Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Neuropharmacological Study on Capsaicin in Scopolamine-injected Mice

Author(s): Sakshi Tyagi and Ajit Kumar Thakur*

Volume 20, Issue 9, 2023

Published on: 11 January, 2024

Page: [660 - 676] Pages: 17

DOI: 10.2174/0115672050286225231230130613

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: To evaluate the potential beneficial role of Capsaicin in cognitive dysfunction, mitochondrial impairment, and oxidative damage induced by scopolamine in mice.

Background: Capsaicin is the chief phenolic component present in red chili and is responsible for its pungent and spicy flavor. It affects TRPV1 channels in nociceptive sensory neurons and is present in the hippocampus, and hypothalamus of the brains of rodents and humans.

Objective: The main objective is to investigate the effective role of capsaicin in attenuating cognitive dysfunction, mitochondrial impairment, and oxidative damage induced by scopolamine in mice and examine the feasible mechanisms.

Methods: Various doses of capsaicin (5, 10, and 20 mg/kg) were given orally to mice daily for 7 consecutive days after the administration of scopolamine. Various behavioral tests (motor coordination, locomotor counts, hole board test) and biochemical assay (Pro-inflammatory cytokines, catalase, lipid peroxidation, nitrite, reduced glutathione, and superoxide dismutase), mitochondrial complex (I, II, III, and IV) enzyme activities, and mitochondrial permeability transition were evaluated in the distinct regions of the brain.

Results: Scopolamine-treated mice showed a considerable reduction in the entries and duration in the light zone as well as in open arms of the elevated plus maze. Interestingly, capsaicin at different doses reversed the anxiety, depressive-like behaviors, and learning and memory impairment effects of scopolamine. Scopolamine-administered mice demonstrated substantially increased pro-inflammatory cytokines levels, impaired mitochondrial enzyme complex activities, and increased oxidative damage compared to the normal control group. Capsaicin treatment reinstated the reduced lipid peroxidation, nitric oxide, catalase, superoxide dismutase, reduced glutathione activity, decreasing pro-inflammatory cytokines and restoring mitochondrial complex enzyme activities (I, II, III, and IV) as well as mitochondrial permeability. Moreover, the IL-1β level was restored at a dose of capsaicin (10 and 20 mg/kg) only. Capsaicin reduced the scopolamine-induced acetylcholinesterase activity, thereby raising the acetylcholine concentration in the hippocampal tissues of mice. Preservation of neuronal cell morphology was also confirmed by capsaicin in histological studies. From the above experimental results, capsaicin at a dose of 10 mg/kg, p.o. for seven consecutive days was found to be the most effective dose.

Conclusion: The experiential neuroprotective effect of capsaicin through the restoration of mitochondrial functions, antioxidant effects, and modulation of pro-inflammatory cytokines makes it a promising candidate for further drug development through clinical setup.

Keywords: Capsaicin, mitochondrial dysfunction, neurodegenerative disorder, Alzheimer's disease, pro-inflammatory cytokines, mitochondrial membrane permeability, oxidative stress.

« Previous
[1]
Henry, M.S.; Passmore, A.P.; Todd, S.; McGuinness, B.; Craig, D.; Johnston, J.A. The development of effective biomarkers for Alzheimer’s disease: A review. Int. J. Geriatr. Psychiatry, 2013, 28(4), 331-340.
[http://dx.doi.org/10.1002/gps.3829] [PMID: 22674539]
[2]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci., 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[3]
Fan, D.Y.; Wang, Y.J. Early intervention in Alzheimer’s disease: How early is early enough? Neurosci. Bull., 2020, 36(2), 195-197.
[http://dx.doi.org/10.1007/s12264-019-00429-x] [PMID: 31494835]
[4]
Solomon, A.; Mangialasche, F.; Richard, E.; Andrieu, S.; Bennett, D.A.; Breteler, M.; Fratiglioni, L.; Hooshmand, B.; Khachaturian, A.S.; Schneider, L.S.; Skoog, I.; Kivipelto, M. Advances in the prevention of Alzheimer’s disease and dementia. J. Intern. Med., 2014, 275(3), 229-250.
[http://dx.doi.org/10.1111/joim.12178] [PMID: 24605807]
[5]
Wakabayashi, T.; Yamaguchi, K.; Matsui, K.; Sano, T.; Kubota, T.; Hashimoto, T.; Mano, A.; Yamada, K.; Matsuo, Y.; Kubota, N.; Kadowaki, T.; Iwatsubo, T. Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 15.
[http://dx.doi.org/10.1186/s13024-019-0315-7] [PMID: 30975165]
[6]
Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Andronie-Cioara, F.L.; Munteanu, M.A.; Brisc, M.C.; Uivarosan, D.; Brisc, C. Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation. Int. J. Mol. Sci., 2021, 22(14), 7432.
[http://dx.doi.org/10.3390/ijms22147432] [PMID: 34299052]
[7]
Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 271-281.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[8]
Moreira, P.; Smith, M.A.; Zhu, X.; Nunomura, A.; Castellani, R.J.; Perry, G. Oxidative stress and neurodegeneration. Ann. N. Y. Acad. Sci., 2005, 1043(1), 545-552.
[http://dx.doi.org/10.1196/annals.1333.062] [PMID: 16037277]
[9]
Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev., 2011, 7(5), 313-324.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[10]
Lee Mosley, R.; Benner, E.J.; Kadiu, I.; Thomas, M.; Boska, M.D.; Hasan, K.; Laurie, C.; Gendelman, H.E. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin. Neurosci. Res., 2006, 6(5), 261-281.
[http://dx.doi.org/10.1016/j.cnr.2006.09.006] [PMID: 18060039]
[11]
Röhl, C.; Armbrust, E.; Herbst, E.; Jess, A.; Gülden, M.; Maser, E.; Rimbach, G.; Bösch-Saadatmandi, C. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: Antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotox. Res., 2010, 17(4), 317-331.
[http://dx.doi.org/10.1007/s12640-009-9108-z] [PMID: 19763738]
[12]
Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 617588.
[http://dx.doi.org/10.3389/fnagi.2021.617588] [PMID: 33679375]
[13]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[14]
Reddy, P.H. Mitochondrial dysfunction in aging and Alzheimer’s disease: Strategies to protect neurons. Antioxid. Redox Signal., 2007, 9(10), 1647-1658.
[http://dx.doi.org/10.1089/ars.2007.1754] [PMID: 17696767]
[15]
Reddy, P.H.; Beal, M.F. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res. Brain Res. Rev., 2005, 49(3), 618-632.
[http://dx.doi.org/10.1016/j.brainresrev.2005.03.004] [PMID: 16269322]
[16]
Zeevalk, G.D.; Bernard, L.P.; Song, C.; Gluck, M.; Ehrhart, J. Mitochondrial inhibition and oxidative stress: Reciprocating players in neurodegeneration. Antioxid. Redox Signal., 2005, 7(9-10), 1117-1139.
[http://dx.doi.org/10.1089/ars.2005.7.1117] [PMID: 16115016]
[17]
Bertholet, A.M.; Delerue, T.; Millet, A.M.; Moulis, M.F.; David, C.; Daloyau, M.; Arnauné-Pelloquin, L.; Davezac, N.; Mils, V.; Miquel, M.C.; Rojo, M.; Belenguer, P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol. Dis., 2016, 90, 3-19.
[http://dx.doi.org/10.1016/j.nbd.2015.10.011] [PMID: 26494254]
[18]
Stanga, S.; Caretto, A.; Boido, M.; Vercelli, A. Mitochondrial dysfunctions: A red thread across neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(10), 3719.
[http://dx.doi.org/10.3390/ijms21103719] [PMID: 32466216]
[19]
Calvo-Rodriguez, M.; Hou, S.S.; Snyder, A.C.; Kharitonova, E.K.; Russ, A.N.; Das, S.; Fan, Z.; Muzikansky, A.; Garcia-Alloza, M.; Serrano-Pozo, A.; Hudry, E.; Bacskai, B.J. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 2146.
[http://dx.doi.org/10.1038/s41467-020-16074-2] [PMID: 32358564]
[20]
Preston, G.C.; Brazell, C.; Ward, C.; Broks, P.; Traub, M.; Stahl, S.M. The scopolamine model of dementia: Determination of central cholinomimetic effects of physostigmine on cognition and biochemical markers in man. J. Psychopharmacol., 1988, 2(2), 67-79.
[http://dx.doi.org/10.1177/026988118800200202] [PMID: 22155841]
[21]
Flood, J.F.; Cherkin, A. Scopolamine effects on memory retention in mice: A model of dementia? Behav. Neural Biol., 1986, 45(2), 169-184.
[http://dx.doi.org/10.1016/S0163-1047(86)90750-8] [PMID: 3964171]
[22]
Goverdhan, P; Sravanthi, A; Mamatha, T Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis, 2012, 974013.
[http://dx.doi.org/10.1155/2012/974013]
[23]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[24]
Yadang, FSA; Nguezeye, Y; Kom, CW; Betote, PHD; Mamat, A; Tchokouaha, LRY Scopolamine-induced memory impairment in mice: Neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. Int. J. Alzheimer’s Dis., 2020, 2020
[25]
Coyle, J.T.; Price, D.L.; DeLong, M.R. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 1983, 219(4589), 1184-1190.
[http://dx.doi.org/10.1126/science.6338589] [PMID: 6338589]
[26]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 308(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[27]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Donepezil, a centrally acting acetylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats. Methods Find. Exp. Clin. Pharmacol., 2000, 22(2), 89-95.
[http://dx.doi.org/10.1358/mf.2000.22.2.796070] [PMID: 10849891]
[28]
Birks, JS; Harvey, RJ Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev, 2018, 6(6), CD001190.
[http://dx.doi.org/10.1002/14651858.CD001190.pub3]
[29]
Tyagi, S.; Shekhar, N.; Thakur, A.K. Protective role of capsaicin in neurological disorders: An overview. Neurochem. Res., 2022, 47(6), 1513-1531.
[http://dx.doi.org/10.1007/s11064-022-03549-5] [PMID: 35150419]
[30]
Mezey, É.; Tóth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci., 2000, 97(7), 3655-3660.
[http://dx.doi.org/10.1073/pnas.97.7.3655] [PMID: 10725386]
[31]
Kauer, J.A.; Gibson, H.E. Hot flash: TRPV channels in the brain. Trends Neurosci., 2009, 32(4), 215-224.
[http://dx.doi.org/10.1016/j.tins.2008.12.006] [PMID: 19285736]
[32]
Jiang, X.; Jia, L.W.; Li, X.H.; Cheng, X.S.; Xie, J.Z.; Ma, Z.W.; Xu, W.J.; Liu, Y.; Yao, Y.; Du, L.L.; Zhou, X.W. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J. Alzheimers Dis., 2013, 35(1), 91-105.
[http://dx.doi.org/10.3233/JAD-121837] [PMID: 23340038]
[33]
Newman, L.A.; Gold, P.E. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist. Psychopharmacology, 2016, 233(5), 925-932.
[http://dx.doi.org/10.1007/s00213-015-4174-9] [PMID: 26660295]
[34]
Hritcu, L.; Cioanca, O.; Hancianu, M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine, 2012, 19(6), 529-534.
[http://dx.doi.org/10.1016/j.phymed.2012.02.002] [PMID: 22402245]
[35]
Salimi, A.; Sabur, M.; Dadkhah, M.; Shabani, M. Inhibition of scopolamine-induced memory and mitochondrial impairment by betanin. J. Biochem. Mol. Toxicol., 2022, 36(7), e23076.
[http://dx.doi.org/10.1002/jbt.23076] [PMID: 35411685]
[36]
Costall, B.; Jones, B.J.; Kelly, M.E.; Naylor, R.J.; Tomkins, D.M. Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacol. Biochem. Behav., 1989, 32(3), 777-785.
[http://dx.doi.org/10.1016/0091-3057(89)90033-6] [PMID: 2740429]
[37]
Barry, J.M.; Costall, B.; Kelly, M.E.; Naylor, R.J. Withdrawal syndrome following subchronic treatment with anxiolytic agents. Pharmacol. Biochem. Behav., 1987, 27(2), 239-245.
[http://dx.doi.org/10.1016/0091-3057(87)90565-X] [PMID: 2888134]
[38]
Mushtaq, A.; Anwar, R.; Ahmad, M. Lavandula stoechas (L) a very potent antioxidant attenuates dementia in scopolamine induced memory deficit mice. Front. Pharmacol., 2018, 9, 1375.
[http://dx.doi.org/10.3389/fphar.2018.01375] [PMID: 30532710]
[39]
Deangelis, L.; Furlan, C. The effects of ascorbic acid and oxiracetam on scopolamine-induced amnesia in a habituation test in aged mice. Neurobiol. Learn. Mem., 1995, 64(2), 119-124.
[http://dx.doi.org/10.1006/nlme.1995.1050] [PMID: 7582819]
[40]
Lok, K.; Zhao, H.; Zhang, C.; He, N.; Shen, H.; Wang, Z.; Zhao, W.; Yin, M. Effects of accelerated senescence on learning and memory, locomotion and anxiety-like behavior in APP/PS1 mouse model of Alzheimer’s disease. J. Neurol. Sci., 2013, 335(1-2), 145-154.
[http://dx.doi.org/10.1016/j.jns.2013.09.018] [PMID: 24095271]
[41]
Jafarian, S.; Ling, K.H.; Hassan, Z.; Perimal-Lewis, L.; Sulaiman, M.R.; Perimal, E.K. Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. Alzheimers Dement., 2019, 5(1), 637-643.
[http://dx.doi.org/10.1016/j.trci.2019.09.009] [PMID: 31687471]
[42]
Lister, R. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology, 1987, 92(2), 180-185.
[http://dx.doi.org/10.1007/BF00177912] [PMID: 3110839]
[43]
Khan, S.; Shad, K.F. Neuroprotective effects of curcumin and vitamin D3 on scopolamine-induced learning-impaired rat model of Alzheimer’s disease. In: Neurological and Mental Disorders; Intechopen, 2020.
[http://dx.doi.org/10.5772/intechopen.92407]
[44]
Prabhu, J.; K Prabhu, P.; Chaudhuri, A.; Krishna Rao, M.R.; Selvi, V.S.K.; TK Balaji, B.; Dinakar, S. Neuro-protective effect of ayurveda formulation, saraswatharishtam, on scopolamine induced memory impairment in animal model. Pharmacogn. J., 2020, 12(1), 6-13.
[http://dx.doi.org/10.5530/pj.2020.12.2]
[45]
Sgroi, S.; Kaelin-Lang, A.; Capper-Loup, C. Spontaneous locomotor activity and L-DOPA-induced dyskinesia are not linked in 6-OHDA parkinsonian rats. Front. Behav. Neurosci., 2014, 8, 331.
[http://dx.doi.org/10.3389/fnbeh.2014.00331] [PMID: 25324746]
[46]
Kuc, K.A.; Gregersen, B.M.; Gannon, K.S.; Dodart, J.C. Holeboard discrimination learning in mice. Genes Brain Behav., 2006, 5(4), 355-363.
[http://dx.doi.org/10.1111/j.1601-183X.2005.00168.x] [PMID: 16716205]
[47]
Brown, G.R.; Nemes, C. The exploratory behaviour of rats in the hole-board apparatus: Is head-dipping a valid measure of neophilia? Behav. Processes, 2008, 78(3), 442-448.
[http://dx.doi.org/10.1016/j.beproc.2008.02.019] [PMID: 18406075]
[48]
Mancinelli, A.; Borsini, F.; d’Aranno, V.; Lecci, A.; Meli, A. Cholinergic drug effects on antidepressant-induced behaviour in the forced swimming test. Eur. J. Pharmacol., 1988, 158(3), 199-205.
[http://dx.doi.org/10.1016/0014-2999(88)90067-2] [PMID: 3253098]
[49]
Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp., 2015, (97), e52587.
[PMID: 25867960]
[50]
Asgharzade, S.; Rabiei, Z.; Rafieian-Kopaei, M. Effects of Matricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats. Asian Pac. J. Trop. Biomed., 2015, 5(10), 829-833.
[http://dx.doi.org/10.1016/j.apjtb.2015.06.006]
[51]
Rajangam, J.; Kiran, T.; Lavanya, O. Antiamnesic activity of metformin in scopolamine-induced amnesia model in mice. Ann Clin Pharmacol Toxicol, 2018, 1(3), 1-4.
[52]
Deacon, R.M. Measuring motor coordination in mice. J. Vis. Exp., 2013, (75), e2609.
[PMID: 23748408]
[53]
Spijker, S. Dissection of rodent brain regions. Neuromethods, 2011, 57, 13-26.
[http://dx.doi.org/10.1007/978-1-61779-111-6_2]
[54]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[55]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[56]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[57]
Berman, S.B.; Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson’s disease. J. Neurochem., 1999, 73(3), 1127-1137.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0731127.x] [PMID: 10461904]
[58]
Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc., 2012, 7(6), 1235-1246.
[http://dx.doi.org/10.1038/nprot.2012.058] [PMID: 22653162]
[59]
Tedeschi, H.; Harris, D.L. Some observations on the photometric estimation of mitochondrial volume. Biochim. Biophys. Acta, 1958, 28(2), 392-402.
[http://dx.doi.org/10.1016/0006-3002(58)90487-6] [PMID: 13535737]
[60]
Wong-Guerra, M.; Jiménez-Martin, J.; Pardo-Andreu, G.L.; Fonseca-Fonseca, L.A.; Souza, D.O.; de Assis, A.M.; Ramirez-Sanchez, J.; del Valle, R.M.S.; Nuñez-Figueredo, Y. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol. Res., 2017, 39(7), 649-659.
[http://dx.doi.org/10.1080/01616412.2017.1312775] [PMID: 28398193]
[61]
Giovannini, M.; Spignoli, G.; Carlà, V.; Pepeu, G. A decrease in brain catecholamines prevents oxiracetam antagonism of the effects of scopolamine on memory and brain acetylcholine. Pharmacol. Res., 1991, 24(4), 395-405.
[http://dx.doi.org/10.1016/1043-6618(91)90044-X] [PMID: 1805193]
[62]
García-Alberca, J.M.; Lara, J.P.; Berthier, M.L. Anxiety and depression in caregivers are associated with patient and caregiver characteristics in Alzheimer’s disease. Int. J. Psychiatry Med., 2011, 41(1), 57-69.
[http://dx.doi.org/10.2190/PM.41.1.f] [PMID: 21495522]
[63]
Grundmann, O.; Nakajima, J.I.; Seo, S.; Butterweck, V. Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test. J. Ethnopharmacol., 2007, 110(3), 406-411.
[http://dx.doi.org/10.1016/j.jep.2006.09.035] [PMID: 17101250]
[64]
Dawson, G.R.; Tricklebank, M.D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci., 1995, 16(2), 33-36.
[http://dx.doi.org/10.1016/S0165-6147(00)88973-7] [PMID: 7762079]
[65]
Durcan, M.J.; Lister, R.G. Time course of ethanol’s effects on locomotor activity, exploration and anxiety in mice. Psychopharmacology, 1988, 96(1), 67-72.
[http://dx.doi.org/10.1007/BF02431535] [PMID: 2906444]
[66]
Foyet, H.S.; Hritcu, L.; Ciobica, A.; Stefan, M.; Kamtchouing, P.; Cojocaru, D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J. Ethnopharmacol., 2011, 133(2), 773-779.
[http://dx.doi.org/10.1016/j.jep.2010.11.011] [PMID: 21070845]
[67]
Mao, Q.Q.; Ip, S.P.; Tsai, S.H.; Che, C.T. Antidepressant-like effect of peony glycosides in mice. J. Ethnopharmacol., 2008, 119(2), 272-275.
[http://dx.doi.org/10.1016/j.jep.2008.07.008] [PMID: 18687393]
[68]
Tolardo, R.; Zetterman, L.; Bitencourtt, D.R.; Mora, T.C.; de Oliveira, F.L.; Biavatti, M.W.; Amoah, S.K.S.; Bürger, C.; de Souza, M.M. Evaluation of behavioral and pharmacological effects of Hedyosmum brasiliense and isolated sesquiterpene lactones in rodents. J. Ethnopharmacol., 2010, 128(1), 63-70.
[http://dx.doi.org/10.1016/j.jep.2009.12.026] [PMID: 20038449]
[69]
Power, A.; Vazdarjanova, A.; McGaugh, J.L. Muscarinic cholinergic influences in memory consolidation. Neurobiol. Learn. Mem., 2003, 80(3), 178-193.
[http://dx.doi.org/10.1016/S1074-7427(03)00086-8] [PMID: 14521862]
[70]
Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2000, 1502(1), 139-144.
[http://dx.doi.org/10.1016/S0925-4439(00)00040-5]
[71]
Khan, R.A.; Rajput, M.A.; Assad, T. Effect of Nelumbo nucifera fruit on scopolamine induced memory deficits and motor coordination. Metab. Brain Dis., 2019, 34(1), 87-92.
[http://dx.doi.org/10.1007/s11011-018-0324-1] [PMID: 30270417]
[72]
Savić, M.M.; Milinković, M.M.; Rallapalli, S.; Clayton, T., Sr; Joksimović, S.; Van Linn, M.; Cook, J.M. The differential role of α1- and α5-containing GABAA receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats. Int. J. Neuropsychopharmacol., 2009, 12(9), 1179-1193.
[http://dx.doi.org/10.1017/S1461145709000108] [PMID: 19265570]
[73]
Gacar, N.; Mutlu, O.; Utkan, T.; Komsuoglu Celikyurt, I.; Gocmez, S.S.; Ulak, G. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol. Biochem. Behav., 2011, 99(3), 316-323.
[http://dx.doi.org/10.1016/j.pbb.2011.05.017] [PMID: 21624386]
[74]
Kumari, R.; Shekhar, N.; Tyagi, S.; Thakur, A.K. Mitochondrial dysfunctions and neurodegenerative diseases: A mini-review. J. Anal. Pharm. Res., 2021, 10(4), 147-149.
[http://dx.doi.org/10.15406/japlr.2021.10.00378]
[75]
Sullivan, P.G.; Rabchevsky, A.G.; Waldmeier, P.C.; Springer, J.E. Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J. Neurosci. Res., 2005, 79(1-2), 231-239.
[http://dx.doi.org/10.1002/jnr.20292] [PMID: 15573402]
[76]
Zoratti, M.; Szabò, I. The mitochondrial permeability transition. Biochim. Biophys. Acta Rev. Biomembr., 1995, 1241(2), 139-176.
[http://dx.doi.org/10.1016/0304-4157(95)00003-A] [PMID: 7640294]
[77]
Rao, V.K.; Carlson, E.A.; Yan, S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1267-1272.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.003] [PMID: 24055979]
[78]
Ruszkiewicz, J.; Albrecht, J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem. Int., 2015, 88, 66-72.
[http://dx.doi.org/10.1016/j.neuint.2014.12.012] [PMID: 25576182]
[79]
Cuartero, M.; Ortuño, J.A.; García, M.S.; García-Cánovas, F. Assay of acetylcholinesterase activity by potentiometric monitoring of acetylcholine. Anal. Biochem., 2012, 421(1), 208-212.
[http://dx.doi.org/10.1016/j.ab.2011.10.008] [PMID: 22037292]
[80]
Ochi, T.; Takaishi, Y.; Kogure, K.; Yamauti, I. Antioxidant activity of a new capsaicin derivative from Capsicum annuum. J. Nat. Prod., 2003, 66(8), 1094-1096.
[http://dx.doi.org/10.1021/np020465y] [PMID: 12932131]
[81]
Hassan, M.H.; Edfawy, M.; Mansour, A.; Hamed, A.A. Antioxidant and antiapoptotic effects of capsaicin against carbon tetrachloride-induced hepatotoxicity in rats. Toxicol. Ind. Health, 2012, 28(5), 428-438.
[http://dx.doi.org/10.1177/0748233711413801] [PMID: 21859771]
[82]
Ouyang, M.; Zhang, Q.; Shu, J.; Wang, Z.; Fan, J.; Yu, K.; Lei, L.; Li, Y.; Wang, Q. Capsaicin ameliorates the loosening of mitochondria-associated endoplasmic reticulum membranes and improves cognitive function in rats with chronic cerebral hypoperfusion. Front. Cell. Neurosci., 2022, 16, 822702.
[http://dx.doi.org/10.3389/fncel.2022.822702] [PMID: 35370565]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy