Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Articulate Chemotherapeutic Strategies for the Development of Effective Drugs against a Fatal Disease, Visceral Leishmaniasis

Author(s): Awanish Kumar*

Volume 21, Issue 4, 2024

Published on: 21 December, 2023

Article ID: e211223224757 Pages: 7

DOI: 10.2174/0115701638277134231218150109

Price: $65

Open Access Journals Promotions 2
Abstract

Visceral Leishmaniasis (VL) control relies mainly on chemotherapy in the absence of no effective vaccines. However, available anti-VL drugs are limited in number, having toxicity issues, adverse reactions, low efficacy, and resistance observed against antileishmanial. A significant decrease in efficacy (~tenfold increase in dosage and duration) was reported against the usual treatment with Pentavalent antimonials (the most recommended antileishmanial drug discovered 90 years ago). Amphotericin B is the second line of treatment but limits wider use due to its high cost. Pentamidine is another anti-VL drug, but its therapeutic efficacy has decreased significantly in different areas. These conventional therapeutics for VL have become almost outdated due to a significant increase in therapeutic failure in terms of percentage. Due to this, the search for an effective future anti-VL drug spans several decades, and now it is in high demand in the current situation. Some conventional therapeutics are modified, but they are also not satisfactory. Therefore, this article aimed to discuss conventional and modified therapeutics while emphasizing innovative chemotherapeutic measures against VL that could speed up the slow pace of antileishmanial drugs and overcome the drug resistance problem in the future.

Keywords: Visceral leishmaniasis, current arsenals, modified therapy, future chemotherapeutic strategies, new antileishmanials, fetal disease.

Graphical Abstract
[1]
Kumari S, Kumar A, Samant M, Singh N, Dube A. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics. Curr Drug Targets 2008; 9(11): 938-47.
[http://dx.doi.org/10.2174/138945008786786091] [PMID: 18991606]
[2]
Al-Salem W, Herricks JR, Hotez PJ. A review of visceral leishmaniasis during the conflict in South Sudan and the consequences for East African countries. Parasit Vectors 2016; 9(1): 460.
[http://dx.doi.org/10.1186/s13071-016-1743-7] [PMID: 27549162]
[3]
Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: Dose and response. J Glob Infect Dis 2010; 2(2): 159-66.
[http://dx.doi.org/10.4103/0974-777X.62886] [PMID: 20606972]
[4]
Robbins N, Caplan T, Cowen LE. Molecular evolution of antifungal drug resistance. Annu Rev Microbiol 2017; 71(1): 753-75.
[http://dx.doi.org/10.1146/annurev-micro-030117-020345] [PMID: 28886681]
[5]
Kumar A, Pandey SC, Samant M. Slow pace of antileishmanial drug development. Parasitol Open 2018; 4(e4): 1-11.
[6]
Kumar A, Pandey SC, Samant M. A spotlight on the diagnostic methods of a fatal disease Visceral Leishmaniasis. Parasite Immunol 2020; 42(10): e12727.
[http://dx.doi.org/10.1111/pim.12727] [PMID: 32378226]
[7]
Haldar AK, Sen P, Roy S. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011; 2011: 1-23.
[http://dx.doi.org/10.4061/2011/571242] [PMID: 22091408]
[8]
Diro E, Ritmeijer K, Boelaert M, et al. Use of pentamidine as secondary prophylaxis to prevent visceral leishmaniasis relapse in HIV infected patients, the first twelve months of a prospective cohort study. PLoS Negl Trop Dis 2015; 9(10): e0004087.
[9]
Hamill RJ. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[10]
Thakur CP. A single high dose treatment of kala-azar with Ambisome (amphotericin B lipid complex): A pilot study. Int J Antimicrob Agents 2001; 17(1): 67-70.
[http://dx.doi.org/10.1016/S0924-8579(00)00312-5] [PMID: 11137652]
[11]
Charlton RL, Rossi-Bergmann B, Denny PW, Steel PG. Repurposing as a strategy for the discovery of new anti-leishmanials: The-state-of-the-art. Parasitology 2018; 145(2): 219-36.
[http://dx.doi.org/10.1017/S0031182017000993] [PMID: 28805165]
[12]
Momeni AZ, Reiszadae MR, Aminjavaheri M. Treatment of cutaneous leishmaniasis with a combination of allopurinol and low‐dose meglumine antimoniate. Int J Dermatol 2002; 41(7): 441-3.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01527.x] [PMID: 12121563]
[13]
Lockwood DN, Moore EM. Treatment of visceral leishmaniasis. J Glob Infect Dis 2010; 2(2): 151-8.
[http://dx.doi.org/10.4103/0974-777X.62883] [PMID: 20606971]
[14]
Drusano GL, Neely M, Van Guilder M, et al. Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis. PLoS One 2014; 9(7): e101311.
[15]
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26(2): 185-230.
[http://dx.doi.org/10.1128/CMR.00059-12] [PMID: 23554414]
[16]
Sundar S, Singh OP, Chakravarty J. Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Rev Anti Infect Ther 2018; 16(11): 805-12.
[http://dx.doi.org/10.1080/14787210.2018.1532790] [PMID: 30289007]
[17]
Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11(12): e0006052.
[http://dx.doi.org/10.1371/journal.pntd.0006052] [PMID: 29240765]
[18]
Sundar S, Singh B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets 2018; 22(6): 467-86.
[http://dx.doi.org/10.1080/14728222.2018.1472241] [PMID: 29718739]
[19]
Stelitano G, Sammartino JC, Chiarelli LR. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules 2020; 25(5): 1239.
[http://dx.doi.org/10.3390/molecules25051239] [PMID: 32182964]
[20]
Guzman JD, Pesnot T, Barrera DA, et al. Tetrahydroisoquinolines affect the whole-cell phenotype of Mycobacterium tuberculosis by inhibiting the ATP-dependent MurE ligase. J Antimicrob Chemother 2015; 70(6): 1691-703.
[http://dx.doi.org/10.1093/jac/dkv010] [PMID: 25656411]
[21]
Washburn A, Abdeen S, Ovechkina Y, et al. Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB) inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections. Bioorg Med Chem Lett 2019; 29(13): 1665-72.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.034] [PMID: 31047750]
[22]
Walsh J, Bell A. Hybrid drugs for malaria. Curr Pharm Des 2009; 15(25): 2970-85.
[http://dx.doi.org/10.2174/138161209789058183] [PMID: 19754373]
[23]
Domalaon R, Idowu T, Zhanel GG, Schweizer F. Antibiotic hybrids: The next generation of agents and adjuvants against gram-negative pathogens? Clin Microbiol Rev 2018; 31(2): e00077-17.
[http://dx.doi.org/10.1128/CMR.00077-17] [PMID: 29540434]
[24]
Datta P, Gupta V. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J Med Res 2019; 149(2): 97-106.
[http://dx.doi.org/10.4103/ijmr.IJMR_755_18] [PMID: 31219074]
[25]
Worthington RJ, Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol 2013; 31(3): 177-84.
[http://dx.doi.org/10.1016/j.tibtech.2012.12.006] [PMID: 23333434]
[26]
Tängdén T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci 2014; 119(2): 149-53.
[http://dx.doi.org/10.3109/03009734.2014.899279] [PMID: 24666223]
[27]
LaFayette SL, Collins C, Zaas AK, et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 2010; 6(8): e1001069.
[28]
Tooke CL, Hinchliffe P, Bragginton EC, et al. β-lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 2019; 431(18): 3472-500.
[http://dx.doi.org/10.1016/j.jmb.2019.04.002] [PMID: 30959050]
[29]
Moore E, O’Flaherty D, Heuvelmans H, et al. Comparison of generic and proprietary sodium stibogluconate for the treatment of visceral leishmaniasis in Kenya. Bull World Health Organ 2001; 79(5): 388-93.
[PMID: 11417033]
[30]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[31]
Chaurasia M, Singh PK, Jaiswal AK, et al. Bioinspired calcium phosphate nanoparticles featuring as efficient carrier and prompter for macrophage intervention in experimental leishmaniasis. Pharm Res 2016; 33(11): 2617-29.
[http://dx.doi.org/10.1007/s11095-016-1985-2] [PMID: 27401407]
[32]
Varma DM, Redding EA, Bachelder EM, Ainslie KM. Nano- and microformulations to advance therapies for visceral leishmaniasis. ACS Biomater Sci Eng 2021; 7(5): 1725-41.
[33]
Wijnant GJ, Dumetz F, Dirkx L, et al. Tackling drug resistance and other causes of treatment failure in leishmaniasis. Frontiers in Tropical Diseases 2022; 3: 837460.
[http://dx.doi.org/10.3389/fitd.2022.837460]
[34]
Jamshidi Sh, Avizeh R, Mohebali M, Bokaie S. Immunotherapy using autoclaved L. major antigens and M. vaccae with meglumine antimoniate, for the treatment of experimental canine visceral leishmaniasis. Iran J Parasitol 2011; 6(3): 26-34.
[PMID: 22347294]
[35]
Castellano LR, Argiro L, Dessein H, et al. Potential use of interleukin-10 blockade as a therapeutic strategy in human cutaneous leishmaniasis. J Immunol Res 2015; 2015: 1-5.
[http://dx.doi.org/10.1155/2015/152741] [PMID: 26495321]
[36]
Prajapati VK, Awasthi K, Gautam S, et al. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 2011; 66(4): 874-9.
[http://dx.doi.org/10.1093/jac/dkr002] [PMID: 21393222]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy