Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Review Article

Role of Complement-dependent Cytotoxicity Crossmatch and HLA Typing in Solid Organ Transplant

Author(s): Arpit Tiwari and Sayali Mukherjee*

Volume 19, Issue 1, 2024

Published on: 28 December, 2023

Page: [34 - 52] Pages: 19

DOI: 10.2174/0115748871266738231218145616

Price: $65

Abstract

Background: Solid organ transplantation is a life-saving medical operation that has progressed greatly because of developments in diagnostic tools and histocompatibility tests. Crossmatching for complement-dependent cytotoxicity (CDC) and human leukocyte antigen (HLA) typing are two important methods for checking graft compatibility and reducing the risk of graft rejection. HLA typing and CDC crossmatching are critical in kidney, heart, lung, liver, pancreas, intestine, and multi-organ transplantation.

Methods: A systematic literature search was conducted on the internet, using PubMed, Scopus, and Google Scholar databases, to identify peer-reviewed publications about solid organ transplants, HLA typing, and CDC crossmatching.

Conclusion: Recent advances in HLA typing have allowed for high-resolution evaluation, epitope matching, and personalized therapy methods. Genomic profiling, next-generation sequencing, and artificial intelligence have improved HLA typing precision, resulting in better patient outcomes. Artificial intelligence (AI) driven virtual crossmatching and predictive algorithms have eliminated the requirement for physical crossmatching in the context of CDC crossmatching, boosting organ allocation and transplant efficiency. This review elaborates on the importance of HLA typing and CDC crossmatching in solid organ transplantation.

Keywords: Solid organ, HLA, CDC crossmatching, transplantation, artificial intelligence, bone marrow.

Graphical Abstract
[1]
Alegre ML, Mannon RB, Mannon PJ. The microbiota, the immune system and the allograft. Am J Transplant 2014; 14(6): 1236-48.
[http://dx.doi.org/10.1111/ajt.12760] [PMID: 24840316]
[2]
Salvadori M, Bertoni E. What’s new in clinical solid organ transplantation by 2013. World J Transplant 2014; 4(4): 243-66.
[http://dx.doi.org/10.5500/wjt.v4.i4.243] [PMID: 25540734]
[3]
Black CK, Termanini KM, Aguirre O, Hawksworth JS, Sosin M. Solid organ transplantation in the 21st century. Ann Transl Med 2018; 6(20): 409.
[http://dx.doi.org/10.21037/atm.2018.09.68] [PMID: 30498736]
[4]
Oli AN, Babajide Rowaiye A, Adejumo SA, et al. Classic and current opinions in human organ and tissue transplantation. Cureus 2022; 14(11): e30982.
[http://dx.doi.org/10.7759/cureus.30982] [PMID: 36337306]
[5]
Kates OS, Stohs EJ, Pergam SA, et al. The limits of refusal: An ethical review of solid organ transplantation and vaccine hesitancy. Am J Transplant 2021; 21(8): 2637-45.
[http://dx.doi.org/10.1111/ajt.16472] [PMID: 33370501]
[6]
Mehra NK, Baranwal AK. Clinical and immunological relevance of antibodies in solid organ transplantation. Int J Immunogenet 2016; 43(6): 351-68.
[http://dx.doi.org/10.1111/iji.12294] [PMID: 27870356]
[7]
Saxena RA, Khan FA, Masood MI, Qureshi ZA, Rathore MA. Review on organ transplantation: A social medical need. J Crit Rev 2016; 3(2): 23-9.
[8]
Reyna-Sepúlveda F, Ponce-Escobedo A, Guevara-Charles A, et al. Outcomes and surgical complications in kidney transplantation. Revista Mexicana de Trasplantes 2018; 6(3): 85-90.
[9]
Busuttil RW, Klintmalm GB. Transplantation of the liver. Elsevier 2014.
[10]
Alraies MC, Eckman P. Adult heart transplant: Indications and outcomes. J Thorac Dis 2014; 6(8): 1120-8.
[PMID: 25132979]
[11]
Hartert M, Senbaklavacin O, Gohrbandt B, Fischer BM, Buhl R, Vahld CF. Lung transplantation: A treatment option in end-stage lung disease. Dtsch Arztebl Int 2014; 111(7): 107-16.
[PMID: 24622680]
[12]
Halawa A, Alalawi F, Sharma A. Pancreatic transplantation for diabetic patients with end-stage renal failure: A brief review. J Egypt Soci Nephrol Transplantation 2018; 18(2): 27.
[http://dx.doi.org/10.4103/jesnt.jesnt_9_18]
[13]
Grant D, Abu-Elmagd K, Mazariegos G, et al. Intestinal transplant registry report: Global activity and trends. Am J Transplant 2015; 15(1): 210-9.
[http://dx.doi.org/10.1111/ajt.12979] [PMID: 25438622]
[14]
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal repair and regeneration: Current concepts and future directions. Front Bioeng Biotechnol 2019; 7: 135.
[http://dx.doi.org/10.3389/fbioe.2019.00135] [PMID: 31245365]
[15]
Cell PI. Acute Care Handbook for Physical Therapists E-Book. Elsevier 2019.
[16]
Petruzzo P, Kanitakis J, Badet L, et al. Long-term follow-up in composite tissue allotransplantation: In-depth study of five (hand and face) recipients. Am J Transplant 2011; 11(4): 808-16.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03469.x] [PMID: 21446980]
[17]
Ramesh A, Chhabra P, Brayman K. Pancreatic islet transplantation in type 1 diabetes mellitus: An update on recent developments. Curr Diabetes Rev 2013; 9(4): 294-311.
[http://dx.doi.org/10.2174/15733998113099990063] [PMID: 23721158]
[18]
Takeshita L. The effect of immunogenetic variability on human health: Bioinformatics investigations from different perspectives. United Kingdom: The University of Liverpool 2018.
[19]
Schlaf G, Pollok-Kopp B, Altermann WW. Sensitive solid-phase detection of donor-specific antibodies as an aid highly relevant to improving allograft outcomes. Mol Diagn Ther 2014; 18(2): 185-201.
[http://dx.doi.org/10.1007/s40291-013-0063-2] [PMID: 24170304]
[20]
Montgomery RA, Tatapudi VS, Leffell MS, Zachary AA. HLA in transplantation. Nat Rev Nephrol 2018; 14(9): 558-70.
[http://dx.doi.org/10.1038/s41581-018-0039-x] [PMID: 29985463]
[21]
Nazahah M, Koh MBC. Tissue typing and its role in transplantation. ISBT Sci Ser 2015; 10(S1): 115-23.
[http://dx.doi.org/10.1111/voxs.12168]
[22]
Leeson S, Desai SP. Medical and ethical challenges during the first successful human kidney transplantation in 1954 at Peter Bent Brigham Hospital, Boston. Anesth Analg 2015; 120(1): 239-45.
[http://dx.doi.org/10.1213/ANE.0000000000000521] [PMID: 25625266]
[23]
Barr J, bradley JA, Hamilton D. Organ transplantation: A historical perspective. Transplantation Surgery 2021; 1-29.
[24]
Wood KJ, Goto R. Mechanisms of rejection: Current perspectives. Transplantation 2012; 93(1): 1-10.
[http://dx.doi.org/10.1097/TP.0b013e31823cab44] [PMID: 22138818]
[25]
Lebret A. Allocating organs through algorithms and equitable access to transplantation—a European human rights law approach. J Law Biosci 2023; 10(1): lsad004.
[http://dx.doi.org/10.1093/jlb/lsad004] [PMID: 37008730]
[26]
Segev DL, Gentry SE, Melancon JK, Montgomery RA. Characterization of waiting times in a simulation of kidney paired donation. Am J Transplant 2005; 5(10): 2448-55.
[http://dx.doi.org/10.1111/j.1600-6143.2005.01048.x] [PMID: 16162194]
[27]
Thiruchelvam PTR, Willicombe M, Hakim N, Taube D, Papalois V. Renal transplantation. BMJ 2011; 343(nov14 1): d7300.
[http://dx.doi.org/10.1136/bmj.d7300] [PMID: 22084316]
[28]
Flechner SM, Cooper M, Waterman A, Kennealey P, Redfield R, Verbesey J. Ethical principles governing organ transplantation apply to paired exchange programs. Am J Transplant 2020; 20(6): 1756-7.
[http://dx.doi.org/10.1111/ajt.15906] [PMID: 32277552]
[29]
Drekic S, Stanford DA, Woolford DG, McAlister VC. A model for deceased-donor transplant queue waiting times. Queueing Syst 2015; 79(1): 87-115.
[http://dx.doi.org/10.1007/s11134-014-9417-7]
[30]
Meier-Kriesche HU, Li S, Gruessner RWG, et al. Immunosuppression: Evolution in practice and trends, 1994-2004. Am J Transplant 2006; 6(5): 1111-31.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01270.x] [PMID: 16613591]
[31]
Hartono C, Muthukumar T, Suthanthiran M. Immunosuppressive drug therapy. Cold Spring Harb Perspect Med 2013; 3(9): a015487.
[http://dx.doi.org/10.1101/cshperspect.a015487] [PMID: 24003247]
[32]
Wojciechowski D, Wiseman A. Long-term immunosuppression management: Opportunities and uncertainties. Clin J Am Soc Nephrol 2021; 16(8): 1264-71.
[http://dx.doi.org/10.2215/CJN.15040920] [PMID: 33853841]
[33]
Ayala García MA, González Yebra B, López Flores AL, Guaní Guerra E. The major histocompatibility complex in transplantation. J Transplant 2012; 2012: 842141.
[http://dx.doi.org/10.1155/2012/842141]
[34]
Both classes have a role in delivering antigen to T lymphocytes on their cell surfaces.CD8+ cells recognise MHC class I complexes, whereas CD4+ cells recognise class 2 complexes, resulting in the control of effector cells. 2012.
[35]
Rock KL, Reits E, Neefjes J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 2016; 37(11): 724-37.
[http://dx.doi.org/10.1016/j.it.2016.08.010] [PMID: 27614798]
[36]
Afrache H, Tregaskes CA, Kaufman J. A potential nomenclature for the Immuno Polymorphism Database (IPD) of chicken MHC genes: progress and problems. Immunogenetics 2020; 72(1-2): 9-24.
[http://dx.doi.org/10.1007/s00251-019-01145-6] [PMID: 31741010]
[37]
Zachary AA, Leffell MS. HLA mismatching strategies for solid organ transplantation–a balancing act. Front Immunol 2016; 7: 575.
[http://dx.doi.org/10.3389/fimmu.2016.00575] [PMID: 28003816]
[38]
Middleton D, Jones J, Lowe D. Nothing’s perfect: The art of defining HLA-specific antibodies. Transpl Immunol 2014; 30(4): 115-21.
[http://dx.doi.org/10.1016/j.trim.2014.02.003] [PMID: 24582684]
[39]
Phillips BL, Callaghan C. The immunology of organ transplantation. Surgery 2017; 35(7): 333-40.
[http://dx.doi.org/10.1016/j.mpsur.2017.04.004]
[40]
Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012; 12(6): 417-30.
[http://dx.doi.org/10.1038/nri3227] [PMID: 22627860]
[41]
Baxter AG. Autoantibodies and Autoimmunity 2006.
[42]
Monos DS, Winchester RJ. The major histocompatibility complex.Clinical Immunology. Elsevier 2019.
[http://dx.doi.org/10.1016/B978-0-7020-6896-6.00005-3]
[43]
Sánchez-Fueyo A, Strom TB. Immunologic basis of graft rejection and tolerance following transplantation of liver or other solid organs. Gastroenterology 2011; 140(1): 51-64.e2.
[http://dx.doi.org/10.1053/j.gastro.2010.10.059] [PMID: 21073873]
[44]
Obeagu EI, Babar Q, Okafor CJ. Graft rejection after allogeneic bone marrow transplantation: A review. Int J Curr Res Med Sci 2021; 7(5): 1-9.
[45]
Benzimra M, Calligaro GL, Glanville AR. Acute rejection. J Thorac Dis 2017; 9(12): 5440-57.
[http://dx.doi.org/10.21037/jtd.2017.11.83] [PMID: 29312755]
[46]
Kloc M, Ghobrial R. Chronic allograft rejection: A significant hurdle to transplant success. Burns Trauma 2014; 2(1): 3-10.
[http://dx.doi.org/10.4103/2321-3868.121646] [PMID: 27574640]
[47]
Claeys E, Vermeire K. Immunosuppressive drugs in organ transplantation to prevent allograft rejection: Mode of action and side effects. J Immunol Sci 2019; 3(4)
[48]
Celli S, Albert ML, Bousso P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat Med 2011; 17(6): 744-9.
[http://dx.doi.org/10.1038/nm.2376] [PMID: 21572426]
[49]
Krensky AM, Vincenti F, Bennett WM. Immunosuppressants, tolerogens, and immunostimulants in chief Goodman% Gilman’s the pharmacological basis of therapeutics. (11th ed.). New York: McGraw-Hill Companies, Inc. 2006; pp. 1405-31.
[50]
Girlanda R. Complications of post-transplant immunosuppression.Regenerative medicine and tissue engineering. InTech 2013.
[http://dx.doi.org/10.5772/55614]
[51]
Chong AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am J Transplant 2020; 20 (Suppl. 4): 23-32.
[http://dx.doi.org/10.1111/ajt.15844] [PMID: 32538534]
[52]
Galián JA, Mrowiec A, Muro M. Molecular targets on B-cells to prevent and treat antibody-mediated rejection in organ transplantation. Present and future. Expert Opin Ther Targets 2016; 20(7): 859-67.
[http://dx.doi.org/10.1517/14728222.2016.1135904] [PMID: 26695424]
[53]
Adams DH, Sanchez-Fueyo A, Samuel D. From immunosuppression to tolerance. J Hepatol 2015; 62(1): S170-85.
[http://dx.doi.org/10.1016/j.jhep.2015.02.042] [PMID: 25920086]
[54]
Lakkis FG, Lechler RI. Origin and biology of the allogeneic response. Cold Spring Harb Perspect Med 2013; 3(8): a014993.
[http://dx.doi.org/10.1101/cshperspect.a014993] [PMID: 23906882]
[55]
Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol 2015; 6: 438.
[http://dx.doi.org/10.3389/fimmu.2015.00438] [PMID: 26379673]
[56]
Althaf MM, El Kossi M, Jin JK, Sharma A, Halawa AM. Human leukocyte antigen typing and crossmatch: A comprehensive review. World J Transplant 2017; 7(6): 339-48.
[http://dx.doi.org/10.5500/wjt.v7.i6.339] [PMID: 29312863]
[57]
Kok G, Ilcken EF, Houwen RHJ, et al. The effect of genetic HLA matching on liver transplantation outcome: A systematic review and meta-analysis. Annal Surg Open 2023; 4(3): e334.
[http://dx.doi.org/10.1097/AS9.0000000000000334] [PMID: 37746594]
[58]
Alelign T, Ahmed MM, Bobosha K, Tadesse Y, Howe R, Petros B. Kidney transplantation: The challenge of human leukocyte antigen and its therapeutic strategies. J Immunol Res 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/5986740] [PMID: 29693023]
[59]
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8(1): 110.
[http://dx.doi.org/10.1038/s41392-023-01377-9] [PMID: 36906586]
[60]
Mahdi BM. A glow of HLA typing in organ transplantation. Clin Transl Med 2013; 2(1): e6.
[http://dx.doi.org/10.1186/2001-1326-2-6] [PMID: 23432791]
[61]
Mulley WR, Hudson F, Lee D. Tissue typing, crossmatching and the allocation of deceased donor kidney transplants. Transplantation Surgery 2021; pp. 31-50.
[http://dx.doi.org/10.1007/978-3-030-55244-2_2]
[62]
A better HLA match may lessen the requirement for immunosuppressive medicines, which are intended to suppress the recipient's immune system and avoid transplant rejection.
[63]
Lemieux W, Mohammadhassanzadeh H, Klement W, Daniel C, Sapir-Pichhadze R. Matchmaker, matchmaker make me a match: Opportunities and challenges in optimizing compatibility of HLA eplets in transplantation. Int J Immunogenet 2021; 48(2): 135-44.
[http://dx.doi.org/10.1111/iji.12525] [PMID: 33426788]
[64]
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA class I molecules as immune checkpoints for NK cell alloreactivity and anti-viral immunity in kidney transplantation. Front Immunol 2021; 12: 680480.
[http://dx.doi.org/10.3389/fimmu.2021.680480] [PMID: 34295330]
[65]
Stevens CD, Miller LE. Clinical immunology and serology: A laboratory perspetive. Taylor & Francis 2016.
[66]
Tang H, Poynton MR, Hurdle JF, Baird BC, Koford JK, Goldfarb-Rumyantzev AS. Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus. ASAIO J 2011; 57(4): 300-9.
[http://dx.doi.org/10.1097/MAT.0b013e318222db30] [PMID: 21701272]
[67]
Sawinski D, Lim MA, Cohen JB, et al. Patient and kidney allograft survival in recipients with end-stage renal disease from amyloidosis. Transplantation 2018; 102(2): 300-9.
[http://dx.doi.org/10.1097/TP.0000000000001930] [PMID: 28885498]
[68]
Reindl-Schwaighofer R, Heinzel A, Kainz A, et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: Genome-wide analysis in a prospective cohort. Lancet 2019; 393(10174): 910-7.
[http://dx.doi.org/10.1016/S0140-6736(18)32473-5] [PMID: 30773281]
[69]
Kumru Sahin G, Unterrainer C, Süsal C. Critical evaluation of a possible role of HLA epitope matching in kidney transplantation. Transplant Rev 2020; 34(2): 100533.
[http://dx.doi.org/10.1016/j.trre.2020.100533] [PMID: 32007300]
[70]
Halleck F, Khadzhynov D, Liefeldt L, et al. Immunologic outcome in elderly kidney transplant recipients: is it time for HLA-DR matching? Nephrol Dial Transplant 2016; 31(12): 2143-9.
[http://dx.doi.org/10.1093/ndt/gfw248] [PMID: 27369852]
[71]
Kosmoliaptsis V, Gjorgjimajkoska O, Sharples LD, et al. Impact of donor mismatches at individual HLA-A, -B, -C, -DR, and -DQ loci on the development of HLA-specific antibodies in patients listed for repeat renal transplantation. Kidney Int 2014; 86(5): 1039-48.
[http://dx.doi.org/10.1038/ki.2014.106] [PMID: 24717292]
[72]
Kim JJ, Fuggle SV, Marks SD. Does HLA matching matter in the modern era of renal transplantation? Pediatr Nephrol 2021; 36(1): 31-40.
[http://dx.doi.org/10.1007/s00467-019-04393-6] [PMID: 31820146]
[73]
Bontadini A. HLA techniques: Typing and antibody detection in the laboratory of immunogenetics. Methods 2012; 56(4): 471-6.
[http://dx.doi.org/10.1016/j.ymeth.2012.03.025] [PMID: 22480615]
[74]
Mansurkhodzhaev A. The role of proteasome generated spliced peptides in the adaptive immune response Available from: https://ediss.uni-goettingen.de/handle/11858/14059?show=full
[75]
Muluhngwi P, Tumer G. HLA and Transplantation
[76]
Dotsenko SY, Sychov RO, Tokarenko II, Shevchenko MV, Chornaya IV, Kulynych OV. Clinical immunology and allergology. 2016. Available from: http://dspace.zsmu.edu.ua/bitstream/123456789/2491/1/16Clinical%20immunology%20and%20allergology.pdf
[77]
Patel YA, Henson JB, Wilder JM, et al. The impact of human leukocyte antigen donor and recipient serotyping and matching on liver transplant graft failure in primary sclerosing cholangitis, autoimmune hepatitis, and primary biliary cholangitis. Clin Transplant 2018; 32(10): e13388.
[http://dx.doi.org/10.1111/ctr.13388] [PMID: 30136315]
[78]
Oprzędkiewicz A, Mado H, Szczurek W, Gąsior M, Szyguła-Jurkiewicz B. Donor-recipient matching in heart transplantation. Open Cardiovasc Med J 2020; 14(1): 42-7.
[http://dx.doi.org/10.2174/18741924020140100042]
[79]
Deaglio S, Amoroso A, Rinaldi M, Boffini M. HLA typing in lung transplantation: Does high resolution fit all? Ann Transl Med 2020; 8(3): 45.
[http://dx.doi.org/10.21037/atm.2020.01.45] [PMID: 32154803]
[80]
Hiho SJ, Walton DC, Paraskeva MA, et al. Determining clinical thresholds for donor HLA eplet compatibility to predict best outcomes following lung transplantation. Transplant Direct 2022; 8(10): e1364.
[http://dx.doi.org/10.1097/TXD.0000000000001364] [PMID: 36204183]
[81]
Ladowski JM, Mullins H, Romine M, et al. Eplet mismatch scores and de novo donor-specific antibody development in simultaneous pancreas-kidney transplantation. Hum Immunol 2021; 82(3): 139-46.
[http://dx.doi.org/10.1016/j.humimm.2020.12.009] [PMID: 33390268]
[82]
Kukla A, Ventura-Aguiar P, Cooper M, et al. Transplant options for patients with diabetes and advanced kidney disease: A review. Am J Kidney Dis 2021; 78(3): 418-28.
[http://dx.doi.org/10.1053/j.ajkd.2021.02.339] [PMID: 33992729]
[83]
Valenzuela NM, Reed EF. Antibodies in transplantation: The effects of HLA and non-HLA antibody binding and mechanisms of injury. Methods Mol Biol 2013; 1034: 41-70.
[http://dx.doi.org/10.1007/978-1-62703-493-7_2] [PMID: 23775730]
[84]
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing mechanisms of immune tolerance to improve outcomes in solid organ transplantation: A review. Front Immunol 2021; 12: 688460.
[http://dx.doi.org/10.3389/fimmu.2021.688460] [PMID: 34177941]
[85]
Bricogne C, Halliday N, Fernando R, et al. Donor–recipient human leukocyte antigen A mismatching is associated with hepatic artery thrombosis, sepsis, graft loss, and reduced survival after liver transplant. Liver Transpl 2022; 28(8): 1306-20.
[http://dx.doi.org/10.1002/lt.26458] [PMID: 35313059]
[86]
McCaughan J, Xu Q, Tinckam K. Detecting donor-specific antibodies: the importance of sorting the wheat from the chaff. Hepatobiliary Surg Nutr 2019; 8(1): 37-52.
[http://dx.doi.org/10.21037/hbsn.2019.01.01] [PMID: 30881964]
[87]
Picascia A, Grimaldi V, Napoli C. From HLA typing to anti-HLA antibody detection and beyond: The road ahead. Transplant Rev 2016; 30(4): 187-94.
[http://dx.doi.org/10.1016/j.trre.2016.07.007] [PMID: 27531697]
[88]
Katalinić N, Crnić Marčetić T, Mavrinac M, Starčević A, Balen A, Balen S. Assessment of luminex mean fluorescence intensity values with complement-dependent cytotoxicity results in detection of antibodies against human leucocyte antigen. Bantao J 2020; 18(1): 24-30.
[89]
Graham H, Chandler DJ, Dunbar SA. The genesis and evolution of bead-based multiplexing. Methods 2019; 158: 2-11.
[http://dx.doi.org/10.1016/j.ymeth.2019.01.007] [PMID: 30659874]
[90]
Dunbar SA. Bead-based suspension arrays for the detection and identification of respiratory viruses.Advanced techniques in diagnostic microbiology. Springer 2013.
[http://dx.doi.org/10.1007/978-1-4614-3970-7_42]
[91]
Galkin OY, Besarab OB, Pysmenna MO, Gorshunov YV, Dugan OM. Modern magnetic immunoassay: Biophysical and biochemical aspects. Regul Mech Biosyst 2017; 9(1): 47-55.
[http://dx.doi.org/10.15421/021806]
[92]
Levine DJ, Glanville AR, Aboyoun C, et al. Antibody-mediated rejection of the lung: A consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2016; 35(4): 397-406.
[http://dx.doi.org/10.1016/j.healun.2016.01.1223] [PMID: 27044531]
[93]
Goldsmith P. Post-transplant HLA-specific antibodies: Assays, improvements & clinical correlates. United Kingdom: The University of Liverpool 2022.
[94]
Park Y, Ko EJ, Chung BH, Yang CW. Kidney transplantation in highly sensitized recipients. Kidney Res Clin Pract 2021; 40(3): 355-70.
[http://dx.doi.org/10.23876/j.krcp.21.012] [PMID: 34233438]
[95]
Graziano D, Trucco M. Transplantation genetics. emery and rimoin's principles and practice of medical genetics and genomics. Academic Press 2019.
[http://dx.doi.org/10.1016/B978-0-12-812536-6.00008-0]
[96]
Tait BD. Detection of HLA antibodies in organ transplant recipients–triumphs and challenges of the solid phase bead assay. Front Immunol 2016; 7: 570.
[http://dx.doi.org/10.3389/fimmu.2016.00570] [PMID: 28018342]
[97]
Lachmann N, Todorova K, Schulze H, Schönemann C. Luminex(®) and its applications for solid organ transplantation, hematopoietic stem cell transplantation, and transfusion. Transfus Med Hemother 2013; 40(3): 182-9.
[http://dx.doi.org/10.1159/000351459] [PMID: 23922543]
[98]
Katalinić N, Fućak M, Crnić T, Ćurković M, Starčević A, Balen S. Pretransplantation monitoring of HLA antibodies by complement dependent cytotoxicity and Luminex-based assays. Wien Klin Wochenschr 2017; 129(1-2): 33-7.
[http://dx.doi.org/10.1007/s00508-016-1094-6] [PMID: 27743177]
[99]
Fitch ZW, Jackson AM. The histocompatibility lab: Alloantibodies, sensitization, and the virtual crossmatch. textbook of transplantation and mechanical support for end‐stage heart and lung disease. Wiley 2023.
[100]
Ravindranath MH, Filippone EJ, Mahowald G, et al. Significance of the intraindividual variability of HLA IgG antibodies in renal disease patients observed with different beadsets monitored with two different secondary antibodies on a Luminex platform. Immunol Res 2018; 66(5): 584-604.
[http://dx.doi.org/10.1007/s12026-018-9027-2] [PMID: 30324227]
[101]
Clifford A, Das J, Yousefi H, Mahmud A, Chen JB, Kelley SO. Strategies for biomolecular analysis and continuous physiological monitoring. J Am Chem Soc 2021; 143(14): 5281-94.
[http://dx.doi.org/10.1021/jacs.0c13138] [PMID: 33793215]
[102]
Siddhardha Solosan S. Tissue typing methods to assess the compatibility and clinical outcome in the light of immune monitoring criteria following organ transplants. (Doctoral dissertation, Madras Medical College, Chennai)
[103]
Alalawi F, Alnour H, Sharma A, Shaheen I, Kim JJ. Renal transplant recipient workup; obstacles and challenges. J Renal Transplant Sci 2019; 2(1): 60-72.
[104]
Golay J, Introna M. Mechanism of action of therapeutic monoclonal antibodies: Promises and pitfalls of in vitro and in vivo assays. Arch Biochem Biophys 2012; 526(2): 146-53.
[http://dx.doi.org/10.1016/j.abb.2012.02.011] [PMID: 22387378]
[105]
Hussain DM, Bashir MM, Tipu HN, Dawood M, Afshan N, Arooj A. Association of panel reactive antibodies (PRA) with complement dependent cytotoxicity (CDC) cross-match in pre-renal transplant recipients. Pak Armed Forces Med J 2022; 72(2): 509-12.
[http://dx.doi.org/10.51253/pafmj.v72i2.4810]
[106]
Vinson AJ, Kiberd BA, Davis RB, Tennankore KK. Nonimmunologic donor-recipient pairing, HLA matching, and graft loss in deceased donor kidney transplantation. Transplant Direct 2019; 5(1): e414.
[http://dx.doi.org/10.1097/TXD.0000000000000856] [PMID: 30656212]
[107]
Wehmeier C, Hönger G, Schaub S. Caveats of HLA antibody detection by solid‐phase assays. Transpl Int 2020; 33(1): 18-29.
[http://dx.doi.org/10.1111/tri.13484] [PMID: 31359501]
[108]
Putheti P, Liwski RS, Jindra PT. Reducing number of laboratories performing complement dependent cytotoxicity crossmatching: Reasons and conclusions. Hum Immunol 2022; 83(5): 467-75.
[http://dx.doi.org/10.1016/j.humimm.2022.02.001] [PMID: 35183390]
[109]
Gunawansa N, Roshni R, Ajay S. Crossmatch strategies in renal transplantation: a practical guide for the practicing clinician. J Transplant Surgery 2017; 1(1): 10-36959.
[110]
South AM, Grimm PC. Transplant immuno-diagnostics: Crossmatch and antigen detection. Pediatr Nephrol 2016; 31(6): 897-905.
[http://dx.doi.org/10.1007/s00467-015-3145-z] [PMID: 26139577]
[111]
Xie CB, Jane-Wit D, Pober JS. Complement membrane attack complex: New roles, mechanisms of action, and therapeutic targets. Am J Pathol 2020; 190(6): 1138-50.
[http://dx.doi.org/10.1016/j.ajpath.2020.02.006] [PMID: 32194049]
[112]
Saito PK, Yamakawa RH, da Silva Pereira LCM, da Silva WV Junior, Borelli SD. Complement-dependent cytotoxicity (CDC) to detect Anti-HLA antibodies: old but gold. J Clin Lab Anal 2014; 28(4): 275-80.
[http://dx.doi.org/10.1002/jcla.21678] [PMID: 24578044]
[113]
Mahowald GK. The CDC crossmatch in the era of flow cytometric cross-match and single antigen beads. J Bras Nefrol 2021; 43(3): 299-300.
[http://dx.doi.org/10.1590/2175-8239-jbn-2021-0110] [PMID: 34237125]
[114]
Kang H, Yoo J, Lee SY, Oh EJ. Causes of positive pretransplant crossmatches in the absence of donor-specific anti-human leukocyte antigen antibodies: A single-center experience. Ann Lab Med 2021; 41(4): 429-35.
[http://dx.doi.org/10.3343/alm.2021.41.4.429] [PMID: 33536364]
[115]
Hod-Dvorai R, Philogene MC, Timofeeva O, et al. Utilizing proficiency testing survey data to create advanced educational content: the virtual crossmatch challenge model. Front Genet 2023; 14: 1256498.
[http://dx.doi.org/10.3389/fgene.2023.1256498] [PMID: 37811147]
[116]
Zachary AA, Leffell MS. Detecting and monitoring human leukocyte antigen–specific antibodies. Hum Immunol 2008; 69(10): 591-604.
[http://dx.doi.org/10.1016/j.humimm.2008.06.013] [PMID: 18692106]
[117]
Kwofie L, Anderson R, Steel H, Meyer WAP. Evaluation of three different laboratory methods to detect preformed human leukocyte antigen antibodies in a South African kidney transplant population. Afr Health Sci 2021; 21(2): 735-42.
[http://dx.doi.org/10.4314/ahs.v21i2.32] [PMID: 34795730]
[118]
Bhaskaran MC, Heidt S, Muthukumar T. Principles of virtual crossmatch testing for kidney transplantation. Kidney Int Rep 2022; 7(6): 1179-88.
[http://dx.doi.org/10.1016/j.ekir.2022.03.006] [PMID: 35685330]
[119]
Alheim M, Wennberg L, Wikström AC. Pronase independent flow cytometry crossmatching of rituximab treated patients. Hum Immunol 2018; 79(2): 132-5.
[http://dx.doi.org/10.1016/j.humimm.2017.11.006] [PMID: 29157993]
[120]
Hatzinger M, Stastny M, Grützmacher P, Sohn M. The history of kidney transplantation. Urologe A 2016; 55(10): 1353-9.
[http://dx.doi.org/10.1007/s00120-016-0205-3] [PMID: 27518791]
[121]
Benjamens S, Moers C, Slart RHJA, Pol RA. Kidney transplantation and diagnostic imaging: The early days and future advancements of transplant surgery. Diagnostics 2020; 11(1): 47.
[http://dx.doi.org/10.3390/diagnostics11010047] [PMID: 33396860]
[122]
Haas M, Loupy A, Lefaucheur C, et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody‐mediated rejection, and prospects for integrative endpoints for next‐generation clinical trials. Am J Transplant 2017; 18(2): 293-307.
[123]
Cheng XS, VanWagner LB, Costa SP, et al. Emerging evidence on coronary heart disease screening in kidney and liver transplantation candidates: A scientific statement from the American Heart Association. Circulation 2022; 146(21): e299-324.
[http://dx.doi.org/10.1161/CIR.0000000000001104] [PMID: 36252095]
[124]
Bezstarosti S, Kramer CSM, Claas FHJ, de Fijter JW, Reinders MEJ, Heidt S. Implementation of molecular matching in transplantation requires further characterization of both immunogenicity and antigenicity of individual HLA epitopes. Hum Immunol 2022; 83(3): 256-63.
[http://dx.doi.org/10.1016/j.humimm.2021.12.002] [PMID: 34963506]
[125]
Peloso A, Moeckli B, Delaune V, Oldani G, Andres A, Compagnon P. Artificial intelligence: present and future potential for solid organ transplantation. Transpl Int 2022; 35: 10640.
[http://dx.doi.org/10.3389/ti.2022.10640] [PMID: 35859667]
[126]
Ghosh S. Computational immunology: applications. CRC Press 2020.
[127]
Soraru J, Chakera A, Isbel N, et al. The evolving role of diagnostic genomics in kidney transplantation. Kidney Int Rep 2022; 7(8): 1758-71.
[http://dx.doi.org/10.1016/j.ekir.2022.05.019] [PMID: 35967121]
[128]
Köttgen A, Cornec-Le Gall E, Halbritter J, et al. Genetics in chronic kidney disease: Conclusions from a kidney disease: Improving global outcomes (KDIGO) controversies conference. Kidney Int 2022; 101(6): 1126-41.
[http://dx.doi.org/10.1016/j.kint.2022.03.019] [PMID: 35460632]
[129]
Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. eLife 2017; 6: e27041.
[130]
Kuscu C, Eason JD, Kuscu C. Technical advancements in epigenomics and applications in transplantation. Curr Opin Organ Transplant 2021; 26(1): 23-9.
[http://dx.doi.org/10.1097/MOT.0000000000000836] [PMID: 33315767]
[131]
Lu J, Wang X, Zhang B, Li P, Du X, Qi F. The lncRNA PVT1 regulates autophagy in regulatory T cells to suppress heart transplant rejection in mice by targeting miR-146a. Cell Immunol 2021; 367: 104400.
[http://dx.doi.org/10.1016/j.cellimm.2021.104400] [PMID: 34214903]
[132]
Parlakpinar H, Gunata M. Transplantation and immunosuppression: A review of novel transplant-related immunosuppressant drugs. Immunopharmacol Immunotoxicol 2021; 43(6): 651-65.
[http://dx.doi.org/10.1080/08923973.2021.1966033] [PMID: 34415233]
[133]
Toulza F, Dominy K, Cook T, et al. Technical considerations when designing a gene expression panel for renal transplant diagnosis. Sci Rep 2020; 10(1): 17909.
[http://dx.doi.org/10.1038/s41598-020-74794-3] [PMID: 33087822]
[134]
Engels EA, Pfeiffer RM, Fraumeni JF Jr, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 2011; 306(17): 1891-901.
[http://dx.doi.org/10.1001/jama.2011.1592] [PMID: 22045767]
[135]
Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol 2019; 10: 1342.
[http://dx.doi.org/10.3389/fimmu.2019.01342] [PMID: 31354695]
[136]
Mengel M, Loupy A, Haas M, et al. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation–consensus for the banff human organ transplant (B-HOT) gene panel and open source multicenter validation. Am J Transplant 2020; 20(9): 2305-17.
[http://dx.doi.org/10.1111/ajt.16059] [PMID: 32428337]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy