Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

东莨菪碱注射小鼠辣椒素的神经药理研究

卷 20, 期 9, 2023

发表于: 11 January, 2024

页: [660 - 676] 页: 17

弟呕挨: 10.2174/0115672050286225231230130613

价格: $65

conference banner
摘要

目标:评价辣椒素在东莨菪碱诱导的小鼠认知功能障碍、线粒体损伤和氧化损伤中的潜在有益作用。 背景:辣椒素是存在于红辣椒中的主要酚类成分,并负责其辛辣和辛辣的味道。它影响伤害性感觉神经元中的TRPV1通道,存在于啮齿动物和人类大脑的海马和下丘脑中。目的:研究辣椒素对东莨菪碱所致小鼠认知功能障碍、线粒体损伤和氧化损伤的影响,并探讨其作用机制。 目的:本研究旨在探讨辣椒素对东莨菪碱所致小鼠认知功能障碍、线粒体损伤和氧化损伤的影响,并探讨其机制。 方法:在给药东莨菪碱后,连续7天每天给小鼠口服不同剂量的辣椒素(5、10和20 mg/kg)。各种行为测试(运动协调、运动计数、孔板测试)和生化测试(促炎细胞因子、过氧化氢酶、脂质过氧化、亚硝酸盐、还原型谷胱甘肽和超氧化物歧化酶)、线粒体复合体(I、II、III和IV)酶活性和线粒体通透性转变在大脑不同区域进行评估。 结果:东莨菪碱处理的小鼠在高架+迷宫的光区和张开的双臂中进入和持续时间明显减少。有趣的是,不同剂量的辣椒素逆转了东莨菪碱的焦虑、抑郁样行为以及学习和记忆障碍效应。与正常对照组相比,东莨菪碱组小鼠显示出明显增加的促炎细胞因子水平,线粒体酶复合物活性受损,氧化损伤增加。辣椒素处理恢复了脂质过氧化、一氧化氮、过氧化氢酶、超氧化物歧化酶、谷胱甘肽活性的降低,降低了促炎细胞因子,恢复了线粒体复合体酶(I、II、III和IV)的活性以及线粒体的通透性。此外,仅在辣椒素剂量(10和20 mg/kg)下,IL-1β水平恢复。辣椒素降低东莨菪碱诱导的乙酰胆碱酯酶活性,从而提高小鼠海马组织中乙酰胆碱浓度。在组织学研究中,辣椒素也证实了神经元细胞形态的保存。由上述实验结果可知,辣椒素以10 mg/kg, p.o.连续7天的剂量为最有效剂量。 结论:辣椒素通过恢复线粒体功能、抗氧化作用和调节促炎细胞因子的神经保护作用,使其成为通过临床设置进一步开发药物的有希望的候选者。

关键词: 辣椒素,线粒体功能障碍,神经退行性疾病,阿尔茨海默病,促炎细胞因子,线粒体膜通透性,氧化应激。

« Previous
[1]
Henry, M.S.; Passmore, A.P.; Todd, S.; McGuinness, B.; Craig, D.; Johnston, J.A. The development of effective biomarkers for Alzheimer’s disease: A review. Int. J. Geriatr. Psychiatry, 2013, 28(4), 331-340.
[http://dx.doi.org/10.1002/gps.3829] [PMID: 22674539]
[2]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci., 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[3]
Fan, D.Y.; Wang, Y.J. Early intervention in Alzheimer’s disease: How early is early enough? Neurosci. Bull., 2020, 36(2), 195-197.
[http://dx.doi.org/10.1007/s12264-019-00429-x] [PMID: 31494835]
[4]
Solomon, A.; Mangialasche, F.; Richard, E.; Andrieu, S.; Bennett, D.A.; Breteler, M.; Fratiglioni, L.; Hooshmand, B.; Khachaturian, A.S.; Schneider, L.S.; Skoog, I.; Kivipelto, M. Advances in the prevention of Alzheimer’s disease and dementia. J. Intern. Med., 2014, 275(3), 229-250.
[http://dx.doi.org/10.1111/joim.12178] [PMID: 24605807]
[5]
Wakabayashi, T.; Yamaguchi, K.; Matsui, K.; Sano, T.; Kubota, T.; Hashimoto, T.; Mano, A.; Yamada, K.; Matsuo, Y.; Kubota, N.; Kadowaki, T.; Iwatsubo, T. Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 15.
[http://dx.doi.org/10.1186/s13024-019-0315-7] [PMID: 30975165]
[6]
Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Andronie-Cioara, F.L.; Munteanu, M.A.; Brisc, M.C.; Uivarosan, D.; Brisc, C. Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation. Int. J. Mol. Sci., 2021, 22(14), 7432.
[http://dx.doi.org/10.3390/ijms22147432] [PMID: 34299052]
[7]
Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 271-281.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[8]
Moreira, P.; Smith, M.A.; Zhu, X.; Nunomura, A.; Castellani, R.J.; Perry, G. Oxidative stress and neurodegeneration. Ann. N. Y. Acad. Sci., 2005, 1043(1), 545-552.
[http://dx.doi.org/10.1196/annals.1333.062] [PMID: 16037277]
[9]
Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev., 2011, 7(5), 313-324.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[10]
Lee Mosley, R.; Benner, E.J.; Kadiu, I.; Thomas, M.; Boska, M.D.; Hasan, K.; Laurie, C.; Gendelman, H.E. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin. Neurosci. Res., 2006, 6(5), 261-281.
[http://dx.doi.org/10.1016/j.cnr.2006.09.006] [PMID: 18060039]
[11]
Röhl, C.; Armbrust, E.; Herbst, E.; Jess, A.; Gülden, M.; Maser, E.; Rimbach, G.; Bösch-Saadatmandi, C. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: Antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotox. Res., 2010, 17(4), 317-331.
[http://dx.doi.org/10.1007/s12640-009-9108-z] [PMID: 19763738]
[12]
Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 617588.
[http://dx.doi.org/10.3389/fnagi.2021.617588] [PMID: 33679375]
[13]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[14]
Reddy, P.H. Mitochondrial dysfunction in aging and Alzheimer’s disease: Strategies to protect neurons. Antioxid. Redox Signal., 2007, 9(10), 1647-1658.
[http://dx.doi.org/10.1089/ars.2007.1754] [PMID: 17696767]
[15]
Reddy, P.H.; Beal, M.F. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res. Brain Res. Rev., 2005, 49(3), 618-632.
[http://dx.doi.org/10.1016/j.brainresrev.2005.03.004] [PMID: 16269322]
[16]
Zeevalk, G.D.; Bernard, L.P.; Song, C.; Gluck, M.; Ehrhart, J. Mitochondrial inhibition and oxidative stress: Reciprocating players in neurodegeneration. Antioxid. Redox Signal., 2005, 7(9-10), 1117-1139.
[http://dx.doi.org/10.1089/ars.2005.7.1117] [PMID: 16115016]
[17]
Bertholet, A.M.; Delerue, T.; Millet, A.M.; Moulis, M.F.; David, C.; Daloyau, M.; Arnauné-Pelloquin, L.; Davezac, N.; Mils, V.; Miquel, M.C.; Rojo, M.; Belenguer, P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol. Dis., 2016, 90, 3-19.
[http://dx.doi.org/10.1016/j.nbd.2015.10.011] [PMID: 26494254]
[18]
Stanga, S.; Caretto, A.; Boido, M.; Vercelli, A. Mitochondrial dysfunctions: A red thread across neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(10), 3719.
[http://dx.doi.org/10.3390/ijms21103719] [PMID: 32466216]
[19]
Calvo-Rodriguez, M.; Hou, S.S.; Snyder, A.C.; Kharitonova, E.K.; Russ, A.N.; Das, S.; Fan, Z.; Muzikansky, A.; Garcia-Alloza, M.; Serrano-Pozo, A.; Hudry, E.; Bacskai, B.J. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 2146.
[http://dx.doi.org/10.1038/s41467-020-16074-2] [PMID: 32358564]
[20]
Preston, G.C.; Brazell, C.; Ward, C.; Broks, P.; Traub, M.; Stahl, S.M. The scopolamine model of dementia: Determination of central cholinomimetic effects of physostigmine on cognition and biochemical markers in man. J. Psychopharmacol., 1988, 2(2), 67-79.
[http://dx.doi.org/10.1177/026988118800200202] [PMID: 22155841]
[21]
Flood, J.F.; Cherkin, A. Scopolamine effects on memory retention in mice: A model of dementia? Behav. Neural Biol., 1986, 45(2), 169-184.
[http://dx.doi.org/10.1016/S0163-1047(86)90750-8] [PMID: 3964171]
[22]
Goverdhan, P; Sravanthi, A; Mamatha, T Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis, 2012, 974013.
[http://dx.doi.org/10.1155/2012/974013]
[23]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[24]
Yadang, FSA; Nguezeye, Y; Kom, CW; Betote, PHD; Mamat, A; Tchokouaha, LRY Scopolamine-induced memory impairment in mice: Neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. Int. J. Alzheimer’s Dis., 2020, 2020
[25]
Coyle, J.T.; Price, D.L.; DeLong, M.R. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 1983, 219(4589), 1184-1190.
[http://dx.doi.org/10.1126/science.6338589] [PMID: 6338589]
[26]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 308(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[27]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Donepezil, a centrally acting acetylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats. Methods Find. Exp. Clin. Pharmacol., 2000, 22(2), 89-95.
[http://dx.doi.org/10.1358/mf.2000.22.2.796070] [PMID: 10849891]
[28]
Birks, JS; Harvey, RJ Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev, 2018, 6(6), CD001190.
[http://dx.doi.org/10.1002/14651858.CD001190.pub3]
[29]
Tyagi, S.; Shekhar, N.; Thakur, A.K. Protective role of capsaicin in neurological disorders: An overview. Neurochem. Res., 2022, 47(6), 1513-1531.
[http://dx.doi.org/10.1007/s11064-022-03549-5] [PMID: 35150419]
[30]
Mezey, É.; Tóth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci., 2000, 97(7), 3655-3660.
[http://dx.doi.org/10.1073/pnas.97.7.3655] [PMID: 10725386]
[31]
Kauer, J.A.; Gibson, H.E. Hot flash: TRPV channels in the brain. Trends Neurosci., 2009, 32(4), 215-224.
[http://dx.doi.org/10.1016/j.tins.2008.12.006] [PMID: 19285736]
[32]
Jiang, X.; Jia, L.W.; Li, X.H.; Cheng, X.S.; Xie, J.Z.; Ma, Z.W.; Xu, W.J.; Liu, Y.; Yao, Y.; Du, L.L.; Zhou, X.W. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J. Alzheimers Dis., 2013, 35(1), 91-105.
[http://dx.doi.org/10.3233/JAD-121837] [PMID: 23340038]
[33]
Newman, L.A.; Gold, P.E. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist. Psychopharmacology, 2016, 233(5), 925-932.
[http://dx.doi.org/10.1007/s00213-015-4174-9] [PMID: 26660295]
[34]
Hritcu, L.; Cioanca, O.; Hancianu, M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine, 2012, 19(6), 529-534.
[http://dx.doi.org/10.1016/j.phymed.2012.02.002] [PMID: 22402245]
[35]
Salimi, A.; Sabur, M.; Dadkhah, M.; Shabani, M. Inhibition of scopolamine-induced memory and mitochondrial impairment by betanin. J. Biochem. Mol. Toxicol., 2022, 36(7), e23076.
[http://dx.doi.org/10.1002/jbt.23076] [PMID: 35411685]
[36]
Costall, B.; Jones, B.J.; Kelly, M.E.; Naylor, R.J.; Tomkins, D.M. Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacol. Biochem. Behav., 1989, 32(3), 777-785.
[http://dx.doi.org/10.1016/0091-3057(89)90033-6] [PMID: 2740429]
[37]
Barry, J.M.; Costall, B.; Kelly, M.E.; Naylor, R.J. Withdrawal syndrome following subchronic treatment with anxiolytic agents. Pharmacol. Biochem. Behav., 1987, 27(2), 239-245.
[http://dx.doi.org/10.1016/0091-3057(87)90565-X] [PMID: 2888134]
[38]
Mushtaq, A.; Anwar, R.; Ahmad, M. Lavandula stoechas (L) a very potent antioxidant attenuates dementia in scopolamine induced memory deficit mice. Front. Pharmacol., 2018, 9, 1375.
[http://dx.doi.org/10.3389/fphar.2018.01375] [PMID: 30532710]
[39]
Deangelis, L.; Furlan, C. The effects of ascorbic acid and oxiracetam on scopolamine-induced amnesia in a habituation test in aged mice. Neurobiol. Learn. Mem., 1995, 64(2), 119-124.
[http://dx.doi.org/10.1006/nlme.1995.1050] [PMID: 7582819]
[40]
Lok, K.; Zhao, H.; Zhang, C.; He, N.; Shen, H.; Wang, Z.; Zhao, W.; Yin, M. Effects of accelerated senescence on learning and memory, locomotion and anxiety-like behavior in APP/PS1 mouse model of Alzheimer’s disease. J. Neurol. Sci., 2013, 335(1-2), 145-154.
[http://dx.doi.org/10.1016/j.jns.2013.09.018] [PMID: 24095271]
[41]
Jafarian, S.; Ling, K.H.; Hassan, Z.; Perimal-Lewis, L.; Sulaiman, M.R.; Perimal, E.K. Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. Alzheimers Dement., 2019, 5(1), 637-643.
[http://dx.doi.org/10.1016/j.trci.2019.09.009] [PMID: 31687471]
[42]
Lister, R. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology, 1987, 92(2), 180-185.
[http://dx.doi.org/10.1007/BF00177912] [PMID: 3110839]
[43]
Khan, S.; Shad, K.F. Neuroprotective effects of curcumin and vitamin D3 on scopolamine-induced learning-impaired rat model of Alzheimer’s disease. In: Neurological and Mental Disorders; Intechopen, 2020.
[http://dx.doi.org/10.5772/intechopen.92407]
[44]
Prabhu, J.; K Prabhu, P.; Chaudhuri, A.; Krishna Rao, M.R.; Selvi, V.S.K.; TK Balaji, B.; Dinakar, S. Neuro-protective effect of ayurveda formulation, saraswatharishtam, on scopolamine induced memory impairment in animal model. Pharmacogn. J., 2020, 12(1), 6-13.
[http://dx.doi.org/10.5530/pj.2020.12.2]
[45]
Sgroi, S.; Kaelin-Lang, A.; Capper-Loup, C. Spontaneous locomotor activity and L-DOPA-induced dyskinesia are not linked in 6-OHDA parkinsonian rats. Front. Behav. Neurosci., 2014, 8, 331.
[http://dx.doi.org/10.3389/fnbeh.2014.00331] [PMID: 25324746]
[46]
Kuc, K.A.; Gregersen, B.M.; Gannon, K.S.; Dodart, J.C. Holeboard discrimination learning in mice. Genes Brain Behav., 2006, 5(4), 355-363.
[http://dx.doi.org/10.1111/j.1601-183X.2005.00168.x] [PMID: 16716205]
[47]
Brown, G.R.; Nemes, C. The exploratory behaviour of rats in the hole-board apparatus: Is head-dipping a valid measure of neophilia? Behav. Processes, 2008, 78(3), 442-448.
[http://dx.doi.org/10.1016/j.beproc.2008.02.019] [PMID: 18406075]
[48]
Mancinelli, A.; Borsini, F.; d’Aranno, V.; Lecci, A.; Meli, A. Cholinergic drug effects on antidepressant-induced behaviour in the forced swimming test. Eur. J. Pharmacol., 1988, 158(3), 199-205.
[http://dx.doi.org/10.1016/0014-2999(88)90067-2] [PMID: 3253098]
[49]
Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp., 2015, (97), e52587.
[PMID: 25867960]
[50]
Asgharzade, S.; Rabiei, Z.; Rafieian-Kopaei, M. Effects of Matricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats. Asian Pac. J. Trop. Biomed., 2015, 5(10), 829-833.
[http://dx.doi.org/10.1016/j.apjtb.2015.06.006]
[51]
Rajangam, J.; Kiran, T.; Lavanya, O. Antiamnesic activity of metformin in scopolamine-induced amnesia model in mice. Ann Clin Pharmacol Toxicol, 2018, 1(3), 1-4.
[52]
Deacon, R.M. Measuring motor coordination in mice. J. Vis. Exp., 2013, (75), e2609.
[PMID: 23748408]
[53]
Spijker, S. Dissection of rodent brain regions. Neuromethods, 2011, 57, 13-26.
[http://dx.doi.org/10.1007/978-1-61779-111-6_2]
[54]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[55]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[56]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[57]
Berman, S.B.; Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson’s disease. J. Neurochem., 1999, 73(3), 1127-1137.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0731127.x] [PMID: 10461904]
[58]
Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc., 2012, 7(6), 1235-1246.
[http://dx.doi.org/10.1038/nprot.2012.058] [PMID: 22653162]
[59]
Tedeschi, H.; Harris, D.L. Some observations on the photometric estimation of mitochondrial volume. Biochim. Biophys. Acta, 1958, 28(2), 392-402.
[http://dx.doi.org/10.1016/0006-3002(58)90487-6] [PMID: 13535737]
[60]
Wong-Guerra, M.; Jiménez-Martin, J.; Pardo-Andreu, G.L.; Fonseca-Fonseca, L.A.; Souza, D.O.; de Assis, A.M.; Ramirez-Sanchez, J.; del Valle, R.M.S.; Nuñez-Figueredo, Y. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol. Res., 2017, 39(7), 649-659.
[http://dx.doi.org/10.1080/01616412.2017.1312775] [PMID: 28398193]
[61]
Giovannini, M.; Spignoli, G.; Carlà, V.; Pepeu, G. A decrease in brain catecholamines prevents oxiracetam antagonism of the effects of scopolamine on memory and brain acetylcholine. Pharmacol. Res., 1991, 24(4), 395-405.
[http://dx.doi.org/10.1016/1043-6618(91)90044-X] [PMID: 1805193]
[62]
García-Alberca, J.M.; Lara, J.P.; Berthier, M.L. Anxiety and depression in caregivers are associated with patient and caregiver characteristics in Alzheimer’s disease. Int. J. Psychiatry Med., 2011, 41(1), 57-69.
[http://dx.doi.org/10.2190/PM.41.1.f] [PMID: 21495522]
[63]
Grundmann, O.; Nakajima, J.I.; Seo, S.; Butterweck, V. Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test. J. Ethnopharmacol., 2007, 110(3), 406-411.
[http://dx.doi.org/10.1016/j.jep.2006.09.035] [PMID: 17101250]
[64]
Dawson, G.R.; Tricklebank, M.D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci., 1995, 16(2), 33-36.
[http://dx.doi.org/10.1016/S0165-6147(00)88973-7] [PMID: 7762079]
[65]
Durcan, M.J.; Lister, R.G. Time course of ethanol’s effects on locomotor activity, exploration and anxiety in mice. Psychopharmacology, 1988, 96(1), 67-72.
[http://dx.doi.org/10.1007/BF02431535] [PMID: 2906444]
[66]
Foyet, H.S.; Hritcu, L.; Ciobica, A.; Stefan, M.; Kamtchouing, P.; Cojocaru, D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J. Ethnopharmacol., 2011, 133(2), 773-779.
[http://dx.doi.org/10.1016/j.jep.2010.11.011] [PMID: 21070845]
[67]
Mao, Q.Q.; Ip, S.P.; Tsai, S.H.; Che, C.T. Antidepressant-like effect of peony glycosides in mice. J. Ethnopharmacol., 2008, 119(2), 272-275.
[http://dx.doi.org/10.1016/j.jep.2008.07.008] [PMID: 18687393]
[68]
Tolardo, R.; Zetterman, L.; Bitencourtt, D.R.; Mora, T.C.; de Oliveira, F.L.; Biavatti, M.W.; Amoah, S.K.S.; Bürger, C.; de Souza, M.M. Evaluation of behavioral and pharmacological effects of Hedyosmum brasiliense and isolated sesquiterpene lactones in rodents. J. Ethnopharmacol., 2010, 128(1), 63-70.
[http://dx.doi.org/10.1016/j.jep.2009.12.026] [PMID: 20038449]
[69]
Power, A.; Vazdarjanova, A.; McGaugh, J.L. Muscarinic cholinergic influences in memory consolidation. Neurobiol. Learn. Mem., 2003, 80(3), 178-193.
[http://dx.doi.org/10.1016/S1074-7427(03)00086-8] [PMID: 14521862]
[70]
Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2000, 1502(1), 139-144.
[http://dx.doi.org/10.1016/S0925-4439(00)00040-5]
[71]
Khan, R.A.; Rajput, M.A.; Assad, T. Effect of Nelumbo nucifera fruit on scopolamine induced memory deficits and motor coordination. Metab. Brain Dis., 2019, 34(1), 87-92.
[http://dx.doi.org/10.1007/s11011-018-0324-1] [PMID: 30270417]
[72]
Savić, M.M.; Milinković, M.M.; Rallapalli, S.; Clayton, T., Sr; Joksimović, S.; Van Linn, M.; Cook, J.M. The differential role of α1- and α5-containing GABAA receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats. Int. J. Neuropsychopharmacol., 2009, 12(9), 1179-1193.
[http://dx.doi.org/10.1017/S1461145709000108] [PMID: 19265570]
[73]
Gacar, N.; Mutlu, O.; Utkan, T.; Komsuoglu Celikyurt, I.; Gocmez, S.S.; Ulak, G. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol. Biochem. Behav., 2011, 99(3), 316-323.
[http://dx.doi.org/10.1016/j.pbb.2011.05.017] [PMID: 21624386]
[74]
Kumari, R.; Shekhar, N.; Tyagi, S.; Thakur, A.K. Mitochondrial dysfunctions and neurodegenerative diseases: A mini-review. J. Anal. Pharm. Res., 2021, 10(4), 147-149.
[http://dx.doi.org/10.15406/japlr.2021.10.00378]
[75]
Sullivan, P.G.; Rabchevsky, A.G.; Waldmeier, P.C.; Springer, J.E. Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J. Neurosci. Res., 2005, 79(1-2), 231-239.
[http://dx.doi.org/10.1002/jnr.20292] [PMID: 15573402]
[76]
Zoratti, M.; Szabò, I. The mitochondrial permeability transition. Biochim. Biophys. Acta Rev. Biomembr., 1995, 1241(2), 139-176.
[http://dx.doi.org/10.1016/0304-4157(95)00003-A] [PMID: 7640294]
[77]
Rao, V.K.; Carlson, E.A.; Yan, S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1267-1272.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.003] [PMID: 24055979]
[78]
Ruszkiewicz, J.; Albrecht, J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem. Int., 2015, 88, 66-72.
[http://dx.doi.org/10.1016/j.neuint.2014.12.012] [PMID: 25576182]
[79]
Cuartero, M.; Ortuño, J.A.; García, M.S.; García-Cánovas, F. Assay of acetylcholinesterase activity by potentiometric monitoring of acetylcholine. Anal. Biochem., 2012, 421(1), 208-212.
[http://dx.doi.org/10.1016/j.ab.2011.10.008] [PMID: 22037292]
[80]
Ochi, T.; Takaishi, Y.; Kogure, K.; Yamauti, I. Antioxidant activity of a new capsaicin derivative from Capsicum annuum. J. Nat. Prod., 2003, 66(8), 1094-1096.
[http://dx.doi.org/10.1021/np020465y] [PMID: 12932131]
[81]
Hassan, M.H.; Edfawy, M.; Mansour, A.; Hamed, A.A. Antioxidant and antiapoptotic effects of capsaicin against carbon tetrachloride-induced hepatotoxicity in rats. Toxicol. Ind. Health, 2012, 28(5), 428-438.
[http://dx.doi.org/10.1177/0748233711413801] [PMID: 21859771]
[82]
Ouyang, M.; Zhang, Q.; Shu, J.; Wang, Z.; Fan, J.; Yu, K.; Lei, L.; Li, Y.; Wang, Q. Capsaicin ameliorates the loosening of mitochondria-associated endoplasmic reticulum membranes and improves cognitive function in rats with chronic cerebral hypoperfusion. Front. Cell. Neurosci., 2022, 16, 822702.
[http://dx.doi.org/10.3389/fncel.2022.822702] [PMID: 35370565]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy