Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Cardiac Radiofrequency Ablation Exacerbates Myocardial Injury through Pro-Inflammatory Response and Pro-Oxidative Stress in Elderly Patients with Persistent Atrial Fibrillation

Author(s): Xia Li*, Wenhang Zhou, Dianxuan Guo, Youdong Hu, Hualan Zhou and Ying Chen

Volume 22, Issue 2, 2024

Published on: 10 January, 2024

Page: [137 - 152] Pages: 16

DOI: 10.2174/0115701611257644231215071611

Price: $65

conference banner
Abstract

Background: There is a need to assess myocardial damage after radiofrequency ablation of the pulmonary veins (PV) for persistent atrial fibrillation (PAF) in elderly patients.

Objective: To evaluate oxidative stress, inflammatory response and myocardial damage in elderly patients with PAF after radiofrequency ablation of the PV.

Methods: High-sensitivity troponin T (hsTnT), malondialdehyde-modified low-density lipoprotein (MDA-LDL), acrolein (ACR), lipid hydroperoxide (LHP), toll-like receptor 4 (TLR4), soluble growth stimulation expressed gene 2 (sST2), angiotensin II (Ang II) and myocardial blood flow (MBF) were determined before ablation and at 1, 3 and 5 months after radiofrequency ablation.

Results: The levels of hsTnT, MDA-LDL, ACR, LHP, TLR4, sST2 and Ang II were increased 3 months after ablations compared with before ablation and 1 month after ablation, respectively (P<0.001); they were further increased at 5 months after ablation compared with the 1- and 3-month groups, respectively (P<0.001). MBF was decreased in the 3 months group after ablations compared with before ablation and 1-month after ablation, respectively (P<0.001), and was further decreased in 5-months after ablations compared with 1-month and 3-month groups, respectively (P<0.001). Patients with epicardial monopolar radiofrequency ablation had higher levels of hsTnT, MDA-LDL, ACR, LHP, TLR4, sST2, Ang II and lower MBF than patients with endocardial monopolar and bipolar radiofrequency ablations, respectively (P<0.001).

Conclusion: Monopolar radiofrequency ablation method could result in more myocardial injury than bipolar radiofrequency ablation. Oxidative stress and inflammatory response may be involved in cardiac radiofrequency ablation-induced myocardial injury, resulting in myocardial ischemia in elderly patients with PAF.

Keywords: Radiofrequency ablation, myocardial injury, pro-inflammatory response, pro-oxidative stress, elderly patients, atrial fibrillation.

[1]
Bourier F, Ramirez FD, Martin CA, et al. Impedance, power, and current in radiofrequency ablation: Insights from technical, ex vivo, and clinical studies. J Cardiovasc Electrophysiol 2020; 31(11): 2836-45.
[http://dx.doi.org/10.1111/jce.14709] [PMID: 32757434]
[2]
Kolandaivelu A, Bruce CG, Ramasawmy R, et al. Native contrast visualization and tissue characterization of myocardial radiofrequency ablation and acetic acid chemoablation lesions at 0.55 T. J Cardiovasc Magn Reson 2021; 23(1): 50.
[http://dx.doi.org/10.1186/s12968-020-00693-1] [PMID: 33952312]
[3]
Zakkar M, Ascione R, James AF, Angelini GD, Suleiman MS. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol Ther 2015; 154: 13-20.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.009] [PMID: 26116810]
[4]
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells 2020; 10(1): 51.
[http://dx.doi.org/10.3390/cells10010051] [PMID: 33396359]
[5]
Mukhopadhyay P, Eid N, Abdelmegeed MA, Sen A. Interplay of oxidative stress, inflammation, and autophagy: Their role in tissue injury of the heart, liver, and kidney. Oxid Med Cell Longev 2018; 2018: 1-3.
[http://dx.doi.org/10.1155/2018/2090813] [PMID: 29765491]
[6]
Stroda A, Thelen S, M’Pembele R, et al. Incidence and prognosis of myocardial injury in patients with severe trauma. Eur J Trauma Emerg Surg 2022; 48(4): 3073-9.
[http://dx.doi.org/10.1007/s00068-021-01846-2] [PMID: 34878581]
[7]
Wisén E, Almazrooa A, Sand Bown L, et al. Myocardial, renal and intestinal injury in liver resection surgery—A prospective observational pilot study. Acta Anaesthesiol Scand 2021; 65(7): 886-94.
[http://dx.doi.org/10.1111/aas.13823] [PMID: 33811772]
[8]
Hou JS, Wang CH, Lai YH, et al. Serum malondialdehyde-modified low-density lipoprotein is a risk factor for central arterial stiffness in maintenance hemodialysis patients. Nutrients 2020; 12(7): 2160.
[http://dx.doi.org/10.3390/nu12072160] [PMID: 32708072]
[9]
Hartley A, Pradeep M, Van den Berg V, et al. Depletion of homeostatic antibodies against malondialdehyde-modified low-density lipoprotein correlates with adverse events in major vascular surgery. Antioxidants 2022; 11(2): 271.
[http://dx.doi.org/10.3390/antiox11020271] [PMID: 35204154]
[10]
Erhan E, Salcan I, Bayram R, et al. Protective effect of lutein against acrolein-induced ototoxicity in rats. Biomed Pharmacother 2021; 137: 111281.
[http://dx.doi.org/10.1016/j.biopha.2021.111281] [PMID: 33578233]
[11]
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants 2020; 9(4): 357.
[http://dx.doi.org/10.3390/antiox9040357] [PMID: 32344592]
[12]
Tam JSY, Coller JK, Hughes PA, Prestidge CA, Bowen JM. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian J Gastroenterol 2021; 40(1): 5-21.
[http://dx.doi.org/10.1007/s12664-020-01114-y] [PMID: 33666891]
[13]
Omland T, Prebensen C, Jonassen C, et al. Soluble ST2 concentrations associate with in-hospital mortality and need for mechanical ventilation in unselected patients with COVID-19. Open Heart 2021; 8(2): e001884.
[http://dx.doi.org/10.1136/openhrt-2021-001884] [PMID: 34933965]
[14]
Li S, Zhou C, Zhu Y, et al. Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int Immunopharmacol 2021; 90: 107179.
[http://dx.doi.org/10.1016/j.intimp.2020.107179] [PMID: 33278745]
[15]
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, et al. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529: 111254.
[http://dx.doi.org/10.1016/j.mce.2021.111254] [PMID: 33798633]
[16]
Li Y, Yu M, Dai X, et al. Detection of hemodynamically significant coronary stenosis: CT myocardial perfusion versus machine learning CT fractional flow reserve. Radiology 2019; 293(2): 305-14.
[http://dx.doi.org/10.1148/radiol.2019190098] [PMID: 31549943]
[17]
El-Menyar A, Asim M, Bahey AAA, et al. Beta blocker use in traumatic brain injury based on the high-sensitive troponin status (BBTBBT): Methodology and protocol implementation of a double-blind randomized controlled clinical trial. Trials 2021; 22(1): 890.
[http://dx.doi.org/10.1186/s13063-021-05872-8] [PMID: 34876207]
[18]
Ichikawa K, Miyoshi T, Osawa K, Miki T, Ito H. Increased circulating malondialdehyde-modified low-density lipoprotein level is associated with high-risk plaque in coronary computed tomography angiography in patients receiving statin therapy. J Clin Med 2021; 10(7): 1480.
[http://dx.doi.org/10.3390/jcm10071480] [PMID: 33918383]
[19]
Li X, Zhang F, Zhou H, et al. Potential prognostic, diagnostic and therapeutic markers for in-stent reocclusion in advanced age patients after coronary stenting. Curr Pharm Des 2018; 24(28): 3359-65.
[http://dx.doi.org/10.2174/1381612824666180830141918] [PMID: 30173641]
[20]
Adamczyk B, Wawrzyniak S, Kasperczyk S, Adamczyk-Sowa M. The Evaluation of oxidative stress parameters in serum patients with relapsing-remitting multiple sclerosis treated with II-line immunomodulatory therapy. Oxid Med Cell Longev 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/9625806] [PMID: 29138683]
[21]
Elkammah M, Gowily A, Okda T, Houssen M. Serum soluble Toll-like receptor 4 and the risk of hepatocellular carcinoma in hepatitis C virus patients. Contemp Oncol 2020; 24(4): 216-20.
[http://dx.doi.org/10.5114/wo.2020.102818] [PMID: 33531868]
[22]
Urban MH, Stojkovic S, Demyanets S, et al. Soluble sT2 and all-cause mortality in patients with chronic obstructive pulmonary disease-a 10-year cohort study. J Clin Med 2021; 11(1): 56.
[http://dx.doi.org/10.3390/jcm11010056] [PMID: 35011794]
[23]
Hou G, Jiang Y, Zheng Y, et al. Mechanism of radix stragali and radix salviae miltiorrhizae ameliorates hypertensive renal damage. BioMed Res Int 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/5598351] [PMID: 33969119]
[24]
Tveit SH, Myhre PL, Hanssen TA, et al. Cardiac troponin I and T for ruling out coronary artery disease in suspected chronic coronary syndrome. Sci Rep 2022; 12(1): 945.
[http://dx.doi.org/10.1038/s41598-022-04850-7] [PMID: 35042885]
[25]
Unger T, Borghi C, Charchar F, et al. 2020 international society of hypertension global hypertension practice guidelines. Hypertension 2020; 75(6): 1334-57.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15026] [PMID: 32370572]
[26]
Buysschaert M, Medina JL, Buysschaert B, Bergman M. Definitions (and current controversies) of diabetes and prediabetes. Curr Diabetes Rev 2015; 12(1): 8-13.
[http://dx.doi.org/10.2174/1573399811666150122150233] [PMID: 25612821]
[27]
Shiffman S, Holt NM. Smoking trajectories of adult never smokers 12 months after first purchase of a JUUL starter kit. Am J Health Behav 2021; 45(3): 527-45.
[http://dx.doi.org/10.5993/AJHB.45.3.8] [PMID: 33894798]
[28]
Smith KB, Smith MS. Obesity Statistics. Prim Care 2016; 43(1): 121-135, ix..
[http://dx.doi.org/10.1016/j.pop.2015.10.001] [PMID: 26896205]
[29]
Gierthmühlen J, Baron R. Synkopen. Fortschr Neurol Psychiatr 2020; 88(8): 532-46.
[http://dx.doi.org/10.1055/a-1165-7184] [PMID: 32818974]
[30]
Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC, Biering-Sørensen T. The significance of left ventricular ejection time in heart failure with reduced ejection fraction. Eur J Heart Fail 2021; 23(4): 541-51.
[http://dx.doi.org/10.1002/ejhf.2125] [PMID: 33590579]
[31]
Błaż M , Banaszkiewicz K , Michalski M , Sarzyńska-Długosz I , Plens K , Undas A . Family history of stroke is associated with greater prevalence of certain risk factors and self-reportedstroke symptoms. J Stroke Cerebrovasc Dis 2021; 30(11): 106074.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.106074] [PMID: 34464926]
[32]
Schönbauer R, Duca F, Kammerlander AA, et al. Persistent atrial fibrillation in heart failure with preserved ejection fraction: Prognostic relevance and association with clinical, imaging and invasive haemodynamic parameters. Eur J Clin Invest 2020; 50(2): e13184.
[http://dx.doi.org/10.1111/eci.13184] [PMID: 31732964]
[33]
Li X, Shang W, Zhang N, et al. Remote magnetic-guided ablation for three origins of idiopathic ventricular arrhythmias with right bundle branch block and superior axis. Clin Cardiol 2021; 44(3): 379-85.
[http://dx.doi.org/10.1002/clc.23546] [PMID: 33471947]
[34]
Kral BG, Becker DM, Vaidya D, Yanek LR, Becker LC. Severity of inducible myocardial ischemia predicts incident acute coronary syndromes in asymptomatic individuals with a family history of premature coronary artery disease. J Nucl Cardiol 2012; 19(1): 28-36.
[http://dx.doi.org/10.1007/s12350-011-9475-8] [PMID: 22081304]
[35]
Rizvi A, Hartaigh B, Knaapen P, et al. Rationale and design of the CREDENCE trial: Computed tomographic evaluation of atherosclerotic determinants of myocardial ischemia. BMC Cardiovasc Disord 2016; 16(1): 190.
[http://dx.doi.org/10.1186/s12872-016-0360-x] [PMID: 27716131]
[36]
Pezel T, Hovasse T, Kinnel M, et al. Prognostic value of stress cardiovascular magnetic resonance in asymptomatic patients with known coronary artery disease. J Cardiovasc Magn Reson 2021; 23(1): 19.
[http://dx.doi.org/10.1186/s12968-021-00721-8] [PMID: 33678173]
[37]
Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307: 41-8.
[http://dx.doi.org/10.1016/j.toxlet.2019.02.013] [PMID: 30817977]
[38]
Greiwe G, Moritz E, Amschler K, et al. Dynamics of vascular protective and immune supportive sphingosine-1-phosphate during cardiac surgery. Front Immunol 2021; 12: 761475.
[http://dx.doi.org/10.3389/fimmu.2021.761475] [PMID: 34745137]
[39]
Dinh W, Nickl W, Füth R, et al. High sensitive troponin T and heart fatty acid binding protein: Novel biomarker in heart failure with normal ejection fraction?: A cross-sectional study. BMC Cardiovasc Disord 2011; 11(1): 41.
[http://dx.doi.org/10.1186/1471-2261-11-41] [PMID: 21729325]
[40]
Hofmann NP, Steuer C, Voss A, et al. Comprehensive bio-imaging using myocardial perfusion reserve index during cardiac magnetic resonance imaging and high-sensitive troponin T for the prediction of outcomes in heart transplant recipients. Am J Transplant 2014; 14(11): 2607-16.
[http://dx.doi.org/10.1111/ajt.12924] [PMID: 25293510]
[41]
Pandey SS, Hartley A, Caga-Anan M, et al. A Novel immunoassay for malondialdehyde-conjugated low-density lipoprotein measures dynamic changes in the blood of patients undergoing coronary artery bypass graft surgery. Antioxidants 2021; 10(8): 1298.
[http://dx.doi.org/10.3390/antiox10081298] [PMID: 34439546]
[42]
Girotti AW, Korytowski W. Pathophysiological potential of lipid hydroperoxide intermembrane translocation: Cholesterol hydroperoxide translocation as a special case. Redox Biol 2021; 46: 102096.
[http://dx.doi.org/10.1016/j.redox.2021.102096] [PMID: 34418596]
[43]
Chenxu G, Minxuan X, Yuting Q, et al. Loss of RIP3 initiates annihilation of high-fat diet initialized nonalcoholic hepatosteatosis: A mechanism involving Toll-like receptor 4 and oxidative stress. Free Radic Biol Med 2019; 134: 23-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.034] [PMID: 30599260]
[44]
Wu TC, Lee CY, Lin SJ, Chen JW. Aliskiren inhibits neointimal matrix metalloproteinases in experimental atherosclerosis. Zhonghua Minguo Xinzangxue Hui Zazhi 2016; 32(5): 586-93.
[http://dx.doi.org/10.6515/acs20151012c] [PMID: 27713608]
[45]
Charitakis E, Karlsson LO, Papageorgiou JM, Walfridsson U, Carlhäll CJ. Echocardiographic and biochemical factors predicting arrhythmia recurrence after catheter ablation of atrial fibrillation-an observational study. Front Physiol 2019; 10: 1215.
[http://dx.doi.org/10.3389/fphys.2019.01215] [PMID: 31632285]
[46]
Mujović N , Marinković M , Lenarczyk R , Tilz R . Potpara TS. Catheter ablation of atrial fibrillation: An overview for clinicians. Adv Ther 2017; 34(8): 1897-917.
[http://dx.doi.org/10.1007/s12325-017-0590-z] [PMID: 28733782]
[47]
Vroomen M, Maesen B, Luermans JL, et al. Epicardial and endocardial validation of conduction block after thoracoscopic epicardial ablation of atrial fibrillation. Innovations 2020; 15(6): 525-31.
[http://dx.doi.org/10.1177/1556984520956314] [PMID: 33052065]
[48]
Maor E, Sugrue A, Witt C, et al. Pulsed electric fields for cardiac ablation and beyond: A state-of-the-art review. Heart Rhythm 2019; 16(7): 1112-20.
[http://dx.doi.org/10.1016/j.hrthm.2019.01.012] [PMID: 30641148]
[49]
Hisazaki K, Hasegawa K, Kaseno K, et al. Endothelial damage and thromboembolic risk after pulmonary vein isolation using the latest ablation technologies: A comparison of the second-generation cryoballoon vs. contact force-sensing radiofrequency ablation. Heart Vessels 2019; 34(3): 509-16.
[http://dx.doi.org/10.1007/s00380-018-1257-7] [PMID: 30182157]
[50]
Van Zyl M, Khabsa M, Tri J, et al. Open-chest pulsed electric field ablation of cardiac ganglionated plexi in acute canine models. J Innov Card Rhythm Manag 2022; 13(7): 5061-9.
[http://dx.doi.org/10.19102/icrm.2022.130704] [PMID: 35949650]
[51]
Madhavan M, Gard JJ, Swale MJ. Percutaneous epicardial ablation of cardiac ganglionated plexi without myocardial injury in the canine: A novel treatment strategy for atrial fibrillation. Heart Rhythm 2012; 9(S1): S331-2.
[52]
Ohkura T, Yamasaki T, Kakita K, et al. Comparison of maximum-sized visually guided laser balloon and cryoballoon ablation. Heart Vessels 2023; 38(5): 691-8.
[http://dx.doi.org/10.1007/s00380-022-02208-7] [PMID: 36441215]
[53]
Verma A, Haines DE, Boersma LV, et al. Pulsed field ablation for the treatment of atrial fibrillation: PULSED AF pivotal trial. Circulation 2023; 147(19): 1422-32.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.123.063988] [PMID: 36877118]
[54]
Cereda AF, De Luca F, Lanzone AM, Cottini M, Pastori L, Sangiorgi G. Case report and systematic review of iatrogenic left atrial dissection in different cardiovascular specialties: A common treatment for an uncommon complication? Catheter Cardiovasc Interv 2020; 95(1): E30-6.
[http://dx.doi.org/10.1002/ccd.28356] [PMID: 31141311]
[55]
Müller J, Nentwich K, Berkovitz A, et al. Acute oesophageal safety and long-term follow-up of AI-guided high-power short-duration with 50 W for atrial fibrillation ablation. Europace 2023; 25(4): 1379-91.
[http://dx.doi.org/10.1093/europace/euad053] [PMID: 36881791]
[56]
Ghzally Y, Ahmed I, Gerasimon G. Catheter ablation. In: StatPearls. Treasure Island, (FL). : StatPearls Publishing 2023.
[57]
Worden JC, Asare K. Postoperative atrial fibrillation: Role of inflammatory biomarkers and use of colchicine for its prevention. Pharmacotherapy 2014; 34(11): 1167-73.
[http://dx.doi.org/10.1002/phar.1485] [PMID: 25283810]
[58]
Lennerz C, Barman M, Tantawy M, Sopher M, Whittaker P. Colchicine for primary prevention of atrial fibrillation after open-heart surgery: Systematic review and meta-analysis. Int J Cardiol 2017; 249: 127-37.
[http://dx.doi.org/10.1016/j.ijcard.2017.08.039] [PMID: 28918897]
[59]
Ge P, Fu Y, Su Q, et al. Colchicine for prevention of post-operative atrial fibrillation: Meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9: 1032116.
[http://dx.doi.org/10.3389/fcvm.2022.1032116] [PMID: 36531704]
[60]
Kommu S, Arepally S. The effect of colchicine on atrial fibrillation: A systematic review and meta-analysis. Cureus 2023; 15(2): e35120.
[http://dx.doi.org/10.7759/cureus.35120]
[61]
Andrade JG, Khairy P, Verma A, et al. Early recurrence of atrial tachyarrhythmias following radiofrequency catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol 2012; 35(1): 106-16.
[http://dx.doi.org/10.1111/j.1540-8159.2011.03256.x] [PMID: 22054110]
[62]
Marrouche NF, Wazni O, McGann C, et al. Effect of MRI-guided fibrosis ablation vs. conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: The DECAAF II randomized clinical trial. JAMA 2022; 327(23): 2296-305.
[http://dx.doi.org/10.1001/jama.2022.8831] [PMID: 35727277]
[63]
Wang M, Xiong H, Lu L, Zhu T, Jiang H. Serum lipopolysaccharide is associated with the recurrence of atrial fibrillation after radiofrequency ablation by increasing systemic inflammation and atrial fibrosis. Oxid Med Cell Longev 2022; 2022: 1-7.
[http://dx.doi.org/10.1155/2022/2405972] [PMID: 36285296]
[64]
Kuck KH, Albenque JP, Chun KRJ, et al. Repeat ablation for atrial fibrillation recurrence post cryoballoon or radiofrequency ablation in the FIRE AND ICE trial. Circ Arrhythm Electrophysiol 2019; 12(6): e007247.
[http://dx.doi.org/10.1161/CIRCEP.119.007247] [PMID: 31693319]
[65]
Baek YS, Kwon OS, Lim B, et al. Clinical outcomes of computational virtual mapping-guided catheter ablation in patients with persistent atrial fibrillation: A multicenter prospective randomized clinical trial. Front Cardiovasc Med 2021; 8: 772665.
[http://dx.doi.org/10.3389/fcvm.2021.772665] [PMID: 34957255]
[66]
Park YJ, Park JW, Yu HT, et al. Sex difference in atrial fibrillation recurrence after catheter ablation and antiarrhythmic drugs Heart 2022; 109(7): heartjnl-. : 2021-320601.
[http://dx.doi.org/10.1136/heartjnl-2021-320601 ] [PMID: 35332048]
[67]
Solimene F, Stabile G, Ramos P, et al. Improved procedural workflow for catheter ablation of paroxysmal AF with high-density mapping system and advanced technology: Rationale and study design of a multicenter international study. Clin Cardiol 2022; 45(6): 597-604.
[http://dx.doi.org/10.1002/clc.23806] [PMID: 35446440]
[68]
Saglietto A, Ballatore A, Gaita F, et al. Comparative efficacy and safety of different catheter ablation strategies for persistent atrial fibrillation: A network meta-analysis of randomized clinical trials. Eur Heart J Qual Care Clin Outcomes 2022; 8(6): 619-29.
[http://dx.doi.org/10.1093/ehjqcco/qcab066] [PMID: 34498687]
[69]
Xu M, Yang Y, Zhang D, Jiang W. Meta-analysis of high power short duration in atrial fibrillation ablation – a superior efficient ablation strategy. Acta Cardiol 2022; 77(1): 14-32.
[http://dx.doi.org/10.1080/00015385.2021.1939512] [PMID: 34218737]
[70]
O’Neill MJ, Yoneda ZT, Crawford DM, et al. 2-Hydroxybenzylamine (2-HOBA) to prevent early recurrence of atrial fibrillation after catheter ablation: Protocol for a randomized controlled trial including detection of AF using a wearable device. Trials 2021; 22(1): 576.
[http://dx.doi.org/10.1186/s13063-021-05553-6] [PMID: 34454591]
[71]
Yin G, Ma B, Zhou B, Wu J, You L, Xie R. Inflammatory response after different ablation strategies for paroxysmal atrial fibrillation. Heart Surg Forum 2020; 23(5): E703-11.
[http://dx.doi.org/10.1532/hsf.3149] [PMID: 32990569]
[72]
Rosenberg JH, Werner JH, Plitt GD, et al. Immunopathogenesis and biomarkers of recurrent atrial fibrillation following ablation therapy in patients with preexisting atrial fibrillation. Expert Rev Cardiovasc Ther 2019; 17(3): 193-207.
[http://dx.doi.org/10.1080/14779072.2019.1562902] [PMID: 30580643]
[73]
Liu Y, Xu L, Zhang Q. Localized myocardial anti-Inflammatory effects of temperature-sensitive budesonide nanoparticles during radiofrequency catheter ablation. Researh 2022; 2022: 9816234.
[http://dx.doi.org/10.34133/2022/9816234]
[74]
Wei Y, Bao Y, Lin C, et al. Early recurrence after cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation: Mechanism and implication in long-term outcome. BMC Cardiovasc Disord 2022; 22(1): 400.
[http://dx.doi.org/10.1186/s12872-022-02816-1] [PMID: 36071377]
[75]
Yano M, Egami Y, Ukita K, et al. Atrial fibrillation type modulates the clinical predictive value of neutrophil-to-lymphocyte ratio for atrial fibrillation recurrence after catheter ablation. Int J Cardiol Heart Vasc 2020; 31: 100664.
[http://dx.doi.org/10.1016/j.ijcha.2020.100664] [PMID: 33163615]
[76]
Ying H, Guo W, Tang X, et al. Colchicine attenuates the electrical remodeling of post-operative atrial fibrillation through inhibited expression of immune-related hub genes and stabilization of microtubules. Int J Biol Sci 2023; 19(9): 2934-56.
[http://dx.doi.org/10.7150/ijbs.81961] [PMID: 37324937]
[77]
Liu D, Li Y, Zhao Q. Effects of inflammatory cell death caused by catheter ablation on atrial fibrillation. J Inflamm Res 2023; 16: 3491-508.
[http://dx.doi.org/10.2147/JIR.S422002] [PMID: 37608882]
[78]
Lim HS, Schultz C, Dang J, et al. Time course of inflammation, myocardial injury, and prothrombotic response after radiofrequency catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol 2014; 7(1): 83-9.
[http://dx.doi.org/10.1161/CIRCEP.113.000876] [PMID: 24446024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy