Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Unlocking Multifunctional Advantages with Nanocomposites Coatings for Solar Cells: A Comprehensive Review

Author(s): Ganesh Regmi*

Volume 27, Issue 22, 2023

Published on: 21 December, 2023

Page: [1946 - 1959] Pages: 14

DOI: 10.2174/0113852728281107231212044214

Open Access Journals Promotions 2
Abstract

Nanocomposite coatings have garnered considerable attention as a versatile and innovative solution for addressing the challenges faced by solar cell technologies. This review article provides a comprehensive overview of the multifunctional advantages that nanocomposite coatings offer in the realm of solar cell technology. Furthermore, it delves into the myriad benefits that nanocomposite coatings bring to the table, including enhanced light absorption, improved charge carrier dynamics, and augmented protection against environmental factors such as moisture, UV radiation, and thermal stress. The review also discusses the diverse materials and fabrication methods employed in the development of nanocomposite coatings, highlighting their unique properties and practical applications with multifunctional benefits. Moreover, this comprehensive review explores recent advances in the field, encompassing the integration of novel nanomaterials, smart coatings, and multifunctional strategies that enable solar cells to simultaneously exhibit multiple desirable traits. Besides, the review offers insights into future prospects and challenges, presenting a roadmap for harnessing the full potential of nanocomposite coatings in solar cell technology. By unlocking the multifunctional advantages of nanocomposite coatings, this review aims to catalyze further research and innovation, ultimately advancing the prospects of sustainable and efficient solar energy generation.

Keywords: Thin film solar cells, multifunctional properties, nanocomposites, antireflection, self-cleaning, solar cell.

[1]
Lu, M.; Liu, Q.; Wang, Z.; Zhang, X.; Luo, G.; Lu, J.; Zeng, D.; Zhao, X.; Tian, S. Facile preparation of porous SiO2 antireflection film with high transmittance and hardness via self-templating method for perovskite solar cells. Mater. Today Chem., 2023, 29, 101473.
[http://dx.doi.org/10.1016/j.mtchem.2023.101473]
[2]
Ding, K.; Wang, C.; Li, S.; Zhang, X.; Lin, N.; Duan, J. Large-area cactus-like micro-/nanostructures with anti-reflection and superhydrophobicity fabricated by femtosecond laser and thermal treatment. Surf. Interfaces, 2022, 33, 102292.
[http://dx.doi.org/10.1016/j.surfin.2022.102292]
[3]
Chaikeeree, T.; Mungkung, N.; Kasayapanand, N.; Lertvanithphol, T.; Nakajima, H.; Horprathum, M. Characterization broadband omnidi-rectional antireflection ITO nanorod films coating. Opt. Mater., 2021, 121, 111545.
[http://dx.doi.org/10.1016/j.optmat.2021.111545]
[4]
Regmi, G.; Rijal, S.; Velumani, S. Aluminum-doped zinc oxide (AZO) ultra-thin films deposited by radio frequency sputtering for flexible Cu(In,Ga)Se2 solar cells. Memories - Mater., Devi. Circuits Syst., 2023, 5, 100064.
[http://dx.doi.org/10.1016/j.memori.2023.100064]
[5]
Gao, Q.; Ao, J.; Bi, J.; Yao, L.; Zhang, Z.; Zhang, Y.; Guo, J.; Sun, G.; Zhang, Y.; Liu, W.; Liu, F. A novel metal precursor structure for electrodepositing ultrathin cigse thin-film solar cell with high efficiency. ACS Appl. Mater. Interfaces, 2020, 12(21), 24403-24410.
[http://dx.doi.org/10.1021/acsami.0c01008]
[6]
Regmi, G.; Velumani, S. Radio frequency (RF) sputtered ZrO2-ZnO-TiO2 coating: An example of multifunctional benefits for thin film solar cells on the flexible substrate. Sol. Energy, 2023, 249, 301-311.
[http://dx.doi.org/10.1016/j.solener.2022.11.044]
[7]
Kini, G.P.; Jeon, S.J.; Moon, D.K. Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells. Adv. Funct. Mater., 2021, 31(15), 2007931.
[http://dx.doi.org/10.1002/adfm.202007931]
[8]
Koshuro, V.; Fomin, A.; Rodionov, I. Composition, structure and mechanical properties of metal oxide coatings produced on titanium using plasma spraying and modified by micro-arc oxidation. Ceram. Int., 2018, 44(11), 12593-12599.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.056]
[9]
Liang, Z.; Li, W.; Dong, B.; Sun, Y.; Tang, H.; Zhao, L.; Wang, S. Double-function SiO2-DMS coating with antireflection and superhydro-phobic surface. Chem. Phys. Lett., 2019, 716, 211-214.
[http://dx.doi.org/10.1016/j.cplett.2018.12.030]
[10]
Wu, Y.; Tan, X.; Wang, Y.; Tao, F.; Yu, M.; Chen, X. Nonfluorinated, transparent, and antireflective hydrophobic coating with self-cleaning function. Colloids Surf. A Physicochem. Eng. Asp., 2022, 634, 127919.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127919]
[11]
Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci., 2011, 4(10), 3779-3804.
[http://dx.doi.org/10.1039/c1ee01297e]
[12]
Zhang, D.; Wang, L.; Qian, H.; Li, X. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions. J. Coat. Technol. Res., 2016, 13(1), 11-29.
[http://dx.doi.org/10.1007/s11998-015-9744-6]
[13]
Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the surface energy of graphene by contact angle measurements. Langmuir, 2014, 30(28), 8598-8606.
[http://dx.doi.org/10.1021/la5018328]
[14]
Ong, K.H.; Agileswari, R.; Maniscalco, B.; Arnou, P.; Kumar, C.C.; Bowers, J.W.; Marsadek, M.B. Review on substrate and molyb-denum back contact in CIGS thin film solar cell. Int. J. Photoenergy, 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/9106269]
[15]
Byrne, J.; Dunlop, P.; Hamilton, J.; Fernández-Ibáñez, P.; Polo-López, I.; Sharma, P.; Vennard, A. A review of heterogeneous photoca-talysis for water and surface disinfection. Molecules, 2015, 20(4), 5574-5615.
[http://dx.doi.org/10.3390/molecules20045574]
[16]
Mahamuni, P.P.; Patil, P.M.; Dhanavade, M.J.; Badiger, M.V.; Shadija, P.G.; Lokhande, A.C.; Bohara, R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep., 2019, 17, 71-80.
[http://dx.doi.org/10.1016/j.bbrep.2018.11.007]
[17]
Estekhraji, S.A.Z.; Amiri, S. Synthesis and characterization of anti-fungus, anti-corrosion and self-cleaning hybrid nanocomposite coatings based on sol-gel process. J. Inorg. Organomet. Polym. Mater., 2017, 27(4), 883-891.
[http://dx.doi.org/10.1007/s10904-017-0532-x]
[18]
Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: A review. Corros. Sci., 2018, 144, 74-88.
[http://dx.doi.org/10.1016/j.corsci.2018.08.005]
[19]
Tao, C.; Zhang, L. Fabrication of multifunctional closed-surface SiO2-TiO2 antireflective thin films. Colloids Surf. A Physicochem. Eng. Asp., 2020, 585, 124045.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124045]
[20]
Garlisi, C.; Trepci, E.; Li, X.; Al Sakkaf, R.; Al-Ali, K.; Nogueira, R.P.; Zheng, L.; Azar, E.; Palmisano, G. Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties. Appl. Energy, 2020, 264, 114697.
[http://dx.doi.org/10.1016/j.apenergy.2020.114697]
[21]
Regmi, G.; Rohini, M.; Reyes-Figueroa, P.; Maldonado, A.; de la Luz Olvera, M.; Velumani, S. Deposition and characterization of ultrathin intrinsic zinc oxide (i-ZnO) films by radio frequency (RF) sputtering for propane gas sensing application. J. Mater. Sci. Mater. Electron., 2018, 29(18), 15682-15692.
[http://dx.doi.org/10.1007/s10854-018-9166-1]
[22]
Fihri, A.; Bovero, E.; Al-Shahrani, A.; Al-Ghamdi, A.; Alabedi, G. Recent progress in superhydrophobic coatings used for steel protection: A review. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 378-390.
[http://dx.doi.org/10.1016/j.colsurfa.2016.12.057]
[23]
Hiralal, P.; Chien, C.; Lal, N.N.; Abeygunasekara, W.; Kumar, A.; Butt, H.; Zhou, H.; Unalan, H.E.; Baumberg, J.J.; Amaratunga, G.A.J. Nanowire-based multifunctional antireflection coatings for solar cells. Nanoscale, 2014, 6(23), 14555-14562.
[http://dx.doi.org/10.1039/C4NR01914H]
[24]
Ma, C.; Wang, L.; Fan, X.; Liu, J. Broadband antireflection and hydrophobic CaF2 film prepared with magnetron sputtering. Appl. Surf. Sci., 2021, 560, 149924.
[http://dx.doi.org/10.1016/j.apsusc.2021.149924]
[25]
Tsui, K.H.; Lin, Q.; Chou, H.; Zhang, Q.; Fu, H.; Qi, P.; Fan, Z. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater., 2014, 26(18), 2805-2811.
[http://dx.doi.org/10.1002/adma.201304938]
[26]
Kim, E.B.; Akhtar, M.S.; Ameen, S.; Umar, A.; Qasem, H.; Rubahn, H.G.; Shkir, M.; Kaushik, A.; Mishra, Y.K. Improving the performance of 2D perovskite solar cells by carrier trappings and minifying the grain boundaries. Nano Energy, 2022, 102, 107673.
[http://dx.doi.org/10.1016/j.nanoen.2022.107673]
[27]
Raghuwanshi, M.; Chugh, M.; Sozzi, G.; Kanevce, A.; Kühne, T.D.; Mirhosseini, H.; Wuerz, R.; Cojocaru-Mirédin, O. Fingerprints indicating superior properties of internal interfaces in Cu(In,Ga)Se2 thin‐film solar cells. Adv. Mater., 2022, 34(37), 2203954.
[http://dx.doi.org/10.1002/adma.202203954]
[28]
Yamashita, Y.; Takayanagi, K.; Gotoh, K.; Toko, K.; Usami, N.; Suemasu, T. Zn 1- x Gex Oy passivating interlayers for BaSi2 thin-film solar cells. ACS Appl. Mater. Interfaces, 2022, 14(11), 13828-13835.
[http://dx.doi.org/10.1021/acsami.1c23070]
[29]
Baranwal, A.K.; Saini, S.; Sanehira, Y.; Kapil, G.; Kamarudin, M.A.; Ding, C.; Sahamir, S.R.; Yabuki, T.; Iikubo, S.; Shen, Q.; Miya-zaki, K.; Hayase, S. Unveiling the role of the metal oxide/Sn perovskite interface leading to low efficiency of Sn-perovskite solar cells but providing high thermoelectric properties. ACS Appl. Energy Mater., 2022, 5(8), 9750-9758.
[http://dx.doi.org/10.1021/acsaem.2c01437]
[30]
Pushparaj, T.L.; Raj, E.F.I.; Rani, E.F.I.; Darwin, S. Hybrid metal complex with TiO2/SiO2 composite-doped polymer for the enhance-ment of photo energy conversion in silicon solar panels. J. Mater. Sci. Mater. Electron., 2023, 34(23), 1665.
[http://dx.doi.org/10.1007/s10854-023-11079-1]
[31]
Liu, H.; Hussain, S.; Vikraman, D.; Lee, J.; Jaffery, S.H.A.; Jung, J.; Kim, H.S.; Kang, J. Fabrication of InGaZnO-SnO2/PCBM hybrid electron transfer layer for high-performance Perovskite solar cell and X-ray detector. J. Alloys Compd., 2022, 906, 164399.
[http://dx.doi.org/10.1016/j.jallcom.2022.164399]
[32]
Oh, W.C.; Cho, K.Y.; Jung, C.H.; Areerob, Y. Hybrid of graphene based on quaternary Cu2ZnNiSe4-WO3 nanorods for counter electrode in dye-sensitized solar cell application. Sci. Rep., 2020, 10(1), 4738.
[http://dx.doi.org/10.1038/s41598-020-61363-x]
[33]
García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2017, 2(3), 16100.
[http://dx.doi.org/10.1038/natrevmats.2016.100]
[34]
Regmi, G.; Velumani, S. Impact of selenization temperature on the performance of sequentially evaporated CuInSe2 thin film solar cells. Mater. Sci. Semicond. Process., 2022, 137, 106215.
[http://dx.doi.org/10.1016/j.mssp.2021.106215]
[35]
Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.Y.; Lu, Z.H. Review and perspective of materials for flexible solar cells. Mater. Reports: Energy, 2021, 1(1), 100001.
[http://dx.doi.org/10.1016/j.matre.2020.09.001]
[36]
Esmacher, O.; Hurst, M.; Regmi, G.; Velumani, S.; Castaneda, H.; Kuttolamadom, M. Selective laser sintering of metallic oxide powder mixtures for bi/tri-metallicoxide formation. Mater. Lett., 2021, 286, 129215.
[http://dx.doi.org/10.1016/j.matlet.2020.129215]
[37]
Regmi, G.; Subramaniam, V. Introduction to photovoltaics and alternative materials for silicon in photovoltaic energy conversion. In: Sustainable Material Solutions for Solar Energy Technologies; Elsevier, 2021; pp. 131-173.
[http://dx.doi.org/10.1016/B978-0-12-821592-0.00004-2]
[38]
Liu, F.W.; Cheng, T.M.; Chen, Y.J.; Yueh, K.C.; Tang, S.Y.; Wang, K.; Wu, C.L.; Tsai, H.S.; Yu, Y.J.; Lai, C.H.; Chen, W.S.; Chueh, Y.L. High-yield recycling and recovery of copper, indium, and gallium from waste copper indium gallium selenide thin-film solar panels. Sol. Energy Mater. Sol. Cells, 2022, 241, 111691.
[http://dx.doi.org/10.1016/j.solmat.2022.111691]
[39]
Ahmad, M.M.; Eshaghi, A. Fabrication of antireflective superhydrophobic thin film based on the TMMS with self-cleaning and anti-icing properties. Prog. Org. Coat., 2018, 122, 199-206.
[http://dx.doi.org/10.1016/j.porgcoat.2018.06.001]
[40]
Ai, L.; Zhang, J.; Li, X.; Zhang, X.; Lu, Y.; Song, W. Universal lowerature process for preparation of multifunctional high-performance antireflective mesoporous silica coatings on transparent polymeric substrates. ACS Appl. Mater. Interfaces, 2018, 10(5), 4993-4999.
[http://dx.doi.org/10.1021/acsami.7b17584]
[41]
Wei, Y.S.; Xu, S.H.; Yuan, L.G.; Wang, B.; Liu, S.L.; Fei, G.T. Double-layer anti-reflection coating of SiO2-TiO2/SiO2-TiO2-PEG300 with high transmittance and super-hydrophilicity. Mater. Res. Express, 2020, 7(9), 096402.
[http://dx.doi.org/10.1088/2053-1591/abb499]
[42]
Bernsmeier, D.; Polte, J.; Ortel, E.; Krahl, T.; Kemnitz, E.; Kraehnert, R. Antireflective coatings with adjustable refractive index and porosity synthesized by Micelle-templated deposition of MgF2 sol particles. ACS Appl. Mater. Interfaces, 2014, 6(22), 19559-19565.
[http://dx.doi.org/10.1021/am5052685]
[43]
Zhi, J.; Zhang, L.Z. Durable superhydrophobic surface with highly antireflective and self-cleaning properties for the glass covers of solar cells. Appl. Surf. Sci., 2018, 454, 239-248.
[http://dx.doi.org/10.1016/j.apsusc.2018.05.139]
[44]
Li, W.; Tan, X.; Zhu, J.; Xiang, P.; Xiao, T.; Tian, L.; Yang, A.; Wang, M.; Chen, X. Broadband antireflective and superhydrophobic coatings for solar cells. Mater. Today Energy, 2019, 12, 348-355.
[http://dx.doi.org/10.1016/j.mtener.2019.03.006]
[45]
Kim, D.H.; Park, J.H.; Lee, T.I.; Myoung, J.M. Superhydrophobic Al-doped ZnO nanorods-based electrically conductive and self-cleanable antireflecting window layer for thin film solar cell. Sol. Energy Mater. Sol. Cells, 2016, 150, 65-70.
[http://dx.doi.org/10.1016/j.solmat.2016.01.041]
[46]
Prado, R.; Beobide, G.; Marcaide, A.; Goikoetxea, J.; Aranzabe, A. Development of multifunctional sol-gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity. Sol. Energy Mater. Sol. Cells, 2010, 94(6), 1081-1088.
[http://dx.doi.org/10.1016/j.solmat.2010.02.031]
[47]
Nuchuay, P.; Chaikeeree, T.; Horprathum, M.; Mungkung, N.; Kasayapanand, N.; Oros, C.; Limwichean, S.; Nuntawong, N.; Chananonnawathorn, C.; Patthanasettakul, V.; Muthitamongkol, P.; Samransuksamer, B.; Denchitcharoen, S.; Klamchuen, A.; Thanachayanont, C.; Eiamchai, P. Engineered omnidirectional antireflection ITO nanorod films with super hydrophobic surface via glancing-angle ion-assisted electron-beam evaporation deposition. Curr. Appl. Phys., 2017, 17(2), 222-229.
[http://dx.doi.org/10.1016/j.cap.2016.11.018]
[48]
Salehi, H.; Eshaghi, A.; Rezazadeh, M.; Zabolian, H. Antireflective and anti-dust modified silica based thin film on solar cell cover glass. J. Alloys Compd., 2022, 892, 162228.
[http://dx.doi.org/10.1016/j.jallcom.2021.162228]
[49]
Alam, K.; Khan, K.I.; Ullah, A.; Ullah, A.; Ali, S.; Ullah, S.; Ali, A.; Hussain, S. Fabrication of superhydrophillic and graded index antireflective double layer coating for solar photovoltaics module using aerosol impact deposition assembly. Thin Solid Films, 2021, 721, 138518.
[http://dx.doi.org/10.1016/j.tsf.2021.138518]
[50]
Ahmad, A.A.; Al-Bataineh, Q.M.; Alsaad, A.M.; Samara, T.O.; Al-izzy, K.A. Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO/SiO thin films. Physica B, 2020, 593, 412263.
[http://dx.doi.org/10.1016/j.physb.2020.412263]
[51]
Isakov, K.; Kauppinen, C.; Franssila, S.; Lipsanen, H. Superhydrophobic antireflection coating on glass using grass-like alumina and fluoropolymer. ACS Appl. Mater. Interfaces, 2020, 12(44), 49957-49962.
[http://dx.doi.org/10.1021/acsami.0c12465]
[52]
Yildirim, A.; Khudiyev, T.; Daglar, B.; Budunoglu, H.; Okyay, A.K.; Bayindir, M. Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids. ACS Appl. Mater. Interfaces, 2013, 5(3), 853-860.
[http://dx.doi.org/10.1021/am3024417]
[53]
Li, J.; Xu, J.; Lian, Z.; Yu, Z.; Yu, H. Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nano-second laser irradiation. Opt. Laser Technol., 2020, 126, 106129.
[http://dx.doi.org/10.1016/j.optlastec.2020.106129]
[54]
Adak, D.; Mondal, P.; Bhattacharyya, R.; Bysakh, S.; Barshilia, H.C. Mesoporous aluminium titanate: Superhydrophilic and photocatalytic antireflective coating for solar glass covers with superior mechanical properties. Sol. Energy Mater. Sol. Cells, 2023, 263, 112580.
[http://dx.doi.org/10.1016/j.solmat.2023.112580]
[55]
Xu, L.; Geng, Z.; He, J.; Zhou, G. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates. ACS Appl. Mater. Interfaces, 2014, 6(12), 9029-9035.
[http://dx.doi.org/10.1021/am5016777]
[56]
Sun, X.; Xu, X.; Song, G.; Tu, J.; Li, L.; Yan, P.; Zhang, W.; Hu, K. Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol-gel combined with electron beam evaporation. Opt. Mater., 2020, 101, 109739.
[http://dx.doi.org/10.1016/j.optmat.2020.109739]
[57]
Hassan-Aghaei, F.; Mohebi, M.M. Synthesis and characterization of novel multi-layer silica thin films with tailored mesostructure as anti-reflective coatings. Opt. Mater., 2023, 135, 113246.
[http://dx.doi.org/10.1016/j.optmat.2022.113246]
[58]
Thongsuwan, W.; Sroila, W.; Kumpika, T.; Kantarak, E.; Singjai, P. Antireflective, photocatalytic, and superhydrophilic coating prepared by facile sparking process for photovoltaic panels. Sci. Rep., 2022, 12(1), 1675.
[http://dx.doi.org/10.1038/s41598-022-05733-7]
[59]
Sepúlveda, M.; Kamnev, K.; Pytlicek, Z.; Prasek, J.; Mozalev, A. Superhydrophobicoleophobic visible-transparent antireflective nanostructured anodic HfO2 multifunctional coatings for potential solar panel applications. ACS Appl. Nano Mater., 2021, 4(2), 1754-1765.
[http://dx.doi.org/10.1021/acsanm.0c03202]
[60]
Zhou, Y.; Li, X.; Lin, H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells. Small, 2020, 16(15), 1902579.
[http://dx.doi.org/10.1002/smll.201902579]
[61]
Munawar, T.; Iqbal, F.; Yasmeen, S.; Mahmood, K.; Hussain, A. Multi metal oxide NiO-CdO-ZnO nanocomposite-synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int., 2020, 46(2), 2421-2437.
[http://dx.doi.org/10.1016/j.ceramint.2019.09.236]
[62]
Regmi, G.; Ashok, A.; Chawla, P.; Semalti, P.; Velumani, S.; Sharma, S.N.; Castaneda, H. Perspectives of chalcopyrite-based CIGSe thin-film solar cell: A review. J. Mater. Sci. Mater. Electron., 2020, 31(10), 7286-7314.
[http://dx.doi.org/10.1007/s10854-020-03338-2]
[63]
Regmi, G.; Velumani, S. Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells. Opt. Mater., 2021, 119, 111350.
[http://dx.doi.org/10.1016/j.optmat.2021.111350]
[64]
Velumani, S.; Regmi, G.; Lee, M.; Castaneda, H.; Kuttolamadom, M.; Qian, X.; Kassiba, A. Engineered Zr/Zn/Ti oxide nanocomposite coatings for multifunctionality. Appl. Surf. Sci., 2021, 563, 150353.
[http://dx.doi.org/10.1016/j.apsusc.2021.150353]
[65]
Ruscello, M.; Sarkar, T.; Levitsky, A.; Matrone, G.M.; Droseros, N.; Schlisske, S.; Sachs, E.; Reiser, P.; Mankel, E.; Kowalsky, W.; Banerji, N.; Stingelin, N.; Frey, G.L.; Hernandez-Sosa, G. Nanocomposite of nickel oxide nanoparticles and polyethylene oxide as printable hole transport layer for organic solar cells. Sustain. Energy Fuels, 2019, 3(6), 1418-1426.
[http://dx.doi.org/10.1039/C9SE00216B]

© 2024 Bentham Science Publishers | Privacy Policy