Review Article

基于CRISPR的治疗:革命性的药物开发和精准医学

卷 24, 期 3, 2024

发表于: 02 January, 2024

页: [193 - 207] 页: 15

弟呕挨: 10.2174/0115665232275754231204072320

价格: $65

conference banner
摘要

随着CRISPR-Cas9的发现,药物开发和精准医疗发生了重大变化。这篇综述文章着眼于使用基于crispr的疗法的新方法,以及它们如何改变医学的方式。CRISPR技术精确灵活地编辑基因的能力为发现、验证和开发药物靶点开辟了新的途径。此外,它还为个性化基因疗法、精确的基因编辑和先进的筛查技术铺平了道路,所有这些都为治疗多种疾病带来了巨大的希望。在这篇文章中,我们看看最新的研究和临床试验,这些研究和临床试验展示了CRISPR如何用于治疗遗传疾病、癌症、传染病和其他难以治疗的疾病。然而,与基于crispr的疗法相关的伦理问题和监管问题也被讨论,这表明安全、负责任地使用它们是多么重要。随着CRISPR继续改变药物的制造和使用方式,这篇综述揭示了已经完成的惊人事情以及这个快速变化的领域的未来。

关键词: CRISPR-Cas9,基因治疗,精准医学,药物靶点鉴定,基因编辑,筛选技术,遗传疾病,癌症治疗。

图形摘要
[1]
Labanca N, Pereira ÂG, Watson M, et al. Transforming innovation for decarbonisation? Insights from combining complex systems and social practice perspectives. Energy Res Soc Sci 2020; 65: 101452.
[http://dx.doi.org/10.1016/j.erss.2020.101452]
[2]
Wang X, Xiong E, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 2020; 14(2): 2497-508.
[http://dx.doi.org/10.1021/acsnano.0c00022] [PMID: 32045522]
[3]
Harry AA. AI’s healing touch: Examining machine learning’s transformative effects on healthcare. BULLET : J Multidisiplin Ilmu 2023; 2(4): 1134-45.
[4]
Ansori AN, Antonius Y, Susilo RJ, et al. Application of CRISPR- Cas9 genome editing technology in various fields: A review. Narra J 2023; 2(4)
[5]
Carey N. Hacking the Code of Life: How gene editing will rewrite our futures Icon Books. 2019.
[6]
Lee J. The CRISPR revolution in genome engineering: Perspectives from religious ethics. J Relig Ethics 2022; 50(3): 333-60.
[http://dx.doi.org/10.1111/jore.12402]
[7]
Schmeink L. Biopunk dystopias: Genetic Engineering, Society and science fiction Liverpool University Press. 2017.
[8]
Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20(1): 126.
[http://dx.doi.org/10.1186/s12943-021-01431-6] [PMID: 34598686]
[9]
Aminoff EM, Balslev D, Borroni P, et al. The landscape of cognitive neuroscience: Challenges, rewards, and new perspectives. IRIS Institutional Research Information System - AIR Archivio Istituzionale della Ricerca. 2009; pp.1253-1260.
[10]
Mace FC, Critchfield TS. Translational research in behavior analysis: Historical traditions and imperative for the future. J Exp Anal Behav 2010; 93(3): 293-312.
[http://dx.doi.org/10.1901/jeab.2010.93-293] [PMID: 21119847]
[11]
Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J Adv Res 2022; 40: 207-21.
[http://dx.doi.org/10.1016/j.jare.2021.07.001] [PMID: 36100328]
[12]
Bauer DC, Wilson LO, Twine NA. Artificial Intelligence in Medicine: Applications, Limitations and Future Directions. Singapore: Springer Nature Singapore 2022; pp. 101-20.
[13]
Nordberg A, Minssen T, Holm S, Horst M, Mortensen K, Møller BL. Cutting edges and weaving threads in the gene editing (Я)evolution: Reconciling scientific progress with legal, ethical, and social concerns. J Law Biosci 2018; 5(1): 35-83.
[http://dx.doi.org/10.1093/jlb/lsx043] [PMID: 29707216]
[14]
Nierzwicki Ł, Arantes PR, Saha A, Palermo G. Establishing the allosteric mechanism in CRISPR-CAS9. Wiley Interdiscip Rev Comput Mol Sci 2021; 11(3): e1503.
[http://dx.doi.org/10.1002/wcms.1503] [PMID: 34322166]
[15]
Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol 2017; 2(3): 219-25.
[http://dx.doi.org/10.1016/j.synbio.2017.08.006] [PMID: 29318202]
[16]
Botelho A. The insights of radical science in the CRISPR gene-editing era: A history of science for the people and the cambridge recombinant DNA controversy. Sci Cult 2021; 30(1): 74-103.
[http://dx.doi.org/10.1080/09505431.2019.1623190] [PMID: 34239225]
[17]
Kelley ML, Strezoska Ž, He K, Vermeulen A, Smith AB. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotechnol 2016; 233: 74-83.
[http://dx.doi.org/10.1016/j.jbiotec.2016.06.011] [PMID: 27374403]
[18]
Christie KA, Guo JA, Silverstein RA, et al. Precise DNA cleavage using CRISPR-SpRYgests. Nat Biotechnol 2023; 41(3): 409-16.
[http://dx.doi.org/10.1038/s41587-022-01492-y] [PMID: 36203014]
[19]
Koerner A, Kratzsch J, Kiess W. Adipocytokines: Leptin-the classical, resistin-the controversical, adiponectin-the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005; 19(4): 525-46.
[http://dx.doi.org/10.1016/j.beem.2005.07.008] [PMID: 16311215]
[20]
Zheng N, Xu Y, Zhao Q, Xie T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev 2021; 121(3): 1716-45.
[http://dx.doi.org/10.1021/acs.chemrev.0c00938] [PMID: 33393759]
[21]
Jia HP, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 2014; 43(2): 547-64.
[http://dx.doi.org/10.1039/C3CS60206K] [PMID: 24108246]
[22]
Hanamirian MA Jr. Analyzing the potential impact and ethical questions surrounding CRISPR-Cas9 in embryonic genome editing. Wake Forest University 2018.
[23]
Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science 2023; 379(6629): eadd8643.
[http://dx.doi.org/10.1126/science.add8643] [PMID: 36656942]
[24]
Termanini R. Biomedical Defense Principles to Counter DNA Deep Hacking Academic Press. 2022.
[25]
Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (Prohibitin) complex. Cells 2018; 7(12): 238.
[http://dx.doi.org/10.3390/cells7120238] [PMID: 30501123]
[26]
Yousefzadeh MJ, Wyatt DW, Takata K, et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 2014; 10(10): e1004654.
[http://dx.doi.org/10.1371/journal.pgen.1004654] [PMID: 25275444]
[27]
Jacobi AM, Rettig GR, Turk R, et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 2017; 121-122: 16-28.
[http://dx.doi.org/10.1016/j.ymeth.2017.03.021] [PMID: 28351759]
[28]
Marya R, Patel R. Inflamed: Deep medicine and the anatomy of injustice Penguin UK. 2021.
[29]
Bernhardt HS. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others)a. Biol Direct 2012; 7(1): 23.
[http://dx.doi.org/10.1186/1745-6150-7-23] [PMID: 22793875]
[30]
Moradpour M, Abdulah SNA. CRISPR / DC as9 platforms in plants: Strategies and applications beyond genome editing. Plant Biotechnol J 2020; 18(1): 32-44.
[http://dx.doi.org/10.1111/pbi.13232] [PMID: 31392820]
[31]
Resources N. Future genetic-engineering technologies. Genetically engineered crops: Experiences and prospects National Academies Press (US). 2016.
[32]
Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct Target Ther 2023; 8(1): 36.
[http://dx.doi.org/10.1038/s41392-023-01309-7] [PMID: 36646687]
[33]
Kitcher P. Moral progress. Oxford University Press 2021.
[http://dx.doi.org/10.1093/oso/9780197549155.001.0001]
[34]
Happe KE. The material gene: Gender, race, and heredity after the human genome project. NYU Press 2013.
[35]
Mitra S, Anand U, Ghorai M, et al. Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnol Bioeng 2023; 120(1): 82-94.
[http://dx.doi.org/10.1002/bit.28260] [PMID: 36224758]
[36]
Baylis F. Altered inheritance: CRISPR and the ethics of human genome editing. Harvard University Press 2019.
[37]
González-Rosa JM. Zebrafish models of cardiac disease: From fortuitous mutants to precision medicine. Circ Res 2022; 130(12): 1803-26.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.320396] [PMID: 35679360]
[38]
Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat Rev Drug Discov 2017; 16(8): 531-43.
[http://dx.doi.org/10.1038/nrd.2017.111] [PMID: 28685762]
[39]
Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat Rev Drug Discov 2017; 16(2): 89-100.
[http://dx.doi.org/10.1038/nrd.2016.238] [PMID: 28008168]
[40]
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020; 17(7): 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[41]
Sajja H, East M, Mao H, Wang Y, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009; 6(1): 43-51.
[http://dx.doi.org/10.2174/157016309787581066] [PMID: 19275541]
[42]
Tyagi S, Kumar R, Kumar V, Won SY, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food 2021; 12(1): 125-44.
[http://dx.doi.org/10.1080/21645698.2020.1831729] [PMID: 33079628]
[43]
Go DE, Stottmann RW. The impact of CRISPR/Cas9-based genomic engineering on biomedical research and medicine. Curr Mol Med 2016; 16(4): 343-52.
[http://dx.doi.org/10.2174/1566524016666160316150847] [PMID: 26980700]
[44]
Vogel KM, Ouagrham-Gormley SB. Anticipating emerging biotechnology threats. Politics Life Sci 2018; 37(2): 203-19.
[http://dx.doi.org/10.1017/pls.2018.21] [PMID: 31120699]
[45]
Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet 2009; 10(4): 241-51.
[http://dx.doi.org/10.1038/nrg2554] [PMID: 19293820]
[46]
Ludi Z, Sule AA, Samy RP, et al. Diagnosis and biomarkers for ocular tuberculosis: From the present into the future. Theranostics 2023; 13(7): 2088-113.
[http://dx.doi.org/10.7150/thno.81488] [PMID: 37153734]
[47]
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47: 107695.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107695] [PMID: 33465474]
[48]
Nayak V, Patra S, Singh KRB, et al. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T- cells mediated therapeutics. Environ Res 2023; 235: 116573.
[http://dx.doi.org/10.1016/j.envres.2023.116573] [PMID: 37437865]
[49]
Haggarty SJ, Karmacharya R, Perlis RH. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules. Mol Psychiatry 2021; 26(1): 168-85.
[http://dx.doi.org/10.1038/s41380-020-0831-4] [PMID: 32636474]
[50]
Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ. CRISPR/Cas9-The ultimate weapon to battle infectious diseases? Cell Microbiol 2017; 19(2): e12693.
[http://dx.doi.org/10.1111/cmi.12693] [PMID: 27860197]
[51]
Liu Y, Yu C, Daley TP, et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 2018; 23(5): 758-771.e8.
[http://dx.doi.org/10.1016/j.stem.2018.09.003] [PMID: 30318302]
[52]
Momen-Roknabadi A, Oikonomou P, Zegans M, Tavazoie S. An inducible CRISPR interference library for genetic interrogation of Saccharomyces cerevisiae biology. Commun Biol 2020; 3(1): 723.
[http://dx.doi.org/10.1038/s42003-020-01452-9] [PMID: 33247197]
[53]
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers 2021; 13(7): 1591.
[http://dx.doi.org/10.3390/cancers13071591] [PMID: 33808217]
[54]
Savic D, Partridge EC, Newberry KM, et al. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res 2015; 25(10): 1581-9.
[http://dx.doi.org/10.1101/gr.193540.115] [PMID: 26355004]
[55]
Shin JW, Kim KH, Chao MJ, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 2016; 25(20): ddw286.
[http://dx.doi.org/10.1093/hmg/ddw286] [PMID: 28172889]
[56]
Hong A. CRISPR in personalized medicine: Industry perspectives in gene editing. Semin Perinatol 2018; 42(8): 501-7.
[57]
Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci 2018; 5(6): 1700964.
[http://dx.doi.org/10.1002/advs.201700964] [PMID: 29938175]
[58]
Iacobas DA, Mgbemena VE, Iacobas S, Menezes KM, Wang H, Saganti PB. Genomic fabric remodeling in metastatic clear cell renal cell carcinoma (ccRCC): A new paradigm and proposal for a personalized gene therapy approach. Cancers 2020; 12(12): 3678.
[http://dx.doi.org/10.3390/cancers12123678] [PMID: 33302383]
[59]
Balistreri CR, Candore G, Lio D, Carruba G. Prostate cancer: from the pathophysiologic implications of some genetic risk factors to translation in personalized cancer treatments. Cancer Gene Ther 2014; 21(1): 2-11.
[http://dx.doi.org/10.1038/cgt.2013.77] [PMID: 24407349]
[60]
Li Y, Chan L, Nguyen HV, Tsang SH. Personalized medicine: Cell and gene therapy based on patient-specific iPSC-derived retinal pigment epithelium cells. Adv Exp Med Biol 2016; 854: 549-55.
[http://dx.doi.org/10.1007/978-3-319-17121-0_73]
[61]
Chin-Yee B, Upshur R. Three problems with big data and artificial intelligence in medicine. Perspect Biol Med 2019; 62(2): 237-56.
[http://dx.doi.org/10.1353/pbm.2019.0012] [PMID: 31281120]
[62]
Jasanoff S, Hurlbut JB, Saha K. CRISPR democracy: Gene editing and the need for inclusive deliberation. Issues Sci Technol 2015; 32(1): 25-32.
[63]
Knowles L, Luth W, Bubela T. Paving the road to personalized medicine: recommendations on regulatory, intellectual property and reimbursement challenges. J Law Biosci 2017; 4(3): 453-506.
[http://dx.doi.org/10.1093/jlb/lsx030] [PMID: 29868182]
[64]
Marinko JT, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and misfolding of human membrane proteins in health and disease: From single molecules to cellular proteostasis. Chem Rev 2019; 119(9): 5537-606.
[http://dx.doi.org/10.1021/acs.chemrev.8b00532] [PMID: 30608666]
[65]
Hine D, Kapeleris J. Innovation and entrepreneurship in biotechnology, an international perspective: Concepts, theories and cases Edward Elgar Publishing. 2006.
[http://dx.doi.org/10.4337/9781845428853]
[66]
Betz UAK, Arora L, Assal RA, et al. Game changers in science and technology - now and beyond. Technol Forecast Soc Change 2023; 193: 122588.
[http://dx.doi.org/10.1016/j.techfore.2023.122588]
[67]
Ureña-Bailén G, Antony JS, Hou Y, et al. CRISPR-/Cas9 based genome editing for treating genetic disorders and diseases 1st ed 2022; 193: 224-59.
[68]
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. Plant J 2017; 90(4): 819-33.
[http://dx.doi.org/10.1111/tpj.13469] [PMID: 28027431]
[69]
de la Torre JC. Alzheimer’s disease is incurable but preventable. J Alzheimers Dis 2010; 20(3): 861-70.
[http://dx.doi.org/10.3233/JAD-2010-091579] [PMID: 20182017]
[70]
Chira S, Nutu A, Isacescu E, et al. Genome editing approaches with CRISPR/Cas9 for cancer treatment: Critical appraisal of preclinical and clinical utility, challenges, and future research. Cells 2022; 11(18): 2781.
[http://dx.doi.org/10.3390/cells11182781] [PMID: 36139356]
[71]
Desine S, Hollister BM, Abdallah KE, Persaud A, Hull SC, Bonham VL. The meaning of informed consent: Genome editing clinical trials for sickle cell disease. AJOB Empir Bioeth 2020; 11(4): 195-207.
[http://dx.doi.org/10.1080/23294515.2020.1818876] [PMID: 33044907]
[72]
Chien Y, Hsiao YJ, Chou SJ, et al. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: Applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20(1): 511.
[http://dx.doi.org/10.1186/s12951-022-01717-x] [PMID: 36463195]
[73]
DeLancey JOL, Low L, Miller JM, Patel DA, Tumbarello JA. Graphic integration of causal factors of pelvic floor disorders: An integrated life span model. Am J Obstet Gynecol 2008; 199(6): 610.e1-5.
[http://dx.doi.org/10.1016/j.ajog.2008.04.001] [PMID: 18533115]
[74]
Rezalotfi A, Fritz L, Förster R, Bošnjak B. Challenges of CRISPR-based gene editing in primary T cells. Int J Mol Sci 2022; 23(3): 1689.
[http://dx.doi.org/10.3390/ijms23031689] [PMID: 35163611]
[75]
Setton J, Zinda M, Riaz N, et al. Synthetic lethality in cancer therapeutics: The next generation. Cancer Discov 2021; 11(7): 1626-35.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1503] [PMID: 33795234]
[76]
Kirksey E. The mutant project: inside the global race to genetically modify humans Policy Press. 2021.
[77]
Doudna J, Sternberg S. A crack in creation: The new power to control evolution Random House. 2017.
[78]
Kwon S, Shin HY. Advanced CRISPR-Cas effector enzyme-based diagnostics for infectious diseases, including COVID-19. Life 2021; 11(12): 1356.
[http://dx.doi.org/10.3390/life11121356] [PMID: 34947888]
[79]
Brown WF. The evolution of the cosmos, life, humans, culture and religion and a look into the future Friesen Press. 2016.
[80]
Chan YT, Lu Y, Wu J, et al. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: Overview and perspectives. Theranostics 2022; 12(7): 3329-44.
[http://dx.doi.org/10.7150/thno.71144] [PMID: 35547744]
[81]
Zhou L, Peng R, Zhang R, Li J. The applications of CRISPR /Cas system in molecular detection. J Cell Mol Med 2018; 22(12): 5807-15.
[http://dx.doi.org/10.1111/jcmm.13925] [PMID: 30338908]
[82]
Shahin RK, Elkady MA, Abulsoud AI, et al. miRNAs orchestration of gallbladder cancer – Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248: 154684.
[http://dx.doi.org/10.1016/j.prp.2023.154684] [PMID: 37454489]
[83]
Pugh KJ. Transformative science education: Change how your students experience the world Teachers College Press. 2020.
[84]
Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 2017; 17(2): 116-30.
[http://dx.doi.org/10.1038/nrc.2016.124] [PMID: 27977008]
[85]
Coker H, Wei G, Brockdorff N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech 2019; 1862(3): 310-8.
[http://dx.doi.org/10.1016/j.bbagrm.2018.12.002] [PMID: 30550772]
[86]
Kitano H. Nobel turing challenge: Creating the engine for scientific discovery. NPJ Syst Biol Appl 2021; 7: 29.
[87]
Ancos-Pintado R, Bragado-García I, Morales ML, et al. High-throughput CRISPR screening in hematological neoplasms. Cancers 2022; 14(15): 3612.
[http://dx.doi.org/10.3390/cancers14153612] [PMID: 35892871]
[88]
Huang R, Zhou PK. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6(1): 254.
[http://dx.doi.org/10.1038/s41392-021-00648-7] [PMID: 34238917]
[89]
Whetzel PL, Brinkman RR, Causton HC, et al. Development of FuGO: An ontology for functional genomics investigations. OMICS 2006; 10(2): 199-204.
[http://dx.doi.org/10.1089/omi.2006.10.199] [PMID: 16901226]
[90]
Carolus H, Pierson S, Lagrou K, Dijck P. Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance. J Fungi 2020; 6(4): 321.
[http://dx.doi.org/10.3390/jof6040321] [PMID: 33261213]
[91]
Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50(W1): W216-21.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[92]
Swinnen G, Goossens A, Pauwels L. Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci 2016; 21(6): 506-15.
[http://dx.doi.org/10.1016/j.tplants.2016.01.014] [PMID: 26876195]
[93]
Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast. Nat Rev Genet 2007; 8(6): 437-49.
[http://dx.doi.org/10.1038/nrg2085] [PMID: 17510664]
[94]
Lai Q, Wu M, Wang R, et al. Cryptophycin-55/52 based antibody- drug conjugates: Synthesis, efficacy, and mode of action studies. Eur J Med Chem 2020; 199: 112364.
[http://dx.doi.org/10.1016/j.ejmech.2020.112364] [PMID: 32402935]
[95]
Güell O, Sagués F, Serrano MÁ. Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLOS Comput Biol 2014; 10(5): e1003637.
[http://dx.doi.org/10.1371/journal.pcbi.1003637] [PMID: 24854166]
[96]
Downey JM, Krieg T, Cohen MV. Mapping preconditioning’s signaling pathways: An engineering approach. Ann N Y Acad Sci 2008; 1123(1): 187-96.
[http://dx.doi.org/10.1196/annals.1420.022] [PMID: 18375591]
[97]
Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AB. Advances in CRISPR-Cas9 genome engineering: Lessons learned from RNA interference. Nucleic Acids Res 2015; 43(7): 3407-19.
[http://dx.doi.org/10.1093/nar/gkv226] [PMID: 25800748]
[98]
Kawall K, Cotter J, Then C. Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ Sci Eur 2020; 32(1): 106.
[http://dx.doi.org/10.1186/s12302-020-00361-2]
[99]
Kuzmin E, Rahman M, VanderSluis B, et al. τ-SGA: Synthetic genetic array analysis for systematically screening and quantifying trigenic interactions in yeast. Nat Protoc 2021; 16(2): 1219-50.
[http://dx.doi.org/10.1038/s41596-020-00456-3] [PMID: 33462440]
[100]
Bhattacharjee G, Gohil N, Khambhati K, et al. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343: 703-23.
[http://dx.doi.org/10.1016/j.jconrel.2022.02.005] [PMID: 35149141]
[101]
Todorov H, Saeys Y. Computational approaches for high-throughput single-cell data analysis. FEBS J 2019; 286(8): 1451-67.
[http://dx.doi.org/10.1111/febs.14613] [PMID: 30058136]
[102]
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38(7): 824-44.
[http://dx.doi.org/10.1038/s41587-020-0561-9] [PMID: 32572269]
[103]
Zhang LV, King OD, Wong SL, et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 2005; 4(2): 6.
[http://dx.doi.org/10.1186/jbiol23] [PMID: 15982408]
[104]
Vlachavas EI, Bohn J, Ückert F, Nürnberg S. A detailed catalogue of multi-omics methodologies for identification of putative biomarkers and causal molecular networks in translational cancer research. Int J Mol Sci 2021; 22(6): 2822.
[http://dx.doi.org/10.3390/ijms22062822] [PMID: 33802234]
[105]
Samadian H, Jafari S, Sepand MR, et al. 3D bioprinting technology to mimic the tumor microenvironment: Tumor-on-a-chip concept. Mater Today Adv 2021; 12: 100160.
[106]
Tycko J, Wainberg M, Marinov GK, et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat Commun 2019; 10(1): 4063.
[http://dx.doi.org/10.1038/s41467-019-11955-7] [PMID: 31492858]
[107]
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60.
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[108]
Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR–Cas systems: An updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 2021; 22(7): 3327.
[http://dx.doi.org/10.3390/ijms22073327] [PMID: 33805113]
[109]
Kang XJ, Caparas CIN, Soh BS, Fan Y. Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein Cell 2017; 8(11): 791-5.
[http://dx.doi.org/10.1007/s13238-017-0477-4] [PMID: 28986765]
[110]
Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines 2018; 6(4): 105.
[http://dx.doi.org/10.3390/biomedicines6040105] [PMID: 30424477]
[111]
Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 2019; 447: 48-55.
[http://dx.doi.org/10.1016/j.canlet.2019.01.017] [PMID: 30684591]
[112]
Zhang X. Development of CRISPR-mediated nucleic acid detection technologies and their applications in the livestock industry. Genes 2022; 13(11): 2007.
[http://dx.doi.org/10.3390/genes13112007] [PMID: 36360244]
[113]
Kaboli S, Babazada H. CRISPR mediated genome engineering and its application in industry. Curr Issues Mol Biol 2018; 26(1): 81-92.
[http://dx.doi.org/10.21775/cimb.026.081] [PMID: 28879858]
[114]
Cai L, Fisher AL, Huang H, Xie Z. CRISPR-mediated genome editing and human diseases. Genes Dis 2016; 3(4): 244-51.
[http://dx.doi.org/10.1016/j.gendis.2016.07.003] [PMID: 30258895]
[115]
Simonato M, Bennett J, Boulis NM, et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol 2013; 9(5): 277-91.
[http://dx.doi.org/10.1038/nrneurol.2013.56] [PMID: 23609618]
[116]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: Progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[117]
Morris G, Schorge S. Gene therapy for neurological disease: State of the art and opportunities for next-generation approaches. Neuroscience 2022; 490: 309-14.
[http://dx.doi.org/10.1016/j.neuroscience.2022.03.010] [PMID: 35304290]
[118]
Lubroth P, Colasante G, Lignani G. In vivo genome editing therapeutic approaches for neurological disorders: Where are we in the translational pipeline? Front Neurosci 2021; 15: 632522.
[http://dx.doi.org/10.3389/fnins.2021.632522] [PMID: 33679313]
[119]
Colby B. Outsmart your genes: How understanding your DNA will empower you to protect yourself against cancer, Alzheimer's, heart disease, obesity, and many other conditions. Penguin 2010
[120]
Daniel T. Re-emphasizing African bioethics in light of potential CRISPR-based treatment for HIV and sickle cell disease. Vand J Transnat’l L 2021; 54: 459.
[121]
Shinwari ZK, Tanveer F, Khalil AT. Ethical issues regarding CRISPR mediated genome editing. Curr Issues Mol Biol 2018; 26(1): 103-10.
[http://dx.doi.org/10.21775/cimb.026.103] [PMID: 28879860]
[122]
Brokowski C, Adli M. CRISPR ethics: Moral considerations for applications of a powerful tool. J Mol Biol 2019; 431(1): 88-101.
[http://dx.doi.org/10.1016/j.jmb.2018.05.044] [PMID: 29885329]
[123]
McCarthy MW. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine. Expert Rev Anti Infect Ther 2020; 18(8): 799-805.
[http://dx.doi.org/10.1080/14787210.2020.1761333] [PMID: 32366131]
[124]
Kannan S, Najjar D. Therapeutic gene editing is here, can regulations keep up? MIT Sci Policy Rev 2020; 1: 64.
[125]
Howard HC, van El CG, Forzano F, et al. One small edit for humans, one giant edit for humankind? Points and questions to consider for a responsible way forward for gene editing in humans. Eur J Hum Genet 2018; 26(1): 1-11.
[http://dx.doi.org/10.1038/s41431-017-0024-z] [PMID: 29192152]
[126]
Ahmad HI, Ahmad MJ, Asif AR, et al. A review of CRISPR-based genome editing: Survival, evolution and challenges. Curr Issues Mol Biol 2018; 28(1): 47-68.
[http://dx.doi.org/10.21775/cimb.028.047] [PMID: 29428910]
[127]
Fraenkel L, Bathon JM, England BR, et al. 2021 American College of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol 2021; 73(7): 1108-23.
[http://dx.doi.org/10.1002/art.41752] [PMID: 34101376]
[128]
Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: Future trends and technologies from the European Medicines Agency’s horizon scanning collaborations. Front Med 2022; 9: 1064003.
[http://dx.doi.org/10.3389/fmed.2022.1064003] [PMID: 36569125]
[129]
Schultz-Bergin M. Is CRISPR an ethical game changer? J Agric Environ Ethics 2018; 31(2): 219-38.
[http://dx.doi.org/10.1007/s10806-018-9721-z]
[130]
Haddock R, Lin-Gibson S, Lumelsky N, et al. Manufacturing Cell Therapies: The Paradigm Shift in Health Care of This Century. Washington, DC: National Academy of Medicine 2017.
[http://dx.doi.org/10.31478/201706c]
[131]
Hamner E. Editing the Soul: Science and Fiction in the Genome Age. Penn State Press 2017.
[132]
Zhu S, Li W, Liu J, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol 2016; 34(12): 1279-86.https://www.nature.com/articles/nbt.3715
[http://dx.doi.org/10.1038/nbt.3715] [PMID: 27798563]
[133]
Ball C. Converge: A futurist's insights into the potential of our world as technology and humanity collide. Major Street Publishing 2022.
[134]
Ramirez JC. Gene editing and CRISPR therapeutics: Strategies taught by cell and gene therapy. Prog Mol Biol Transl Sci 2017; 152: 115-30.
[http://dx.doi.org/10.1016/bs.pmbts.2017.08.003] [PMID: 29150002]
[135]
Anliker B, Childs L, Rau J, et al. Regulatory considerations for clinical trial applications with CRISPR-based medicinal products. CRISPR J 2022; 5(3): 364-76.
[http://dx.doi.org/10.1089/crispr.2021.0148] [PMID: 35452274]
[136]
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome editing in iPSC-based neural systems: From disease models to future therapeutic strategies. Front Genome Edit 2021; 3: 630600.
[http://dx.doi.org/10.3389/fgeed.2021.630600] [PMID: 34713254]
[137]
Sakamoto JH, van de Ven AL, Godin B, et al. Enabling individualized therapy through nanotechnology. Pharmacol Res 2010; 62(2): 57-89.
[http://dx.doi.org/10.1016/j.phrs.2009.12.011] [PMID: 20045055]
[138]
DeWitt MA, Magis W, Bray NL, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 2016; 8(360): 360ra134.
[139]
Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020; 367(6481): eaba7365.
[http://dx.doi.org/10.1126/science.aba7365] [PMID: 32029687]
[140]
Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials 2022; 291: 121876.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121876] [PMID: 36334354]
[141]
Usmani SM, Murooka TT, Deruaz M, et al. HIV-1 balances the fitness costs and benefits of disrupting the host cell actin cytoskeleton early after mucosal transmission. Cell Host Microbe 2019; 25(1): 73-86.e5.
[http://dx.doi.org/10.1016/j.chom.2018.12.008] [PMID: 30629922]
[142]
Hanson B, Stenler S, Ahlskog N, et al. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. Mol Ther Nucleic Acids 2022; 30: 379-97.
[http://dx.doi.org/10.1016/j.omtn.2022.10.010] [PMID: 36420212]
[143]
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298(Pt B): 225-35.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.003] [PMID: 28987463]
[144]
Haltalli MLR, Wilkinson AC, Rodriguez-Fraticelli A, Porteus M. Hematopoietic stem cell gene editing and expansion: State-of-the-art technologies and recent applications. Exp Hematol 2022; 107: 9-13.
[http://dx.doi.org/10.1016/j.exphem.2021.12.399] [PMID: 34973360]
[145]
Smith AJ, Carter SP, Kennedy BN. Genome editing: The breakthrough technology for inherited retinal disease? Expert Opin Biol Ther 2017; 17(10): 1245-54.
[http://dx.doi.org/10.1080/14712598.2017.1347629] [PMID: 28695744]
[146]
Kizilel S, Scavone A, Liu X, et al. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng Part A 2010; 16(7): 2217-28.
[http://dx.doi.org/10.1089/ten.tea.2009.0640] [PMID: 20163204]
[147]
Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016; 24(3): 564-9.
[http://dx.doi.org/10.1038/mt.2015.192] [PMID: 26449883]
[148]
Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3(1): 2510.
[http://dx.doi.org/10.1038/srep02510] [PMID: 23974631]
[149]
Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 2022; 21(1): 78.
[http://dx.doi.org/10.1186/s12943-022-01559-z] [PMID: 35303871]
[150]
Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29(11): 3107-24.
[http://dx.doi.org/10.1016/j.ymthe.2021.09.002] [PMID: 34509669]
[151]
Carroll JB, Warby SC, Southwell AL, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol Ther 2011; 19(12): 2178-85.
[http://dx.doi.org/10.1038/mt.2011.201] [PMID: 21971427]
[152]
Furrow BR. The CRISPR-Cas9 tool of gene editing: Cheaper, faster, riskier. Ann Health Law 2017; 26: 33.
[153]
Hough SH, Ajetunmobi A. The future of CRISPR applications in the lab, the clinic and society. Adv Exp Med Biol 2017; 1016: 157-78.
[http://dx.doi.org/10.1007/978-3-319-63904-8_9]
[154]
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018; 15(2): 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[155]
Horvath P, Aulner N, Bickle M, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15(11): 751-69.
[http://dx.doi.org/10.1038/nrd.2016.175] [PMID: 27616293]
[156]
Grunewald S. CRISPR's creatures: Protecting wildlife in the age of genomic editing. UCLA J Envtl L & Pol'y 2019; 37: 1.
[157]
Coleman F. A human algorithm: How Artificial Intelligence is redefining who we are Melville House UK. 2020.
[158]
Bhat AA, Nisar S, Mukherjee S, et al. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J Transl Med 2022; 20(1): 534.
[http://dx.doi.org/10.1186/s12967-022-03765-1] [PMID: 36401282]
[159]
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18: 2401-15.
[http://dx.doi.org/10.1016/j.csbj.2020.08.031] [PMID: 33005303]
[160]
Roueinfar M, Templeton HN, Sheng JA, Hong KL. An update of nucleic acids aptamers theranostic integration with CRISPR/Cas technology. Molecules 2022; 27(3): 1114.
[http://dx.doi.org/10.3390/molecules27031114] [PMID: 35164379]
[161]
Leal AF, Fnu N, Benincore-Flórez E, et al. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Mol Genet Metab 2022; 138(1): 106968.
[PMID: 36525790]
[162]
Iriart JAB. Precision medicine/personalized medicine: A critical analysis of movements in the transformation of biomedicine in the early 21st century. Cad Saude Publica 2019; 35(3): e00153118.
[http://dx.doi.org/10.1590/0102-311x00153118] [PMID: 30916181]
[163]
Hernandez-Benitez R, Martinez-Martinez ML, Lajara J, Magistretti P, Montserrat N, Belmonte JC. At the heart of genome editing and cardiovascular diseases. Circ Res 2018; 123(2): 221-3.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312676] [PMID: 29976689]
[164]
Kungulovski G, Jeltsch A. Epigenome editing: State of the art, concepts, and perspectives. Trends Genet 2016; 32(2): 101-13.
[http://dx.doi.org/10.1016/j.tig.2015.12.001] [PMID: 26732754]
[165]
Champer J, Champer SE, Kim IK, Clark AG, Messer PW. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives. Evol Appl 2021; 14(4): 1052-69.
[http://dx.doi.org/10.1111/eva.13180] [PMID: 33897820]
[166]
Nethery MA, Hidalgo-Cantabrana C, Roberts A, Barrangou R. CRISPR-based engineering of phages for in situ bacterial base editing. Proc Natl Acad Sci 2022; 119(46): e2206744119.
[http://dx.doi.org/10.1073/pnas.2206744119] [PMID: 36343261]
[167]
Jaudon F, Thalhammer A, Zentilin L, Cingolani LA. CRISPR-mediated activation of autism gene Itgb3 restores cortical network excitability via mGluR5 signaling. Mol Ther Nucleic Acids 2022; 29: 462-80.
[http://dx.doi.org/10.1016/j.omtn.2022.07.013] [PMID: 36035754]
[168]
Liang Y, Xu X, Xu L, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 2022; 12(11): 4866-78.
[http://dx.doi.org/10.7150/thno.69368] [PMID: 35836795]
[169]
Barman NC, Khan NM, Islam M, et al. CRISPR-Cas9: A promising genome editing therapeutic tool for Alzheimer’s disease—A narrative review. Neurol Ther 2020; 9(2): 419-34.
[http://dx.doi.org/10.1007/s40120-020-00218-z] [PMID: 33089409]
[170]
Abati E, Sclarandi E, Comi GP, Parente V, Corti S. Perspectives on hiPSC-derived muscle cells as drug discovery models for muscular dystrophies. Int J Mol Sci 2021; 22(17): 9630.
[http://dx.doi.org/10.3390/ijms22179630] [PMID: 34502539]
[171]
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol 2019; 9: 69.
[http://dx.doi.org/10.3389/fcimb.2019.00069] [PMID: 30968001]
[172]
Xu J, Huang G, Guo T. Developmental bisphenol A exposure modulates immune-related diseases. Toxics 2016; 4(4): 23.
[http://dx.doi.org/10.3390/toxics4040023] [PMID: 29051427]
[173]
Kim K, Park SW, Kim JH, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 2017; 27(3): 419-26.
[http://dx.doi.org/10.1101/gr.219089.116] [PMID: 28209587]
[174]
Zhou ZP, Yang LL, Cao H, et al. In vitro validation of a CRISPR- mediated CFTR correction strategy for preclinical translation in pigs. Hum Gene Ther 2019; 30(9): 1101-16.
[http://dx.doi.org/10.1089/hum.2019.074] [PMID: 31099266]
[175]
Zeng CW, Zhang CL. Neuronal regeneration after injury: A new perspective on gene therapy. Front Neurosci 2023; 17: 1181816.
[http://dx.doi.org/10.3389/fnins.2023.1181816] [PMID: 37152598]
[176]
de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012; 40(21): 10596-613.
[http://dx.doi.org/10.1093/nar/gks863] [PMID: 23002135]
[177]
Cai A, Kong X. Development of CRISPR-mediated systems in the study of Duchenne muscular dystrophy. Hum Gene Ther Methods 2019; 30(3): 71-80.
[http://dx.doi.org/10.1089/hgtb.2018.187] [PMID: 31062609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy