Review Article

Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review

Author(s): Corina M. Ionescu, Melissa A. Jones, Susbin R. Wagle, Bozica Kovacevic, Thomas Foster, Momir Mikov, Armin Mooranian* and Hani Al-Salami*

Volume 25, Issue 3, 2024

Published on: 08 January, 2024

Page: [158 - 170] Pages: 13

DOI: 10.2174/0113894501278292231223035733

Price: $65

Open Access Journals Promotions 2
Abstract

Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects.

The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system.

Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.

Keywords: Cochlea, bile acids, bile acid receptors, hearing loss, micro RNAs, cellular stress.

Graphical Abstract
[1]
Moreira S, Fonseca I, Nunes MJ, et al. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol 2017; 295: 77-87.
[http://dx.doi.org/10.1016/j.expneurol.2017.05.009] [PMID: 28552716]
[2]
Lee CH, Park S, Lee D, et al. Tauroursodeoxycholic acid attenuates cisplatin-induced hearing loss in rats. Neurosci Lett 2020; 722: 134838.
[http://dx.doi.org/10.1016/j.neulet.2020.134838] [PMID: 32061715]
[3]
Zong S, Liu T, Wan F, Chen P, Luo P, Xiao H. Endoplasmic reticulum stress is involved in cochlear cell apoptosis in a cisplatin-induced ototoxicity rat model. Audiol Neurotol 2017; 22(3): 160-8.
[http://dx.doi.org/10.1159/000480346] [PMID: 29049998]
[4]
Klokkenburg JJC, Hoeve HLJ, Francke J, Wieringa MH, Borgstein J, Feenstra L. Bile acids identified in middle ear effusions of children with otitis media with effusion. Laryngoscope 2009; 119(2): 396-400.
[http://dx.doi.org/10.1002/lary.20115] [PMID: 19172630]
[5]
Develoglu ON, Yalcin E, Bulut E, et al. Histopathologic changes in the middle ear mucosa after exposure to pepsin and unconjugated bile acid. J Craniofac Surg 2014; 25(6): e536-40.
[http://dx.doi.org/10.1097/SCS.0000000000001041] [PMID: 25364974]
[6]
Bian KY, Jin HF, Sun W, Sun YJ. DCA can improve the ACI-induced neurological impairment through negative regulation of Nrf2 signaling pathway. Eur Rev Med Pharmacol Sci 2019; 23(1): 343-51.
[http://dx.doi.org/10.26355/eurrev_201901_16782] [PMID: 30657576]
[7]
Han GH, Kim SJ, Ko WK, et al. Injectable hydrogel containing tauroursodeoxycholic acid for anti-neuroinflammatory therapy after spinal cord injury in rats. Mol Neurobiol 2020; 57(10): 4007-17.
[http://dx.doi.org/10.1007/s12035-020-02010-4] [PMID: 32647974]
[8]
Hu J, Xu M, Yuan J, et al. Tauroursodeoxycholic acid prevents hearing loss and hair cell death in Cdh23 mice. Neuroscience 2016; 316: 311-20.
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.050] [PMID: 26748055]
[9]
Oishi N, Duscha S, Boukari H, et al. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death. Cell Death Dis 2015; 6(5): e1763.
[http://dx.doi.org/10.1038/cddis.2015.108] [PMID: 25973683]
[10]
Jia Z, He Q, Shan C, Li F. Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro. Toxicol Lett 2018; 294: 20-6.
[http://dx.doi.org/10.1016/j.toxlet.2018.05.007] [PMID: 29751043]
[11]
Oliver D, Taberner AM, Thurm H, et al. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 2006; 26(23): 6181-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1047-06.2006] [PMID: 16763026]
[12]
Bukiya AN, Vaithianathan T, Toro L, Dopico AM. The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel β1 subunit is a lithocholate sensor. FEBS Lett 2008; 582(5): 673-8.
[http://dx.doi.org/10.1016/j.febslet.2008.01.036] [PMID: 18242174]
[13]
Khurana S, Raina H, Pappas V, Raufman JP, Pallone TL. Effects of deoxycholylglycine, a conjugated secondary bile acid, on myogenic tone and agonist-induced contraction in rat resistance arteries. PLoS One 2012; 7(2): e32006.
[http://dx.doi.org/10.1371/journal.pone.0032006] [PMID: 22359652]
[14]
Pan C, Chu H, Lai Y, et al. Down-regulation of the large conductance Ca 2+ -activated K + channel expression in C57BL/6J cochlea. Acta Otolaryngol 2016; 136(9): 875-8.
[http://dx.doi.org/10.3109/00016489.2016.1168941] [PMID: 27093472]
[15]
Rüttiger L, Sausbier M, Zimmermann U, et al. Deletion of the Ca 2 +-activated potassium (BK) α-subunit but not the BKβ1-subunit leads to progressive hearing loss. Proc Natl Acad Sci 2004; 101(35): 12922-7.
[http://dx.doi.org/10.1073/pnas.0402660101] [PMID: 15328414]
[16]
Xu SR, Xia ML, Deng S, Li XR, Si JQ, Li L. [The effect of large-conductance calcium-activated potassium channels on the migration of pericytes in the mice of senile cochlear stria vascularis]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2021; 56(12): 1319-27.
[http://dx.doi.org/10.3760/cma.j.cn115330-20201225-00951] [PMID: 34963221]
[17]
Brecht EJ, Scott LL, Ding B, Zhu X, Walton JP. A BK channel-targeted peptide induces age-dependent improvement in behavioral and neural sound representation. Neurobiol Aging 2022; 110: 61-72.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.10.014] [PMID: 34861480]
[18]
Sokolowski B, Duncan RK, Chen S, Karolat J, Kathiresan T, Harvey M. The large-conductance Ca2+-activated K+ channel interacts with the apolipoprotein ApoA1. Biochem Biophys Res Commun 2009; 387(4): 671-5.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.074] [PMID: 19619511]
[19]
Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience 2005; 135(1): 263-71.
[http://dx.doi.org/10.1016/j.neuroscience.2005.05.055] [PMID: 16109459]
[20]
Purcell EK, Liu L, Thomas PV, Duncan RK. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells. PLoS One 2011; 6(10): e26289.
[http://dx.doi.org/10.1371/journal.pone.0026289] [PMID: 22046269]
[21]
Dopico AM, Walsh JV Jr, Singer JJ. Natural bile acids and synthetic analogues modulate large conductance Ca2+-activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol 2002; 119(3): 251-73.
[http://dx.doi.org/10.1085/jgp.20028537] [PMID: 11865021]
[22]
Büki B, Jünger H, Zhang Y, Lundberg YW. The price of immune responses and the role of vitamin D in the inner ear. Otol Neurotol 2019; 40(6): 701-9.
[http://dx.doi.org/10.1097/MAO.0000000000002258] [PMID: 31194714]
[23]
Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018; 13(6): 612-32.
[http://dx.doi.org/10.1177/1747493018778713] [PMID: 29786478]
[24]
Ishizawa M, Akagi D, Makishima M. Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum. Int J Mol Sci 2018; 19(7): 1975.
[http://dx.doi.org/10.3390/ijms19071975] [PMID: 29986424]
[25]
Nowaczewska M, Osiński S, Marzec M, Wiciński M, Bilicka K, Kaźmierczak W. The role of vitamin D in subjective tinnitus—A case-control study. PLoS One 2021; 16(8): e0255482.
[http://dx.doi.org/10.1371/journal.pone.0255482] [PMID: 34407088]
[26]
Bigman G. Deficiency in vitamin D is associated with bilateral hearing impairment and bilateral sensorineural hearing loss in older adults. Nutr Res 2022; 105: 1-10.
[http://dx.doi.org/10.1016/j.nutres.2022.05.008] [PMID: 35779352]
[27]
Carpinelli MR, Wise AK, Burt RA. Vitamin D-deficient diet rescues hearing loss in Klotho mice. Hear Res 2011; 275(1-2): 105-9.
[http://dx.doi.org/10.1016/j.heares.2010.12.009] [PMID: 21167925]
[28]
Zou J, Minasyan A, Keisala T, et al. Progressive hearing loss in mice with a mutated vitamin D receptor gene. Audiol Neurotol 2008; 13(4): 219-30.
[http://dx.doi.org/10.1159/000115431] [PMID: 18259074]
[29]
Sueta T, Paki B, Everett AW, Robertson D. Purinergic receptors in auditory neurotransmission. Hear Res 2003; 183(1-2): 97-108.
[http://dx.doi.org/10.1016/S0378-5955(03)00221-1] [PMID: 13679142]
[30]
Zhu Y, Zhao HB. ATP-mediated potassium recycling in the cochlear supporting cells. Purinergic Signal 2010; 6(2): 221-9.
[http://dx.doi.org/10.1007/s11302-010-9184-9] [PMID: 20806014]
[31]
Loesch A. On P2X receptors in the brain: Microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929–2020). Cell Tissue Res 2021; 384(3): 577-88.
[http://dx.doi.org/10.1007/s00441-021-03411-0] [PMID: 33755804]
[32]
Berekméri E, Szepesy J, Köles L, Zelles T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res Bull 2019; 151: 109-18.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.029] [PMID: 30721767]
[33]
Loesch A, Burnstock G. Ultrastructural localisation of ATP-gated P2X2 receptor immunoreactivity in vascular endothelial cells in rat brain. Endothelium 2000; 7(2): 93-8.
[http://dx.doi.org/10.3109/10623320009072204] [PMID: 10865937]
[34]
Wu T, Dai M, Shi XR, Jiang ZG, Nuttall AL. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. Am J Physiol Heart Circ Physiol 2011; 301(1): H69-78.
[http://dx.doi.org/10.1152/ajpheart.01035.2010] [PMID: 21460192]
[35]
Yan D, Zhu Y, Walsh T, et al. Mutation of the ATP-gated P2X 2 receptor leads to progressive hearing loss and increased susceptibility to noise. Proc Natl Acad Sci 2013; 110(6): 2228-33.
[http://dx.doi.org/10.1073/pnas.1222285110] [PMID: 23345450]
[36]
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202: 105725.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105725] [PMID: 32652201]
[37]
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic signaling and cochlear injury-targeting the immune system? Int J Mol Sci 2019; 20(12): 2979.
[http://dx.doi.org/10.3390/ijms20122979] [PMID: 31216722]
[38]
Nikolic P, Housley GD, Thorne PR. Expression of the P2X7 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the developing and adult rat cochlea. Audiol Neurotol 2003; 8(1): 28-37.
[http://dx.doi.org/10.1159/000067891] [PMID: 12566690]
[39]
Schmidt A, Joussen S, Hausmann R, Gründer S, Wiemuth D. Bile acids are potent inhibitors of rat P2X2 receptors. Purinergic Signal 2019; 15(2): 213-21.
[http://dx.doi.org/10.1007/s11302-019-09657-2] [PMID: 31098843]
[40]
Wen Y, Zong S, Liu T, Du P, Li H, Xiao H. Tauroursodeoxycholic acid attenuates cisplatin-induced ototoxicity by inhibiting the accumulation and aggregation of unfolded or misfolded proteins in the endoplasmic reticulum. Toxicology 2021; 453: 152736.
[http://dx.doi.org/10.1016/j.tox.2021.152736] [PMID: 33631298]
[41]
Xie Q, Khaoustov VI, Chung CC, et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress–induced caspase-12 activation. Hepatology 2002; 36(3): 592-601.
[http://dx.doi.org/10.1053/jhep.2002.35441] [PMID: 12198651]
[42]
Lu J, Wang W, Liu H, Liu H, Wu H. Cisplatin induces calcium ion accumulation and hearing loss by causing functional alterations in calcium channels and exocytosis. Am J Transl Res 2019; 11(11): 6877-89. [From NLM.].
[PMID: 31814894]
[43]
Chien JM, Chou CT, Liang WZ, et al. Effect of deoxycholic acid on Ca 2+ movement, cell viability and apoptosis in human gastric cancer cells. Toxicol Mech Methods 2015; 25(2): 113-9.
[http://dx.doi.org/10.3109/15376516.2014.990597] [PMID: 25406855]
[44]
Nakajima T, Okuda Y, Chisaki K, et al. Bile acids increase intracellular Ca 2+ concentration and nitric oxide production in vascular endothelial cells. Br J Pharmacol 2000; 130(7): 1457-67.
[http://dx.doi.org/10.1038/sj.bjp.0703471] [PMID: 10928945]
[45]
Devor DC, Sekar MC, Frizzell RA, Duffey ME. Taurodeoxycholate activates potassium and chloride conductances via an IP3-mediated release of calcium from intracellular stores in a colonic cell line (T84). J Clin Invest 1993; 92(5): 2173-81.
[http://dx.doi.org/10.1172/JCI116819] [PMID: 7693758]
[46]
Sharma R, Quilty F, Gilmer JF, Long A, Byrne AM. Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependant mechanism. Oncotarget 2017; 8(1): 967-78.
[http://dx.doi.org/10.18632/oncotarget.13514] [PMID: 27888615]
[47]
Maison SF, Liu XP, Vetter DE, et al. Muscarinic signaling in the cochlea: Presynaptic and postsynaptic effects on efferent feedback and afferent excitability. J Neurosci 2010; 30(19): 6751-62.
[http://dx.doi.org/10.1523/JNEUROSCI.5080-09.2010] [PMID: 20463237]
[48]
Stefanescu RA, Shore SE. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol 2017; 117(3): 1229-38.
[http://dx.doi.org/10.1152/jn.00270.2016] [PMID: 28003407]
[49]
Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther 2002; 303(1): 29-35.
[http://dx.doi.org/10.1124/jpet.102.036376] [PMID: 12235229]
[50]
Raufman JP, Chen Y, Cheng K, Compadre C, Compadre L, Zimniak P. Selective interaction of bile acids with muscarinic receptors: a case of molecular mimicry. Eur J Pharmacol 2002; 457(2-3): 77-84.
[http://dx.doi.org/10.1016/S0014-2999(02)02690-0] [PMID: 12464352]
[51]
Raufman JP, Chen Y, Zimniak P, Cheng K. Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists. Pharmacology 2002; 65(4): 215-21.
[http://dx.doi.org/10.1159/000064347] [PMID: 12119452]
[52]
Wang L, Gong Z, Zhang X, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes 2020; 12(1): 1819155.
[http://dx.doi.org/10.1080/19490976.2020.1819155] [PMID: 33006494]
[53]
Frye MD, Ryan AF, Kurabi A. Inflammation associated with noise-induced hearing loss. J Acoust Soc Am 2019; 146(5): 4020-32.
[http://dx.doi.org/10.1121/1.5132545] [PMID: 31795714]
[54]
Benkafadar N, François F, Affortit C, et al. ROS-induced activation of DNA damage responses drives senescence-like state in postmitotic cochlear cells: Implication for hearing preservation. Mol Neurobiol 2019; 56(8): 5950-69.
[http://dx.doi.org/10.1007/s12035-019-1493-6] [PMID: 30693443]
[55]
Li H, Lu M, Zhang H, et al. Downregulation of REST in the cochlea contributes to age-related hearing loss via the p53 apoptosis pathway. Cell Death Dis 2022; 13(4): 343.
[http://dx.doi.org/10.1038/s41419-022-04774-0] [PMID: 35418568]
[56]
Im E, Martinez JD. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J Nutr 2004; 134(2): 483-6.
[http://dx.doi.org/10.1093/jn/134.2.483] [PMID: 14747693]
[57]
Lee J, Hong EM, Kim JH, et al. Ursodeoxycholic acid shows antineoplastic effects in bile duct cancer cells via apoptosis induction; p53 activation; and EGFR-ERK, COX-2, and PI3K-AKT pathway inhibition. Mol Biol Rep 2021; 48(9): 6231-40.
[http://dx.doi.org/10.1007/s11033-021-06331-y] [PMID: 34392440]
[58]
Qiao D, Gaitonde SV, Qi W, Martinez JD. Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis 2001; 22(6): 957-64.
[http://dx.doi.org/10.1093/carcin/22.6.957] [PMID: 11375905]
[59]
Ferreira DMS, Afonso MB, Rodrigues PM, et al. c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol 2014; 34(6): 1100-20.
[http://dx.doi.org/10.1128/MCB.00420-13] [PMID: 24421392]
[60]
Benkafadar N, Menardo J, Bourien J, et al. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol Med 2017; 9(1): 7-26.
[http://dx.doi.org/10.15252/emmm.201606230] [PMID: 27794029]
[61]
Reed S, Quelle D. p53 acetylation: Regulation and consequences. Cancers 2014; 7(1): 30-69.
[http://dx.doi.org/10.3390/cancers7010030] [PMID: 25545885]
[62]
Xiong H, Pang J, Yang H, et al. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol Aging 2015; 36(4): 1692-701.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.12.034] [PMID: 25638533]
[63]
Studer E, Zhou X, Zhao R, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012; 55(1): 267-76.
[http://dx.doi.org/10.1002/hep.24681] [PMID: 21932398]
[64]
Ingham NJ, Carlisle F, Pearson S, et al. S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse. Sci Rep 2016; 6(1): 28964.
[http://dx.doi.org/10.1038/srep28964] [PMID: 27383011]
[65]
Nakayama M, Tabuchi K, Hoshino T, Nakamagoe M, Nishimura B, Hara A. The influence of sphingosine-1-phosphate receptor antagonists on gentamicin-induced hair cell loss of the rat cochlea. Neurosci Lett 2014; 561: 91-5.
[http://dx.doi.org/10.1016/j.neulet.2013.12.063] [PMID: 24397911]
[66]
Herr DR, Reolo MJY, Peh YX, et al. Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Sci Rep 2016; 6(1): 24541.
[http://dx.doi.org/10.1038/srep24541] [PMID: 27080739]
[67]
Cao C, Dai L, Mu J, et al. S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation. Cell Signal 2019; 53: 151-61.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.019] [PMID: 30290210]
[68]
Lee CH, Jeon J, Lee SM, Kim SY. Differential expression of miRNAs and their predicted target pathways in cochlear nucleus following chronic noise exposure in rats. Cells 2022; 11(15): 2266.
[http://dx.doi.org/10.3390/cells11152266] [PMID: 35892563]
[69]
Dai B-H, Geng L, Wang Y, et al. microRNA-199a-5p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress. Cell Death Dis 2013; 4(4): e604.
[http://dx.doi.org/10.1038/cddis.2013.134] [PMID: 23598416]
[70]
Doukas SG, Vageli DP, Sasaki CT. NF -κB inhibition reverses acidic bile-induced miR-21, miR-155, miR-192, miR-34a, miR-375 and miR-451a deregulations in human hypopharyngeal cells. J Cell Mol Med 2018; 22(5): 2922-34.
[http://dx.doi.org/10.1111/jcmm.13591] [PMID: 29516639]
[71]
Sasaki CT, Vageli DP. miR-21, miR-155, miR-192, and miR-375 deregulations related to NF-kappaB activation in gastroduodenal fluid–induced early preneoplastic lesions of laryngeal mucosa in vivo. Neoplasia 2016; 18(6): 329-38.
[http://dx.doi.org/10.1016/j.neo.2016.04.007] [PMID: 27292022]
[72]
Rudnicki A, Shivatzki S, Beyer LA, Takada Y, Raphael Y, Avraham KB. microRNA-224 regulates Pentraxin 3, a component of the humoral arm of innate immunity, in inner ear inflammation. Hum Mol Genet 2014; 23(12): 3138-46.
[http://dx.doi.org/10.1093/hmg/ddu023] [PMID: 24470395]
[73]
Adamowicz M, Kempinska-Podhorodecka A, Abramczyk J, Banales JM, Milkiewicz P, Milkiewicz M. Suppression of hepatic PPARα in primary biliary cholangitis is modulated by miR-155. Cells 2022; 11(18): 2880.
[http://dx.doi.org/10.3390/cells11182880] [PMID: 36139455]
[74]
Pang J, Xiong H, Lin P, et al. Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: Implications for age-related hearing loss. Cell Death Dis 2017; 8(10): e3079.
[http://dx.doi.org/10.1038/cddis.2017.462] [PMID: 28981097]
[75]
Lin Y, Shen J, Li D, et al. MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1α signaling. Gen Comp Endocrinol 2017; 246: 63-70.
[http://dx.doi.org/10.1016/j.ygcen.2017.02.017] [PMID: 28263817]
[76]
Castro RE, Ferreira DMS, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 2013; 58(1): 119-25.
[http://dx.doi.org/10.1016/j.jhep.2012.08.008] [PMID: 22902550]
[77]
Krattinger R, Boström A, Lee SML, et al. Chenodeoxycholic acid significantly impacts the expression of miRNAs and genes involved in lipid, bile acid and drug metabolism in human hepatocytes. Life Sci 2016; 156: 47-56.
[http://dx.doi.org/10.1016/j.lfs.2016.04.037] [PMID: 27174168]
[78]
Kulkarni SR, Soroka CJ, Hagey LR, Boyer JL. Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid–fed mouse model of cholestasis. Hepatology 2016; 64(6): 2151-64.
[http://dx.doi.org/10.1002/hep.28826] [PMID: 27639250]
[79]
Huang Q, Ou Y, Xiong H, et al. The miR-34a/Bcl-2 pathway contributes to auditory cortex neuron apoptosis in age-related hearing loss. Audiol Neurotol 2017; 22(2): 96-103.
[http://dx.doi.org/10.1159/000454874] [PMID: 28817812]
[80]
Pang J, Xiong H, Yang H, et al. Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol 2016; 76: 58-67.
[http://dx.doi.org/10.1016/j.exger.2016.01.009] [PMID: 26802970]
[81]
Akiyama N, Yamamoto-Fukuda T, Kojima H. miR-34a predicts the prognosis of advanced-stage external auditory canal squamous cell carcinoma. Acta Otolaryngol 2022; 142(6): 537-41.
[http://dx.doi.org/10.1080/00016489.2022.2086292] [PMID: 35732008]
[82]
Wang D, Xiao Y, Li W, et al. Association of noise exposure, plasma microRNAs with arterial stiffness among Chinese workers. Environ Pollut 2022; 311: 120002.
[http://dx.doi.org/10.1016/j.envpol.2022.120002] [PMID: 35995288]
[83]
Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, Wackym PA, Hansen MR. MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol 2010; 31(9): 1455-62.
[http://dx.doi.org/10.1097/MAO.0b013e3181f20655] [PMID: 20856158]
[84]
Yan H, Huang W, Rao J, Yuan J. miR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway. Aging 2021; 13(18): 22242-55.
[http://dx.doi.org/10.18632/aging.203530] [PMID: 34552038]
[85]
Ge XT, Lei P, Wang HC, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 2014; 4(1): 6718.
[http://dx.doi.org/10.1038/srep06718] [PMID: 25342226]
[86]
Hao F, Shan C, Zhang Y, Zhang Y, Jia Z. Exosomes derived from microRNA-21 overexpressing neural progenitor cells prevent hearing loss from ischemia-reperfusion injury in mice via inhibiting the inflammatory process in the cochlea. ACS Chem Neurosci 2022; 13(16): 2464-72.
[http://dx.doi.org/10.1021/acschemneuro.2c00234] [PMID: 35939349]
[87]
Yang T, Cai C, Peng A, Liu J, Wang Q. Exosomes derived from cochlear spiral ganglion progenitor cells prevent cochlea damage from ischemia-reperfusion injury via inhibiting the inflammatory process. Cell Tissue Res 2021; 386(2): 239-47.
[http://dx.doi.org/10.1007/s00441-021-03468-x] [PMID: 34155579]
[88]
Nguyen TT, Ung TT, Li S, et al. Lithocholic acid induces miR21, promoting PTEN inhibition via STAT3 and ERK-1/2 signaling in colorectal cancer cells. Int J Mol Sci 2021; 22(19): 10209.
[http://dx.doi.org/10.3390/ijms221910209] [PMID: 34638550]
[89]
Yuan T, Ni Z, Han C, et al. SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal metaplasia. Cancer Cell Int 2019; 19(1): 24.
[http://dx.doi.org/10.1186/s12935-019-0739-8] [PMID: 30733645]
[90]
Rodrigues PM, Afonso MB, Simão AL, Borralho PM, Rodrigues CMP, Castro RE. Inhibition of NF-κB by deoxycholic acid induces miR-21/PDCD4-dependent hepatocellular apoptosis. Sci Rep 2015; 5(1): 17528.
[http://dx.doi.org/10.1038/srep17528] [PMID: 26621219]
[91]
Chen D, Jia G, Zhang Y, et al. Sox2 overexpression alleviates noise-induced hearing loss by inhibiting inflammation-related hair cell apoptosis. J Neuroinflammation 2022; 19(1): 59.
[http://dx.doi.org/10.1186/s12974-022-02414-0] [PMID: 35227273]
[92]
Castro RE, Ferreira DMS, Zhang X, et al. Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. Am J Physiol Gastrointest Liver Physiol 2010; 299(4): G887-97.
[http://dx.doi.org/10.1152/ajpgi.00216.2010] [PMID: 20689055]
[93]
Huang R, Huang Y, Zeng G, Li M, Jin Y. Ursodeoxycholic acid inhibits intimal hyperplasia, vascular smooth muscle cell excessive proliferation, migration via blocking miR-21/PTEN/AKT/mTOR signaling pathway. Cell Cycle 2020; 19(8): 918-32.
[http://dx.doi.org/10.1080/15384101.2020.1732514] [PMID: 32202193]
[94]
Sisto R, Moleti A, Capone P, et al. MicroRNA expression is associated with auditory dysfunction in workers exposed to ototoxic solvents and noise. Front Public Health 2022; 10: 958181.
[http://dx.doi.org/10.3389/fpubh.2022.958181] [PMID: 36203702]
[95]
Wang Z, Liu Y, Han N, et al. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells. Brain Res 2010; 1346: 14-25.
[http://dx.doi.org/10.1016/j.brainres.2010.05.059] [PMID: 20510889]
[96]
Chen J, Qin J, Liu J. Elucidation of the mechanism of miR-122-5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide. Exp Ther Med 2022; 23(6): 435.
[http://dx.doi.org/10.3892/etm.2022.11362] [PMID: 35607378]
[97]
Yoon S, Lee H, Ji SC, Yoon SH, Cho JY, Chung JY. Pharmacokinetics and pharmacodynamics of ursodeoxycholic acid in an overweight population with abnormal liver function. Clin Pharmacol Drug Dev 2021; 10(1): 68-77.
[http://dx.doi.org/10.1002/cpdd.790] [PMID: 32191400]
[98]
Lin R, Zhan M, Yang L, et al. Deoxycholic acid modulates the progression of gallbladder cancer through N6-methyladenosine-dependent microRNA maturation. Oncogene 2020; 39(26): 4983-5000.
[http://dx.doi.org/10.1038/s41388-020-1349-6] [PMID: 32514152]
[99]
Ding L, Liu J, Shen HX, et al. Analysis of plasma microRNA expression profiles in male textile workers with noise-induced hearing loss. Hear Res 2016; 333: 275-82.
[http://dx.doi.org/10.1016/j.heares.2015.08.003] [PMID: 26278637]
[100]
Xiao T, Meng W, Jin Z, et al. miR-182-5p promotes hepatocyte-stellate cell crosstalk to facilitate liver regeneration. Commun Biol 2022; 5(1): 771.
[http://dx.doi.org/10.1038/s42003-022-03714-0] [PMID: 35915318]
[101]
Geng R, Furness DN, Muraleedharan CK, et al. The microRNA-183/96/182 cluster is essential for stereociliary bundle formation and function of cochlear sensory hair cells. Sci Rep 2018; 8(1): 18022.
[http://dx.doi.org/10.1038/s41598-018-36894-z] [PMID: 30575790]
[102]
Li Y, Li A, Wu J, et al. MiR-182-5p protects inner ear hair cells from cisplatin-induced apoptosis by inhibiting FOXO3a. Cell Death Dis 2016; 7(9): e2362.
[http://dx.doi.org/10.1038/cddis.2016.246] [PMID: 27607577]
[103]
Kim CW, Han JH, Wu L, Choi JY. microRNA-183 is essential for hair cell regeneration after neomycin injury in zebrafish. Yonsei Med J 2018; 59(1): 141-7.
[http://dx.doi.org/10.3349/ymj.2018.59.1.141] [PMID: 29214789]
[104]
Sedgeman LR, Beysen C, Allen RM, Ramirez Solano MA, Turner SM, Vickers KC. Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2018; 315(5): G810-23.
[http://dx.doi.org/10.1152/ajpgi.00238.2018] [PMID: 30160993]
[105]
Shah V, Mittal R, Shahal D, et al. Evaluating the efficacy of taurodeoxycholic acid in providing otoprotection using an in vitro model of electrode insertion trauma. Front Mol Neurosci 2020; 13: 113.
[http://dx.doi.org/10.3389/fnmol.2020.00113] [PMID: 32760249]
[106]
Yao B, He J, Yin X, Shi Y, Wan J, Tian Z. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol Lett 2019; 316: 109-18.
[http://dx.doi.org/10.1016/j.toxlet.2019.08.024] [PMID: 31472180]
[107]
Bukiya AN, Liu J, Toro L, Dopico AM. Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 2007; 72(2): 359-69.
[http://dx.doi.org/10.1124/mol.107.034330] [PMID: 17468198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy