Review Article

平板电脑技术的最新进展及人工智能研究综述

卷 25, 期 6, 2024

发表于: 11 January, 2024

页: [416 - 430] 页: 15

弟呕挨: 10.2174/0113894501281290231221053939

价格: $65

Open Access Journals Promotions 2
摘要

背景:将现代技术与成熟的药学科学相结合,可以使片剂配方发生革命性的变化。制药行业可以利用人工智能(AI)、机器学习(ML)、材料科学,开发出更高效、更稳定、对患者更友好的片剂配方。 目的:本综述的主要目的是探讨片剂技术的进展,重点是人工智能(AI)、机器学习(ML)和材料科学等现代技术的整合,以提高片剂配方工艺的效率、成本效益和质量。 方法:综述了人工智能和机器学习技术在药物研发中的应用。本文还讨论了所采用的各种机器学习方法,包括人工神经网络、回归树集合、支持向量机和多元数据分析技术。 结果:近年来的研究表明了ML方法在药物研究中的可行性和有效性。人工智能和机器学习在药物研究中的应用已经显示出有希望的结果,为产品开发过程的重大改进提供了潜在的途径。 结论:纳米技术、人工智能、机器学习和材料科学与传统制药科学的融合为改进片剂处方工艺提供了一个绝佳的机会。这篇综述共同强调了人工智能和机器学习在推进药物研发方面可以发挥的变革性作用,最终导致更高效、可靠和以患者为中心的片剂配方。

关键词: 物料搬运、片剂、人工智能、机器学习、片剂技术、制药科学。

图形摘要
[1]
Ganguly D, Ghosh S, Chakraborty P, et al. A brief review on recent advancement of tablet coating technology. J Appl Pharm Res 2022; 10(1): 7-14.
[http://dx.doi.org/10.18231/J.JOAPR.2022.7.14]
[2]
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240: 504-26.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[3]
Geraili A, Xing M, Mequanint K. Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment. VIEW 2021; 2: 5.: 20200126.
[http://dx.doi.org/10.1002/VIW.20200126]
[4]
Fujimoto Y, Hirai N, Takatani-Nakase T, Takahashi K. Novel tablet formulation of amorphous indomethacin using wet granulation with a high-speed mixer granulator combined with porous calcium silicate. J Drug Deliv Sci Technol 2016; 33: 51-7.
[http://dx.doi.org/10.1016/j.jddst.2016.03.001]
[5]
Najjari A, Mehdinavaz Aghdam R, Ebrahimi SS, et al. Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: A review. Biomed Tech 2022; 67(2): 71-88.
[http://dx.doi.org/10.1515/bmt-2021-0265]
[6]
Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater 2023; 25: 29-41.
[http://dx.doi.org/10.1016/j.bioactmat.2023.01.016] [PMID: 37056252]
[7]
Işıklan N, Erol ÜH. Design and evaluation of temperature-responsive chitosan/hydroxypropyl cellulose blend nanospheres for sustainable flurbiprofen release. Int J Biol Macromol 2020; 159: 751-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.071] [PMID: 32416307]
[8]
Wu S, Wu X, Wang X, Su J. Hydrogels for bone organoid construction: From a materiobiological perspective. J Mater Sci Technol 2023; 136: 21-31.
[http://dx.doi.org/10.1016/j.jmst.2022.07.008]
[9]
Hye T, Moinuddin SM, Sarkar T, Nguyen T, Saha D, Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin Drug Deliv 2023; 20(3): 335-48.
[http://dx.doi.org/10.1080/17425247.2023.2175814]
[10]
Al-Hashimi N, Begg N, Alany R, Hassanin H, Elshaer A. Oral modified release multiple-unit particulate systems: Compressed pellets, microparticles and nanoparticles. Pharmaceutics 2018; 10(4): 176.
[http://dx.doi.org/10.3390/pharmaceutics10040176]
[11]
Samiei N. Recent trends on applications of 3D printing technology on the design and manufacture of pharmaceutical oral formulation: A mini review. Beni-Suef Univ J Basic Appl Sci 2020; 9(1): 12.
[http://dx.doi.org/10.1186/s43088-020-00040-4]
[12]
Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 2012; 64: 163-74.
[http://dx.doi.org/10.1016/j.addr.2012.09.028] [PMID: 11369079]
[13]
Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41(3): 1427-73.
[http://dx.doi.org/10.1002/med.21764] [PMID: 33295676]
[14]
Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. OMICS 2019; 23(11): 539-48.
[http://dx.doi.org/10.1089/omi.2019.0151] [PMID: 31651216]
[15]
Patel V, Shah M. Artificial intelligence and machine learning in drug discovery and development. Intell Med 2022; 2(3): 134-40.
[http://dx.doi.org/10.1016/j.imed.2021.10.001]
[16]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[17]
Ramamurthy K, Varikuti AR, Gupta B, Aswani N. A deep learning network for Gleason grading of prostate biopsies using EfficientNet. Biomed Eng 2023; 68(2): 187-98.
[http://dx.doi.org/10.1515/bmt-2022-0201]
[18]
Jain AK, Thareja S. in vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 524-39.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[19]
Gaikwad VL, Choudhari PB, Bhatia NM, Bhatia MS. Characterization of pharmaceutical nanocarriers: in vitro and in vivo studies. Nanomaterials for drug delivery and therapy. Elsevier 2019; pp. 33-58.
[http://dx.doi.org/10.1016/B978-0-12-816505-8.00016-3]
[20]
Schneider F, Koziolek M, Weitschies W. in vitro and in vivo test methods for the evaluation of gastroretentive dosage forms. Pharmaceutics 2019; 11(8): 416.
[http://dx.doi.org/10.3390/pharmaceutics11080416] [PMID: 31426417]
[21]
Umar Ibrahim A, Al-Turjman F, Ozsoz M, Serte S. Computer aided detection of tuberculosis using two classifiers. Biomed Eng 2022; 67(6): 513-24.
[http://dx.doi.org/10.1515/bmt-2021-0310]
[22]
Salawi A. An insight into preparatory methods and characterization of orodispersible film—A review. Pharmaceuticals 2022; 15(7): 844.
[http://dx.doi.org/10.3390/ph15070844] [PMID: 35890143]
[23]
Kim Y, Park EJ, Kim TW, Na DH. Recent progress in drug release testing methods of biopolymeric particulate system. Pharmaceutics 2021; 13(8): 1313.
[http://dx.doi.org/10.3390/pharmaceutics13081313] [PMID: 34452274]
[24]
Zuccari G, Alfei S, Marimpietri D, Iurilli V, Barabino P, Marchitto L. Mini-tablets: A valid strategy to combine efficacy and safety in pediatrics. Pharmaceuticals 2022; 15(1): 108.
[http://dx.doi.org/10.3390/ph15010108]
[25]
Tumuluri V. Pharmaceutical mini-tablets: A revived trend Drug delivery trends. Elsevier 2020; pp. 123-39.
[http://dx.doi.org/10.1016/B978-0-12-817870-6.00006-7]
[26]
Siamidi A, Tsintavi E, M. Rekkas D, Vlachou M. 3D-printed modified-release tablets: A review of the recent advances. IntechOpen 2020.
[27]
Zhang B, Teoh XY, Yan J, Gleadall A, Belton P, Bibb R, et al. Development of combi-pills using the coupling of semi-solid syringe extrusion 3D printing with fused deposition modelling. Int J Pharm 2022; 625: 122140.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122140]
[28]
Tan DK, Maniruzzaman M, Nokhodchi A. Development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing. Polymers 2019; 12(1): 27.
[http://dx.doi.org/10.3390/polym12010027]
[29]
Kotta S, Bijumol C, Anitha Y, Dileep KJ, Valsala K. Design, development and in vitroin vivo study of tramadol–paracetamol inlay tablets. Pharm Dev Technol 2014; 19(1): 1-9.
[http://dx.doi.org/10.3109/10837450.2012.746365] [PMID: 23249424]
[30]
Kailash S, Vimlendu K, Pooja L, Bhaskar Kumar G. Different types of pharmaceutical tablets used for treatment of diseases. GSC Biological and Pharmaceutical Sciences 2022; 21(2): 1-11.
[http://dx.doi.org/10.30574/gscbps.2022.21.2.0398]
[31]
Shukla D, Chakraborty S, Singh S, Mishra B. Pastillation: A novel technology for development of oral lipid based multiparticulate controlled release formulation. Powder Technol 2011; 209(1-3): 65-72.
[http://dx.doi.org/10.1016/j.powtec.2011.02.006]
[32]
Dey P, Maiti S. Orodispersible tablets: A new trend in drug delivery. J Nat Sci Biol Med 2010; 1(1): 2-5.
[http://dx.doi.org/10.4103/0976-9668.71663] [PMID: 22096326]
[33]
Kokott M, Lura A, Breitkreutz J, Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. Eur J Pharm Biopharm 2021; 168: 122-30.
[http://dx.doi.org/10.1016/j.ejpb.2021.08.016]
[34]
Jayasekara D, Lai NYG, Wong KH, Pawar K, Zhu Y. Level of automation (LOA) in aerospace composite manufacturing: Present status and future directions towards industry 4.0. J Manuf Syst 2022; 62: 44-61.
[http://dx.doi.org/10.1016/j.jmsy.2021.10.015]
[35]
Billups M, Singh R. Systematic framework for implementation of material traceability into continuous pharmaceutical tablet manufacturing process. J Pharm Innov 2020; 15(1): 51-65.
[http://dx.doi.org/10.1007/s12247-018-9362-9]
[36]
Chien C-F, Dauzère-Pérès S, Huh WT, Jang YJ, Morrison JR. Artificial intelligence in manufacturing and logistics systems: Algorithms, applications, and case studies. Taylor & Francis 2020; pp. 2730-1.
[37]
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated continuous pharmaceutical technologies—A review. Org Process Res Dev 2021; 25(4): 721-39.
[http://dx.doi.org/10.1021/acs.oprd.0c00504]
[38]
Vo AQ, Kutz G, He H, Narala S, Bandari S, Repka MA. Continuous manufacturing of ketoprofen delayed release pellets using melt extrusion technology: Application of QbD design space, inline near infrared, and inline pellet size analysis. J Pharm Sci 2020; 109(12): 3598-607.
[http://dx.doi.org/10.1016/j.xphs.2020.09.007] [PMID: 32916139]
[39]
Arden NS, Fisher AC, Tyner K, Yu LX, Lee SL, Kopcha M. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future. Int J Pharm 2021; 602: 120554.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120554] [PMID: 33794326]
[40]
Peterson JJ, Kramer TT, Hofer JD, Atkins G. Opportunities and challenges for statisticians in advanced pharmaceutical manufacturing. Stat Biopharm Res 2019; 11(2): 152-61.
[http://dx.doi.org/10.1080/19466315.2018.1546611]
[41]
DelSpina B, Zhang Y, Wang Y. A benchtop robot and automation solution for prefilled syringes in pharmaceutical manufacturing. 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE).
[42]
Ding IJ Jr, Su JL. Designs of human–robot interaction using depth sensor-based hand gesture communication for smart material-handling robot operations. Proc Inst Mech Eng, B J Eng Manuf 2023; 237(3): 392-413.
[http://dx.doi.org/10.1177/09544054221102247]
[43]
Ashima R, Haleem A, Bahl S, Javaid M, Kumar Mahla S, Singh S. Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0. Mater Today Proc 2021; 45: 5081-8.
[http://dx.doi.org/10.1016/j.matpr.2021.01.583]
[44]
Song Y, Yu FR, Zhou L, Yang X, He Z. Applications of the Internet of things (IoT) in smart logistics: A comprehensive survey. IEEE Internet Things J 2021; 8(6): 4250-74.
[http://dx.doi.org/10.1109/JIOT.2020.3034385]
[45]
Nguyen HP, Le PQH, Pham VV, Nguyen XP, Balasubramaniam D, Hoang AT. Application of the Internet of Things in 3E (efficiency, economy, and environment) factor-based energy management as smart and sustainable strategy. Energy Sources A Recovery Util Environ Effects 2021; 1-23.
[http://dx.doi.org/10.1080/15567036.2021.1954110]
[46]
Chung C, Kim J, Sovacool BK, Griffiths S, Bazilian M, Yang M. Decarbonizing the chemical industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Res Soc Sci 2023; 96: 102955.
[http://dx.doi.org/10.1016/j.erss.2023.102955]
[47]
Shah P. Post COVID-19 supply chain optimization for the indian pharmaceutical industry using AI techniques. Intersect: The stanford journal of science. Technol Soc 2021; 15(1)
[48]
Pell R, Tijsseling L, Goodenough K, et al. Towards sustainable extraction of technology materials through integrated approaches. Nat Rev Earth Environ 2021; 2(10): 665-79.
[http://dx.doi.org/10.1038/s43017-021-00211-6]
[49]
Sharma A, Kaur J, Singh I. Internet of things (IoT) in pharmaceutical manufacturing, warehousing, and supply chain management. SN Computer Science 2020; 1(4): 232.
[http://dx.doi.org/10.1007/s42979-020-00248-2]
[50]
Jiang J, Ma X, Ouyang D, Williams RO. Emerging artificial intelligence (AI) technologies used in the development of solid dosage forms. Pharmaceutics 2022; 14(11): 2257.
[http://dx.doi.org/10.3390/pharmaceutics14112257]
[51]
Gams M, Horvat M, Ožek M, Luštrek M, Gradišek A. Integrating artificial and human intelligence into tablet production process. AAPS PharmSciTech 2014; 15(6): 1447-53.
[http://dx.doi.org/10.1208/s12249-014-0174-z] [PMID: 24970587]
[52]
Shao Q, Rowe RC, York P. Investigation of an artificial intelligence technology—Model trees. Eur J Pharm Sci 2007; 31(2): 137-44.
[http://dx.doi.org/10.1016/j.ejps.2007.03.004] [PMID: 17452096]
[53]
Alhijjaj M, Nasereddin J, Belton P, Qi S. Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics 2019; 11(12): 633.
[http://dx.doi.org/10.3390/pharmaceutics11120633]
[54]
Muñiz Castro B, Elbadawi M, Ong JJ, et al. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337: 530-45.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.046] [PMID: 34339755]
[55]
Obeid S, Madžarević M, Krkobabić M, Ibrić S. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int J Pharm 2021; 601: 120507.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120507]
[56]
Westphal E, Seitz H. A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks. Additive Manufacturing 2021; 41: 101965.
[http://dx.doi.org/10.1016/j.addma.2021.101965]
[57]
Ma X, Kittikunakorn N, Sorman B, et al. Application of deep learning convolutional neural networks for internal tablet defect detection: High accuracy, throughput, and adaptability. J Pharm Sci 2020; 109(4): 1547-57.
[http://dx.doi.org/10.1016/j.xphs.2020.01.014] [PMID: 31982393]
[58]
Yost E, Chalus P, Zhang S, Peter S, Narang AS. Quantitative X-ray microcomputed tomography assessment of internal tablet defects. J Pharm Sci 2019; 108(5): 1818-30.
[http://dx.doi.org/10.1016/j.xphs.2018.12.024] [PMID: 30639743]
[59]
Floryanzia S, Ramesh P, Mills M, et al. Disintegration testing augmented by computer Vision technology. Int J Pharm 2022; 619: 121668.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121668]
[60]
Szlęk J, Khalid MH, Pacławski A, Czub N, Mendyk A. Puzzle out machine learning model-explaining disintegration process in ODTs. Pharmaceutics 2022; 14(4): 859.
[http://dx.doi.org/10.3390/pharmaceutics14040859]
[61]
Wang H, Kwong CF, Liu Q, Liu Z, Chen Z. A novel artificial intelligence system in formulation dissolution prediction. Comput Intell Neurosci 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/8640115] [PMID: 35978897]
[62]
Galata DL, Könyves Z, Nagy B, et al. Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. Int J Pharm 2021; 597: 120338.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120338]
[63]
Han R, Yang Y, Li X, Ouyang D. Predicting oral disintegrating tablet formulations by neural network techniques. Asian J Pharm Sci 2018; 13(4): 336-42.
[http://dx.doi.org/10.1016/j.ajps.2018.01.003] [PMID: 32104407]
[64]
Petrović J, Ibrić S, Betz G, Đurić Z. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees. Int J Pharm 2012; 428(1-2): 57-67.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.031] [PMID: 22402474]
[65]
Mészáros LA, Farkas A, Madarász L, Bicsár R, Galata DL, Nagy B, et al. UV/VIS imaging-based PAT tool for drug particle size inspection in intact tablets supported by pattern recognition neural networks. Int J Pharm 2022; 620: 121773.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121773]
[66]
Bhuskute H, Shende P, Prabhakar B. 3D printed personalized medicine for cancer: Applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech 2021; 23(1): 8.
[http://dx.doi.org/10.1208/s12249-021-02153-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy