
[http://dx.doi.org/10.1021/bm501616e] [PMID: 25543760]
[58]
Du H, Zhao A, Wang Q, Yang X, Ren D. Supplementation of inulin with various degree of polymerization ameliorates liver injury and gut microbiota dysbiosis in high fat-fed obese mice. J Agric Food Chem 2020; 68(3): 779-87.
[http://dx.doi.org/10.1021/acs.jafc.9b06571] [PMID: 31894986]
[59]
Amacker M, Smardon C, Mason L, Sorrell J, Jeffery K, Adler M, et al. New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes. Vaccines 2020; 5(1): 1-16.
[PMID: 33375151]

© 2024 Bentham Science Publishers | Privacy Policy