Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

鸢尾黄素通过调节LncRNA CCAT2/miR-145通路抑制糖酵解诱导的结直肠癌细胞生长和增殖

卷 24, 期 10, 2024

发表于: 11 January, 2024

页: [1071 - 1079] 页: 9

弟呕挨: 10.2174/0115680096274757231219072003

open access plus

conference banner
摘要

背景:结直肠癌(CRC)对全球健康造成沉重负担。Tectorigenin (Tec)是一种以黄酮类化合物为基础的化合物,从中药豹百合中提取。在以前的研究中发现它具有显著的抗肿瘤特性。然而,Tec在结直肠癌中的作用和分子机制尚未见报道。 目的:本研究的目的是探讨Tec在CRC增殖和糖酵解中的作用,以及在体外和体内关于长链非编码RNA (lncRNA) CCAT2/micro RNA-145(miR-145)通路的潜在机制。 方法:采用细胞计数试剂盒-8 (CCK-8)和异种移植模型实验,对Tec在结直肠癌中的抗肿瘤作用进行了细胞和动物实验研究。使用检测试剂盒检测细胞和动物血清上清中的葡萄糖消耗和乳酸生成。Western Blotting检测糖酵解相关蛋白的表达,real - time quantitative PCR (RT-qPCR)检测CRC组织标本和细胞中lncRNA CCAT2和miR-145的水平。 结果:Tec显著抑制结直肠癌细胞糖酵解和增殖速率。它可以降低CRC细胞中lncRNA CCAT2的表达,而增加miR-145的表达。LncRNA CCAT2过表达或miR-145抑制可消除Tec对CRC细胞增殖和糖酵解的抑制作用。miR-145模拟物挽救了lncRNA CCAT2过表达引起的细胞活力和糖酵解水平的增加。Tec显著抑制结直肠癌异种移植物肿瘤的生长和糖酵解。体内Tec处理后,lncRNA CCAT2表达降低,miR-145表达升高。 结论:Tec可以通过lncRNA CCAT2/miR-145轴抑制CRC细胞的增殖和糖酵解。综上所述,本研究发现的潜在靶点对结直肠癌的治疗和新药开发具有重要意义。

关键词: 鸢尾黄素,糖酵解,结直肠癌,lncRNA CCAT2, microRNA-145,细胞计数试剂盒-8 (CCK-8)。

图形摘要
[1]
Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; Goh, K.W.; Hadi, M.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers, 2022, 14(7), 1732.
[http://dx.doi.org/10.3390/cancers14071732] [PMID: 35406504]
[2]
Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin., 2022, 72(5), 409-436.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[3]
Holch, J.W.; Held, S.; Stintzing, S.; Fischer von Weikersthal, L.; Decker, T.; Kiani, A.; Kaiser, F.; Heintges, T.; Kahl, C.; Kullmann, F.; Scheithauer, W.; Moehler, M.; von Einem, J.C.; Michl, M.; Heinemann, V. Relation of cetuximab-induced skin toxicity and early tumor shrinkage in metastatic colorectal cancer patients: results of the randomized phase 3 trial FIRE-3 (AIO KRK0306). Ann. Oncol., 2020, 31(1), 72-78.
[http://dx.doi.org/10.1016/j.annonc.2019.10.001] [PMID: 31912799]
[4]
Ye, H.; Wang, K.; Lu, Q.; Zhao, J.; Wang, M.; Kan, Q.; Zhang, H.; Wang, Y.; He, Z.; Sun, J. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials, 2020, 242, 119932.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119932] [PMID: 32169772]
[5]
Ye, H.; Wang, K.; Zhao, J.; Lu, Q.; Wang, M.; Sun, B.; Shen, Y.; Liu, H.; Pané, S.; Chen, X.Z.; He, Z.; Sun, J. In situ sprayed nanovaccine suppressing exosomal PD-L1 by golgi apparatus disorganization for postsurgical melanoma immunotherapy. ACS Nano, 2023, 17(11), 10637-10650.
[http://dx.doi.org/10.1021/acsnano.3c01733] [PMID: 37213184]
[6]
Ortíz, R.; Quiñonero, F.; García-Pinel, B.; Fuel, M.; Mesas, C.; Cabeza, L.; Melguizo, C.; Prados, J. Nanomedicine to overcome multidrug resistance mechanisms in colon and pancreatic cancer: Recent progress. Cancers (Basel), 2021, 13(9), 2058.
[http://dx.doi.org/10.3390/cancers13092058] [PMID: 33923200]
[7]
Karthika, C.; Sureshkumar, R.; Zehravi, M.; Akter, R.; Ali, F.; Ramproshad, S.; Mondal, B.; Kundu, M.K.; Dey, A.; Rahman, M.H.; Antonescu, A.; Cavalu, S. Multidrug resistance in cancer cells: Focus on a possible strategy plan to address colon carcinoma cells. Life, 2022, 12(6), 811.
[http://dx.doi.org/10.3390/life12060811] [PMID: 35743842]
[8]
Pavlova, N.N.; Zhu, J.; Thompson, C.B. The hallmarks of cancer metabolism: Still emerging. Cell Metab., 2022, 34(3), 355-377.
[http://dx.doi.org/10.1016/j.cmet.2022.01.007] [PMID: 35123658]
[9]
Zhong, X.; He, X.; Wang, Y.; Hu, Z.; Huang, H.; Zhao, S.; Wei, P.; Li, D. Warburg effect in colorectal cancer: The emerging roles in tumor microenvironment and therapeutic implications. J. Hematol. Oncol., 2022, 15(1), 160.
[http://dx.doi.org/10.1186/s13045-022-01358-5] [PMID: 36319992]
[10]
Chu, Z.; Huo, N.; Zhu, X.; Liu, H.; Cong, R.; Ma, L. FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol. Ther., 2021, 29(9), 2737-2753.
[http://dx.doi.org/10.1016/j.ymthe.2021.04.036]
[11]
Nava, G.M.; Madrigal Perez, L.A. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev. Mol. Diagn., 2022, 22(4), 439-447.
[http://dx.doi.org/10.1080/14737159.2022.2065196] [PMID: 35395916]
[12]
Jing, Z.; Liu, Q.; He, X.; Jia, Z.; Xu, Z.; Yang, B.; Liu, P. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J. Exp. Clin. Cancer Res., 2022, 41(1), 198.
[http://dx.doi.org/10.1186/s13046-022-02412-3] [PMID: 35689245]
[13]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[14]
Takai, T.; Yoshikawa, Y.; Inamoto, T.; Minami, K.; Taniguchi, K.; Sugito, N.; Kuranaga, Y.; Shinohara, H.; Kumazaki, M.; Tsujino, T.; Takahara, K.; Ito, Y.; Akao, Y.; Azuma, H. A novel combination RNAi toward warburg effect by replacement with miR-145 and silencing of PTBP1 induces apoptotic cell death in bladder cancer cells. Int. J. Mol. Sci., 2017, 18(1), 179.
[http://dx.doi.org/10.3390/ijms18010179] [PMID: 28106737]
[15]
Zhang, S.; Pei, M.; Li, Z.; Li, H.; Liu, Y.; Li, J. Double‐negative feedback interaction between DNA methyltransferase 3A and microRNA‐145 in the Warburg effect of ovarian cancer cells. Cancer Sci., 2018, 109(9), 2734-2745.
[http://dx.doi.org/10.1111/cas.13734] [PMID: 29993160]
[16]
Yu, Y.; Nangia-Makker, P.; Farhana, L.; Majumdar, A.P.N. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol. Cancer, 2017, 16(1), 155.
[http://dx.doi.org/10.1186/s12943-017-0725-5] [PMID: 28964256]
[17]
Guo, T.; Li, Y.; Hong, S.; Cao, Q.; Chen, H.; Xu, Y.; Dai, G.; Shao, G. Evidence for anticancer effects of chinese medicine monomers on colorectal cancer. Chin. J. Integr. Med., 2022, 28(10), 939-952.
[http://dx.doi.org/10.1007/s11655-022-3466-2] [PMID: 35419728]
[18]
Guo, Y.; Chen, Y.H.; Cheng, Z.H.; Ou-Yang, H.N.; Luo, C.; Guo, Z.L. Tectorigenin inhibits osteosarcoma cell migration through downregulation of matrix metalloproteinases in vitro. Anticancer Drugs, 2016, 27(6), 540-546.
[http://dx.doi.org/10.1097/CAD.0000000000000362] [PMID: 26991068]
[19]
Amin, A.; Mokhdomi, T.A.; Bukhari, S.; Wani, S.H.; Wafai, A.H.; Lone, G.N. Tectorigenin ablates the inflammation-induced epithelial-mesenchymal transition in a co-culture model of human lung carcinoma. Pharmacol. Rep., 2015, 67(2), 382-387.
[http://dx.doi.org/10.1016/j.pharep.2014.10.020]
[20]
Jiang, C.P.; Ding, H.; Shi, D.H.; Wang, Y.R.; Li, E.G.; Wu, J.H. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells. World J. Gastroenterol., 2012, 18(15), 1753-1764.
[http://dx.doi.org/10.3748/wjg.v18.i15.1753] [PMID: 22553399]
[21]
Hu, T.; Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Zhang, Y.; Song, Y.; Hu, J.; He, X.; Xiao, J.; King, R.J.; Wu, X.; Lan, P. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis. Theranostics, 2020, 10(9), 4056-4072.
[http://dx.doi.org/10.7150/thno.40860] [PMID: 32226539]
[22]
Hong, J.; Guo, F.; Lu, S.Y.; Shen, C.; Ma, D.; Zhang, X.; Xie, Y.; Yan, T.; Yu, T.; Sun, T.; Qian, Y.; Zhong, M.; Chen, J.; Peng, Y.; Wang, C.; Zhou, X.; Liu, J.; Liu, Q.; Ma, X.; Chen, Y.X.; Chen, H.; Fang, J.Y.F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut, 2021, 70(11), 2123-2137.
[http://dx.doi.org/10.1136/gutjnl-2020-322780] [PMID: 33318144]
[23]
Yu, S.; Zang, W.; Qiu, Y.; Liao, L.; Zheng, X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene, 2022, 41(1), 46-56.
[http://dx.doi.org/10.1038/s41388-021-02071-2] [PMID: 34671086]
[24]
Pirlog, R.; Drula, R.; Nutu, A.; Calin, G.A.; Berindan-Neagoe, I. The roles of the colon cancer associated transcript 2 (CCAT2) Long Non-Coding RNA in cancer: A comprehensive characterization of the tumorigenic and molecular functions. Int. J. Mol. Sci., 2021, 22(22), 12491.
[http://dx.doi.org/10.3390/ijms222212491] [PMID: 34830370]
[25]
Shen, S.N.; Li, K.; Liu, Y.; Yang, C.L.; He, C.Y.; Wang, H.R. RETRACTED: Silencing lncRNAs PVT1 upregulates mir-145 and confers inhibitory effects on viability, invasion, and migration in EC. Mol. Ther. Nucleic Acids, 2020, 19, 668-682.
[http://dx.doi.org/10.1016/j.omtn.2019.11.030] [PMID: 31951853]
[26]
Li, J.; Ma, X.; Chakravarti, D.; Shalapour, S.; DePinho, R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev., 2021, 35(11-12), 787-820.
[http://dx.doi.org/10.1101/gad.348226.120] [PMID: 34074695]
[27]
Vaupel, P.; Multhoff, G. Revisiting the warburg effect: historical dogma versus current understanding. J. Physiol., 2021, 599(6), 1745-1757.
[http://dx.doi.org/10.1113/JP278810] [PMID: 33347611]
[28]
Lunt, S.Y.; Vander Heiden, M.G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol., 2011, 27(1), 441-464.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154237] [PMID: 21985671]
[29]
Ghanavat, M.; Shahrouzian, M.; Deris Zayeri, Z.; Banihashemi, S.; Kazemi, S.M.; Saki, N. Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci., 2021, 264, 118603.
[http://dx.doi.org/10.1016/j.lfs.2020.118603] [PMID: 33091446]
[30]
Li, M.; Chen, X.; Wang, X.; Wei, X.; Wang, D.; Liu, X.; Xu, L.; Batu, W.; Li, Y.; Guo, B.; Zhang, L. RSL3 enhances the antitumor effect of cisplatin on prostate cancer cells via causing glycolysis dysfunction. Biochem. Pharmacol., 2021, 192, 114741.
[http://dx.doi.org/10.1016/j.bcp.2021.114741] [PMID: 34428443]
[31]
Tan, P.; Li, M.; Liu, Z.; Li, T.; Zhao, L.; Fu, W. Glycolysis-Related LINC02432/Hsa-miR-98-5p/HK2 axis inhibits ferroptosis and predicts immune infiltration, tumor mutation burden, and drug sensitivity in pancreatic adenocarcinoma. Front. Pharmacol., 2022, 13, 937413.
[http://dx.doi.org/10.3389/fphar.2022.937413] [PMID: 35795552]
[32]
Yao, X.; Li, W.; Fang, D.; Xiao, C.; Wu, X.; Li, M. Emerging roles of energy metabolism in ferroptosis regulation of tumor cells. Adv. Sci., 2021, 8(22), 2100997.
[http://dx.doi.org/10.1002/advs.202100997]
[33]
Pan, Y.; Wang, W.; Huang, S.; Ni, W.; Wei, Z.; Cao, Y.; Yu, S.; Jia, Q.; Wu, Y.; Chai, C.; Zheng, Q.; Zhang, L.; Wang, A.; Sun, Z.; Huang, S.; Wang, S.; Chen, W.; Lu, Y. Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J. Cell. Mol. Med., 2019, 23(10), 6846-6858.
[http://dx.doi.org/10.1111/jcmm.14568] [PMID: 31343107]
[34]
Li, H.; Hu, S.; Pang, Y.; Li, M.; Chen, L.; Liu, F.; Liu, M.; Wang, Z.; Cheng, X. Bufalin inhibits glycolysis-induced cell growth and proliferation through the suppression of Integrin β2/FAK signaling pathway in ovarian cancer. Am. J. Cancer Res., 2018, 8(7), 1288-1296.
[PMID: 30094101]
[35]
Hou, J.; Chen, Q.; Huang, Y.; Wu, Z.; Ma, D. Caudatin blocks the proliferation, stemness and glycolysis of non-small cell lung cancer cells through the Raf/MEK/ERK pathway. Pharm. Biol., 2022, 60(1), 764-773.
[http://dx.doi.org/10.1080/13880209.2022.2050768] [PMID: 35387566]
[36]
Dai, Y.; Liu, Y.; Li, J.; Jin, M.; Yang, H.; Huang, G. Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway. Bioengineered, 2022, 13(5), 13906-13918.
[http://dx.doi.org/10.1080/21655979.2022.2086378] [PMID: 35706397]
[37]
Su, X.; Xue, C.; Xie, C.; Si, X.; Xu, J.; Huang, W.; Huang, Z.; Lin, J.; Chen, Z. lncRNA-LET regulates glycolysis and glutamine decomposition of esophageal squamous cell carcinoma through miR-93-5p/miR-106b-5p/SOCS4. Front. Oncol., 2022, 12, 897751.
[http://dx.doi.org/10.3389/fonc.2022.897751] [PMID: 35619921]
[38]
Zhai, S.; Xu, Z.; Xie, J.; Zhang, J.; Wang, X.; Peng, C.; Li, H.; Chen, H.; Shen, B.; Deng, X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene, 2021, 40(2), 277-291.
[http://dx.doi.org/10.1038/s41388-020-01525-3] [PMID: 33122827]
[39]
Xin, Y.; Li, Z.; Zheng, H.; Chan, M.T.V.; Ka Kei Wu, W. CCAT 2: A novel oncogenic long non‐coding RNA in human cancers. Cell Prolif., 2017, 50(3), e12342.
[http://dx.doi.org/10.1111/cpr.12342] [PMID: 28244168]
[40]
Chen, B.; Dragomir, M.P.; Fabris, L.; Bayraktar, R.; Knutsen, E.; Liu, X.; Tang, C.; Li, Y.; Shimura, T.; Ivkovic, T.C.; Cruz De los Santos, M.; Anfossi, S.; Shimizu, M.; Shah, M.Y.; Ling, H.; Shen, P.; Multani, A.S.; Pardini, B.; Burks, J.K.; Katayama, H.; Reineke, L.C.; Huo, L.; Syed, M.; Song, S.; Ferracin, M.; Oki, E.; Fromm, B.; Ivan, C.; Bhuvaneshwar, K.; Gusev, Y.; Mimori, K.; Menter, D.; Sen, S.; Matsuyama, T.; Uetake, H.; Vasilescu, C.; Kopetz, S.; Parker-Thornburg, J.; Taguchi, A.; Hanash, S.M.; Girnita, L.; Slaby, O.; Goel, A.; Varani, G.; Gagea, M.; Li, C.; Ajani, J.A.; Calin, G.A. The Long Noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB Signaling. Gastroenterology, 2020, 159(6), 2146-2162.e33.
[http://dx.doi.org/10.1053/j.gastro.2020.08.018] [PMID: 32805281]
[41]
Wang, D.; Li, Z.; Yin, H. Long Non-Coding RNA CCAT2 activates rab14 and acts as an oncogene in colorectal cancer. Front. Oncol., 2021, 11, 751903.
[http://dx.doi.org/10.3389/fonc.2021.751903] [PMID: 34868956]
[42]
Redis, R.S.; Vela, L.E.; Lu, W.; Ferreira de Oliveira, J.; Ivan, C.; Rodriguez-Aguayo, C.; Adamoski, D.; Pasculli, B.; Taguchi, A.; Chen, Y.; Fernandez, A.F.; Valledor, L.; Van Roosbroeck, K.; Chang, S.; Shah, M.; Kinnebrew, G.; Han, L.; Atlasi, Y.; Cheung, L.H.; Huang, G.Y.; Monroig, P.; Ramirez, M.S.; Catela Ivkovic, T.; Van, L.; Ling, H.; Gafà, R.; Kapitanovic, S.; Lanza, G.; Bankson, J.A.; Huang, P.; Lai, S.Y.; Bast, R.C.; Rosenblum, M.G.; Radovich, M.; Ivan, M.; Bartholomeusz, G.; Liang, H.; Fraga, M.F.; Widger, W.R.; Hanash, S.; Berindan-Neagoe, I.; Lopez-Berestein, G.; Ambrosio, A.L.B.; Gomes Dias, S.M.; Calin, G.A. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol. Cell, 2016, 61(4), 520-534.
[http://dx.doi.org/10.1016/j.molcel.2016.01.015] [PMID: 26853146]
[43]
Zhang, Z.; Wang, X.; Wang, Y.; Zhou, D.; Wu, H.; Cheng, W.; Wang, Q.; Zheng, G.; Wang, J.; Gu, J. Effect of long noncoding RNA CCAT2 on drug sensitivity to 5‐fluorouracil of breast cancer cells through microRNA‐145 meditated by p53. J. Biochem. Mol. Toxicol., 2022, 36(11), e23176.
[http://dx.doi.org/10.1002/jbt.23176] [PMID: 35968984]
[44]
Moradi, F; Mohajerani, F; Sadeghizadeh, M CCAT2 knockdown inhibits cell growth, and migration and promotes apoptosis through regulating the hsa-mir-145-5p/AKT3/mTOR axis in tamoxifenresistant MCF7 cells. Life Sci, 2022, 311(Pt B), 121183.
[http://dx.doi.org/10.1016/j.lfs.2022.121183]
[45]
Niu, C.; Wang, L.; Ye, W.; Guo, S.; Bao, X.; Wang, Y.; Xia, Z.; Chen, R.; Liu, C.; Lin, X.; Huang, X. CCAT2 contributes to hepatocellular carcinoma progression via inhibiting miR‐145 maturation to induce MDM2 expression. J. Cell. Physiol., 2020, 235(9), 6307-6320.
[http://dx.doi.org/10.1002/jcp.29630] [PMID: 32037568]

© 2024 Bentham Science Publishers | Privacy Policy