Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Marein Ameliorates Myocardial Fibrosis by Inhibiting HIF-1α and TGF-β1/Smad2/3 Signaling Pathway in Isoproterenol-stimulated Mice and TGF-β1-stimulated Cardiac Fibroblasts

Author(s): Guanghao Niu, Ying Zhao, Huafeng Song, Quan Song, Xiaoyun Yin, Zengyan Zhu* and Junchi Xu*

Volume 30, Issue 1, 2024

Published on: 27 December, 2023

Page: [71 - 80] Pages: 10

DOI: 10.2174/0113816128282062231218075341

Price: $65

Abstract

Background: Myocardial fibrosis significantly contributes to the pathogenesis and progression of heart failure.

Objective: We probe into the impact of marein, a key bioactive compound in functional food Coreopsis tinctoria, on isoproterenol-stimulated myocardial fibrotic mice and transforming growth factor β1 (TGF-β1)-stimulated cardiac fibroblasts (CFs).

Methods: Isoproterenol was administered to the experimental mice via subcutaneous injection, and simultaneous administration of marein (25-100 mg/kg) was performed via oral gavage. CFs were stimulated with TGF- β1 to trigger differentiation and collagen synthesis, followed by treatment with marein at concentrations of 5-20 μM.

Results: Treatment with marein in mice and CFs resulted in a significant reduction in the protein expression levels of α-smooth muscle actin, collagen type I, and collagen type III. Additionally, marein treatment decreased the protein expression levels of TGF-β1, hypoxia-inducible factor-1α (HIF-1α), p-Smad2/3, and Smad2/3. Notably, molecular docking analysis revealed that marein directly targets HIF-1α.

Conclusion: Marein might exert a protective function in isoproterenol-stimulated myocardial fibrotic mice and TGF-β1-stimulated CFs, which might result from the reduction of TGF-β1 induced HIF-1α expression, then inhibiting p-Smad2/3 and Smad2/3 expressions.

Keywords: Myocardial fibrosis, marein, cardiac fibroblasts, TGF-β1, HIF-1α, Smad2/3.

[1]
Yin X, Yin X, Pan X, et al. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14: 1070973.
[http://dx.doi.org/10.3389/fphar.2023.1070973] [PMID: 37056987]
[2]
Liu W, Yuan Q, Cao S, et al. Review: Acetylation mechanisms and targeted therapies in cardiac fibrosis. Pharmacol Res 2023; 193: 106815.
[http://dx.doi.org/10.1016/j.phrs.2023.106815] [PMID: 37290541]
[3]
Kariki O, Vlachos K, Dragasis S, et al. Atrial cardiomyopathy: Diagnosis, clinical implications and unresolved issues in anticoagulation therapy. J Electrocardiol 2023; 76: 1-10.
[http://dx.doi.org/10.1016/j.jelectrocard.2022.10.012] [PMID: 36370545]
[4]
Zhu L, Wang Y, Zhao S, Lu M. Detection of myocardial fibrosis: Where we stand. Front Cardiovasc Med 2022; 9: 926378.
[http://dx.doi.org/10.3389/fcvm.2022.926378] [PMID: 36247487]
[5]
Bengel FM, Diekmann J, Hess A, Jerosch-Herold M. Myocardial fibrosis: Emerging target for cardiac molecular imaging and opportunity for image-guided therapy. J Nucl Med 2023; 64(S2): 49S-58S.
[http://dx.doi.org/10.2967/jnumed.122.264867] [PMID: 37918842]
[6]
Maruyama K, Imanaka-Yoshida K. The pathogenesis of cardiac fibrosis: A review of recent progress. Int J Mol Sci 2022; 23(5): 2617.
[http://dx.doi.org/10.3390/ijms23052617] [PMID: 35269759]
[7]
Meng X, Nikolic-Paterson DJ, Lan HY. TGF-β: The master regulator of fibrosis. Nat Rev Nephrol 2016; 12(6): 325-38.
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
[8]
Lodyga M, Hinz B. TGF-β1- A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2020; 101: 123-39.
[http://dx.doi.org/10.1016/j.semcdb.2019.12.010] [PMID: 31879265]
[9]
Georgy M, Salhiyyah K, Yacoub M, Chester A. Role of hypoxia inducible factor HIF-1α in heart valves. Glob Cardiol Sci Pract 2023; 2023(2): e202309.
[http://dx.doi.org/10.21542/gcsp.2023.9] [PMID: 37351095]
[10]
Bartoszewski R, Moszyńska A, Serocki M, et al. Primary endothelial cell–specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J 2019; 33(7): 7929-41.
[http://dx.doi.org/10.1096/fj.201802650RR] [PMID: 30917010]
[11]
Mingyuan X, Qianqian P, Shengquan X, et al. Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget 2018; 9(3): 3188-97.
[http://dx.doi.org/10.18632/oncotarget.23225] [PMID: 29423039]
[12]
Baumann B, Hayashida T, Liang X, Schnaper HW. Hypoxia-inducible factor-1α promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3. Kidney Int 2016; 90(4): 797-808.
[http://dx.doi.org/10.1016/j.kint.2016.05.026] [PMID: 27503806]
[13]
Li Y, Zhang J, Yan C, et al. Marein prevented LPS-induced osteoclastogenesis by regulating the NF-kappaB pathway in vitro. J Microbiol Biotechnol 2022; 32(2): 141-8.
[http://dx.doi.org/10.4014/jmb.2109.09033] [PMID: 35001005]
[14]
Guo Y, Ran Z, Zhang Y, et al. Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose–treated HK-2 cells. Biomed Pharmacother 2020; 131: 110684.
[http://dx.doi.org/10.1016/j.biopha.2020.110684] [PMID: 33152903]
[15]
Yao L, Li J, Li L, et al. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways. BMC Complement Altern Med 2019; 19(1): 14.
[http://dx.doi.org/10.1186/s12906-018-2410-7] [PMID: 30630477]
[16]
Yao M, Zhang J, Li Z, Guo S, Zhou X, Zhang W. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-κB pathway. Int Immunopharmacol 2020; 80: 106126.
[http://dx.doi.org/10.1016/j.intimp.2019.106126] [PMID: 31931363]
[17]
Niu G, Zhou M, Wang F, Yang J, Huang J, Zhu Z. Marein ameliorates Ang II/hypoxia-induced abnormal glucolipid metabolism by modulating the HIF-1α/PPARα/γ pathway in H9c2 cells. Drug Dev Res 2021; 82(4): 523-32.
[http://dx.doi.org/10.1002/ddr.21770] [PMID: 33314222]
[18]
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 2021; 61(8): 3891-8.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[19]
Shen L, Jhund PS, Petrie MC, et al. Declining risk of sudden death in heart failure. N Engl J Med 2017; 377(1): 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609758] [PMID: 29091558]
[20]
Swaroop G. Post-myocardial infarction heart failure: A review on management of drug therapies. Cureus 2022; 14(6): e25745.
[http://dx.doi.org/10.7759/cureus.25745] [PMID: 35812579]
[21]
González A, Schelbert EB, Díez J, Butler J. Myocardial interstitial fibrosis in heart failure: Biological and translational perspectives. J Am Coll Cardiol 2018; 71(15): 1696-706.
[http://dx.doi.org/10.1016/j.jacc.2018.02.021] [PMID: 29650126]
[22]
Koga M, Kuramochi M, Karim MR, Izawa T, Kuwamura M, Yamate J. Immunohistochemical characterization of myofibroblasts appearing in isoproterenol-induced rat myocardial fibrosis. J Vet Med Sci 2019; 81(1): 127-33.
[http://dx.doi.org/10.1292/jvms.18-0599] [PMID: 30464077]
[23]
Bhandary B, Meng Q, James J, et al. Cardiac fibrosis in proteotoxic cardiac disease is dependent upon myofibroblast TGF -beta signaling. J Am Heart Assoc 2018; 7(20): e010013.
[http://dx.doi.org/10.1161/JAHA.118.010013] [PMID: 30371263]
[24]
Bin Dayel AF, Alonazi AS, Alrasheed NM, et al. Role of the integrin-linked kinase/TGF-β/SMAD pathway in sitagliptin-mediated cardioprotective effects in a rat model of diabetic cardiomyopathy. J Pharm Pharmacol 2023; rgad111.
[http://dx.doi.org/10.1093/jpp/rgad111] [PMID: 37992247]
[25]
Lin X, Wang Y, Jiang Y, et al. Sumoylation enhances the activity of the TGF-β/SMAD and HIF-1 signaling pathways in keloids. Life Sci 2020; 255: 117859.
[http://dx.doi.org/10.1016/j.lfs.2020.117859] [PMID: 32474020]
[26]
Selnø ATH, Schlichtner S, Yasinska IM, et al. Transforming growth factor beta type 1 (TGF-β) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells. Aging 2020; 12(23): 23478-96.
[http://dx.doi.org/10.18632/aging.202343] [PMID: 33295886]
[27]
Janbandhu V, Tallapragada V, Patrick R, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell 2022; 29(2): 281-297.e12.
[http://dx.doi.org/10.1016/j.stem.2021.10.009] [PMID: 34762860]
[28]
Yin L, Liu M, Li W, Wang F, Tang Y, Huang C. Over-expression of inhibitor of differentiation 2 attenuates post-infarct cardiac fibrosis through inhibition of TGF-beta1/Smad3/HIF-1alpha/IL-11 signaling pathway. Front Pharmacol 2019; 10: 1349.
[http://dx.doi.org/10.3389/fphar.2019.01349] [PMID: 31803053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy