Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

突触蛋白1改善阿尔茨海默病大鼠的认知障碍和神经炎症:一项实验和生物信息学研究

卷 20, 期 9, 2023

发表于: 11 January, 2024

页: [648 - 659] 页: 12

弟呕挨: 10.2174/0115672050276594231229050906

价格: $65

conference banner
摘要

背景:阿尔茨海默病(AD)是一种持续的神经病理损伤,表现为神经元/突触死亡、老年斑发育、tau过度磷酸化、神经炎症和细胞凋亡。突触蛋白1 (SYN1)是一种神经元磷酸化蛋白,被认为与阿尔茨海默病的病理有关。 目的:本研究旨在阐明SYN1在改善AD中的确切作用及其潜在的调控机制。 方法:从GEO数据库下载AD数据集GSE48350, SYN1主要用于差异表达分析和基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。在建立AD大鼠模型后,用RNAi慢病毒处理它们以触发SYN1过表达。通过多个实验(水迷宫实验和物体识别实验)验证了SYN1在ad相关行为中的改善作用。通过检测炎症因子(白细胞介素(IL)-6、IL-1β、肿瘤坏死因子(TNF)-α)、神经递质(乙酰胆碱(ACh)、多巴胺(DA)、5-羟色氨酸(5-HT))和氧化应激标志物(谷胱甘肽(GSH)、丙二醛(MDA)、活性氧(ROS))的浓度,证实SYN1对AD重要因子的修复作用。通过分子生物学实验(qRT-PCR和western blot)检测SYN1过表达后ad相关信号通路。 结果:差异表达分析共获得545个差异表达基因,其中4个表达上调,541个表达下调。富集的通路基本集中在突触功能上,蛋白-蛋白相互作用网络的分析主要集中在SYN1的关键基因上。SYN1显著提高AD大鼠的空间学习记忆能力。这种增强表现在水迷宫大鼠的逃避潜伏期缩短,第三象限停留时间明显延长,穿越次数增加。此外,物体识别测试结果显示,大鼠探索熟悉和新物体的时间缩短。SYN1过表达后,cAMP信号通路被激活,CREB和PKA蛋白磷酸化水平升高,促进ACh、DA、5-HT等神经递质分泌。此外,由于MDA和ROS水平的降低,氧化应激受到抑制。炎症因子方面,SYN1过表达AD大鼠IL-6、IL-1β、TNF-α水平显著降低。 结论:SYN1过表达通过激活cAMP信号通路抑制氧化应激和炎症反应,改善AD大鼠认知功能,促进多种神经递质释放。这些发现可能为AD的针对性诊断和治疗提供理论依据。

关键词: 阿尔茨海默病(AD),突触素1 (SYN1), GEO数据库,氧化应激,炎症反应,cAMP信号通路。

[1]
2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[2]
Beata, B.K.; Wojciech, J.; Johannes, K.; Piotr, L.; Barbara, M. Alzheimer’s disease—biochemical and psychological background for diagnosis and treatment. Int. J. Mol. Sci., 2023, 24(2), 1059.
[http://dx.doi.org/10.3390/ijms24021059] [PMID: 36674580]
[3]
Kelberman, M.A.; Anderson, C.R.; Chlan, E.; Rorabaugh, J.M.; McCann, K.E.; Weinshenker, D. Consequences of hyperphosphorylated tau in the locus coeruleus on behavior and cognition in a rat model of alzheimer’s disease. J. Alzheimers Dis., 2022, 86(3), 1037-1059.
[http://dx.doi.org/10.3233/JAD-215546] [PMID: 35147547]
[4]
Hunt, A.; Schönknecht, P.; Henze, M.; Seidl, U.; Haberkorn, U.; Schröder, J. Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res. Neuroimaging, 2007, 155(2), 147-154.
[http://dx.doi.org/10.1016/j.pscychresns.2006.12.003] [PMID: 17524628]
[5]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[6]
Sperling, R.A.; Donohue, M.C.; Raman, R.; Sun, C.K.; Yaari, R.; Holdridge, K.; Siemers, E.; Johnson, K.A.; Aisen, P.S. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol., 2020, 77(6), 735-745.
[http://dx.doi.org/10.1001/jamaneurol.2020.0387] [PMID: 32250387]
[7]
Zhang, X.; Wei, M.; Fan, J.; Yan, W.; Zha, X.; Song, H.; Wan, R.; Yin, Y.; Wang, W. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy, 2021, 17(6), 1519-1542.
[http://dx.doi.org/10.1080/15548627.2020.1840796] [PMID: 33111641]
[8]
Maesako, M.; Zoltowska, K.M.; Berezovska, O. Synapsin 1 promotes Aβ generation via BACE1 modulation. PLoS One, 2019, 14(12), e0226368.
[http://dx.doi.org/10.1371/journal.pone.0226368] [PMID: 31830091]
[9]
Xiong, J.; Duan, H.; Chen, S.; Kessi, M.; He, F.; Deng, X.; Zhang, C.; Yang, L.; Peng, J.; Yin, F. Familial SYN1 variants related neurodevelopmental disorders in Asian pediatric patients. BMC Med. Genomics, 2021, 14(1), 182.
[http://dx.doi.org/10.1186/s12920-021-01028-4] [PMID: 34243774]
[10]
Perić, I.; Costina, V.; Djordjević, S.; Gass, P.; Findeisen, P.; Inta, D.; Borgwardt, S.; Filipović, D. Tianeptine modulates synaptic vesicle dynamics and favors synaptic mitochondria processes in socially isolated rats. Sci. Rep., 2021, 11(1), 17747.
[http://dx.doi.org/10.1038/s41598-021-97186-7] [PMID: 34493757]
[11]
Astillero-Lopez, V.; Gonzalez-Rodriguez, M.; Villar-Conde, S.; Flores-Cuadrado, A.; Martinez-Marcos, A.; Ubeda-Banon, I.; Saiz-Sanchez, D. Neurodegeneration and astrogliosis in the entorhinal cortex in Alzheimer’s disease: Stereological layer-specific assessment and proteomic analysis. Alzheimers Dement., 2022, 18(12), 2468-2480.
[http://dx.doi.org/10.1002/alz.12580] [PMID: 35142030]
[12]
Zhang, Q; Li, J; Weng, L. Identification and validation of aging-related genes in Alzheimer's disease. Front Neurosci., 2022, 16, 905722.
[http://dx.doi.org/10.3389/fnins.2022.905722]
[13]
Wang, Y; Chen, G; Shao, W. Identification of ferroptosis-related genes in alzheimer's disease based on bioinformatic analysis. Front Neurosci, 2022, 16, 823741.
[http://dx.doi.org/10.3389/fnins.2022.823741]
[14]
Li, J; Zhang, Y; Lu, T Identification of diagnostic genes for both Alzheimer's disease and Metabolic syndrome by the machine learning algorithm. Front Immunol, 2022, 13, 1037318.
[http://dx.doi.org/10.3389/fimmu.2022.1037318]
[15]
Zhang, R.; Xue, G.; Wang, S.; Zhang, L.; Shi, C.; Xie, X. Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer’s disease mouse model. J. Alzheimers Dis., 2012, 31(4), 801-812.
[http://dx.doi.org/10.3233/JAD-2012-120151] [PMID: 22710911]
[16]
Bromley-Brits, K.; Deng, Y.; Song, W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J. Vis. Exp., 2011, 53, 53.
[http://dx.doi.org/10.3791/2920] [PMID: 21808223]
[17]
Weichenberger, C.X.; Palermo, A.; Pramstaller, P.P.; Domingues, F.S. Exploring approaches for detecting protein functional similarity within an orthology-based framework. Sci. Rep., 2017, 7(1), 381.
[http://dx.doi.org/10.1038/s41598-017-00465-5] [PMID: 28336965]
[18]
Ichiki, T.R. R&D of biodevice technology toward medical and pharmaceutical application 2016, 6(9), 5.
[19]
Ye, X.W.; Wang, H.L.; Cheng, S.Q.; Xia, L.J.; Xu, X.F.; Li, X.R. Network pharmacology-based strategy to investigate the pharmacologic mechanisms of coptidis rhizoma for the treatment of alzheimer's disease. Front Aging Neurosci, 2022, 14, 890046.
[http://dx.doi.org/10.3389/fnagi.2022.890046]
[20]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[21]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape stringApp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[22]
Guo, H.; Chen, R.; Li, P.; Yang, Q.; He, Y. ZBP1 mediates the progression of Alzheimer’s disease via pyroptosis by regulating IRF3. Mol. Cell. Biochem., 2023, 478(12), 2849-2860.
[http://dx.doi.org/10.1007/s11010-023-04702-6] [PMID: 36964897]
[23]
Liu, X.; Zhang, R.; Wu, Z.; Si, W.; Ren, Z.; Zhang, S.; Zhou, J.; Chen, D. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. Int. J. Mol. Med., 2019, 44(5), 1729-1740.
[http://dx.doi.org/10.3892/ijmm.2019.4331] [PMID: 31545395]
[24]
Barnett, A; David, E; Rohlman, A Adolescent binge alcohol enhances early alzheimer's disease pathology in adulthood through proinflammatory neuroimmune activation. Front Pharmacol, 2022, 13, 884170.
[http://dx.doi.org/10.3389/fphar.2022.884170]
[25]
Saloner, R.; Paolillo, E.W.; Wojta, K.J.; Fonseca, C.; Gontrum, E.Q.; Lario-Lago, A.; Rabinovici, G.D.; Yokoyama, J.S.; Rexach, J.E.; Kramer, J.H.; Casaletto, K.B. Sex-specific effects of SNAP-25 genotype on verbal memory and Alzheimer’s disease biomarkers in clinically normal older adults. Alzheimers Dement., 2023, 19(8), 3448-3457.
[http://dx.doi.org/10.1002/alz.12989] [PMID: 36807763]
[26]
Pereira, J.B.; Janelidze, S.; Ossenkoppele, R.; Kvartsberg, H.; Brinkmalm, A.; Mattsson-Carlgren, N.; Stomrud, E.; Smith, R.; Zetterberg, H.; Blennow, K.; Hansson, O. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain, 2021, 144(1), 310-324.
[http://dx.doi.org/10.1093/brain/awaa395] [PMID: 33279949]
[27]
McGrowder, D.A.; Miller, F.; Vaz, K.; Nwokocha, C.; Wilson-Clarke, C.; Anderson-Cross, M.; Brown, J.; Anderson-Jackson, L.; Williams, L.; Latore, L.; Thompson, R.; Alexander-Lindo, R. Cerebrospinal fluid biomarkers of alzheimer’s disease: Current evidence and future perspectives. Brain Sci., 2021, 11(2), 215.
[http://dx.doi.org/10.3390/brainsci11020215] [PMID: 33578866]
[28]
Chen, X.Q.; Zuo, X.; Becker, A.; Head, E.; Mobley, W.C. Reduced synaptic proteins and SNARE complexes in Down syndrome with Alzheimer’s disease and the Dp16 mouse Down syndrome model: Impact of APP gene dose. Alzheimers Dement., 2023, 19(5), 2095-2116.
[http://dx.doi.org/10.1002/alz.12835] [PMID: 36370135]
[29]
Chang, C.H.; Lin, C.H.; Lane, H.Y. Machine learning and novel biomarkers for the diagnosis of alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(5), 2761.
[http://dx.doi.org/10.3390/ijms22052761] [PMID: 33803217]
[30]
Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med., 2016, 18(5), 421-430.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[31]
Abeysinghe, A; Deshapriya, R; Udawatte, C. Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci, 2020, 256, 117996.
[32]
Longhena, F; Faustini, G; Brembati, V; Pizzi, M; Benfenati, F; Bellucci, A An updated reappraisal of synapsins: Structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev, 2021, 130, 33-60.
[http://dx.doi.org/10.1016/j.neubiorev.2021.08.011]
[33]
Parenti, I; Leitao, E; Kuechler, A The different clinical facets of SYN1-related neurodevelopmental disorders. Front Cell Dev Biol, 2022, 10, 1019715.
[http://dx.doi.org/10.3389/fcell.2022.1019715]
[34]
Ramadan, W.S.; Alkarim, S. Ellagic acid modulates the amyloid precursor protein gene via superoxide dismutase regulation in the entorhinal cortex in an experimental alzheimer’s model. Cells, 2021, 10(12), 3511.
[http://dx.doi.org/10.3390/cells10123511] [PMID: 34944019]
[35]
Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol., 2016, 53(1), 648-661.
[http://dx.doi.org/10.1007/s12035-014-9053-6] [PMID: 25511446]
[36]
Lalut, J.; Karila, D.; Dallemagne, P.; Rochais, C. Modulating 5-HT 4 and 5-HT 6 receptors in Alzheimer’s disease treatment. Future Med. Chem., 2017, 9(8), 781-795.
[http://dx.doi.org/10.4155/fmc-2017-0031] [PMID: 28504917]
[37]
Jarosova, R.; Niyangoda, S.S.; Hettiarachchi, P.; Johnson, M.A. Impaired dopamine release and latent learning in alzheimer’s disease model zebrafish. ACS Chem. Neurosci., 2022, 13(19), 2924-2931.
[http://dx.doi.org/10.1021/acschemneuro.2c00484] [PMID: 36113115]
[38]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[39]
Liu, W.; Li, J.; Yang, M.; Ke, X.; Dai, Y.; Lin, H.; Wang, S.; Chen, L.; Tao, J. Chemical genetic activation of the cholinergic basal forebrain hippocampal circuit rescues memory loss in Alzheimer’s disease. Alzheimers Res. Ther., 2022, 14(1), 53.
[http://dx.doi.org/10.1186/s13195-022-00994-w] [PMID: 35418161]
[40]
Tripathi, P.N.; Srivastava, P.; Sharma, P.; Tripathi, M.K.; Seth, A.; Tripathi, A.; Rai, S.N.; Singh, S.P.; Shrivastava, S.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem., 2019, 85, 82-96.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.017] [PMID: 30605887]
[41]
Srivastava, P.; Tripathi, P.N.; Sharma, P.; Rai, S.N.; Singh, S.P.; Srivastava, R.K.; Shankar, S.; Shrivastava, S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem., 2019, 163, 116-135.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[42]
McGeer, P.L.; Schulzer, M.; McGeer, E.G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease. Neurology, 1996, 47(2), 425-432.
[http://dx.doi.org/10.1212/WNL.47.2.425] [PMID: 8757015]
[43]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[44]
Tam, K.Y.; Ju, Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2022, 17(3), 543-549.
[http://dx.doi.org/10.4103/1673-5374.320970] [PMID: 34380884]
[45]
Kumar, A; Singh, A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer's disease and other neurological conditions. Front Pharmacol, 2015, 6, 206.
[http://dx.doi.org/10.3389/fphar.2015.00206]
[46]
Rai, S.N.; Singh, C.; Singh, A.; Singh, M.P.; Singh, B.K. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimer’s disease. Mol. Neurobiol., 2020, 57(7), 3075-3088.
[http://dx.doi.org/10.1007/s12035-020-01945-y] [PMID: 32462551]
[47]
Gu, F.; Chauhan, V.; Chauhan, A. Glutathione redox imbalance in brain disorders. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(1), 89-95.
[http://dx.doi.org/10.1097/MCO.0000000000000134] [PMID: 25405315]
[48]
Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; Gasparovic, A.C.; Cuadrado, A.; Weber, D.; Poulsen, H.E.; Grune, T.; Schmidt, H.H.H.W.; Ghezzi, P. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal., 2015, 23(14), 1144-1170.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[49]
Ju, WK; Shim, MS; Kim, KY Inhibition of cAMP/PKA pathway protects optic nerve head astrocytes against oxidative stress by akt/bax phosphorylation-mediated Mfn1/2 oligomerization. Oxid Med Cell Longev, 2019, 2019, 8060962.
[50]
Yu, S.; Doycheva, D.M.; Gamdzyk, M.; Yang, Y.; Lenahan, C.; Li, G.; Li, D.; Lian, L.; Tang, J.; Lu, J.; Zhang, J.H. Activation of MC1R with BMS-470539 attenuates neuroinflammation via cAMP/PKA/Nurr1 pathway after neonatal hypoxic-ischemic brain injury in rats. J. Neuroinflammation, 2021, 18(1), 26.
[http://dx.doi.org/10.1186/s12974-021-02078-2] [PMID: 33468172]
[51]
Jankowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Diabetic theory in anti-alzheimer’s drug research and development. Part 2: Therapeutic potential of cAMP-specific phosphodiesterase inhibitors. Curr. Med. Chem., 2021, 28(18), 3535-3553.
[http://dx.doi.org/10.2174/0929867327666200917125857] [PMID: 32940168]
[52]
Viña, D.; Seoane, N.; Vasquez, E.C.; Campos-Toimil, M. cAMP compartmentalization in cerebrovascular endothelial cells: New therapeutic opportunities in alzheimer’s disease. Cells, 2021, 10(8), 1951.
[http://dx.doi.org/10.3390/cells10081951] [PMID: 34440720]
[53]
Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for alzheimer’s disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293.
[http://dx.doi.org/10.2174/1567205018666210218152253] [PMID: 33602089]
[54]
Balkrishna, A; Bhattacharya, K; Shukla, S; Varshney, A. Neuroprotection by polyherbal medicine divya-medha-vati against scopolamine-induced cognitive impairment through modulation of oxidative stress, acetylcholine activity, and cell signaling. Mol Neurobiol, 2023, 1-20.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy