Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Comparative Analysis of Chemical Composition and Antibacterial Activities of Essential Oils from Two Ocimum Species

Author(s): Md. Rokonuzzaman, Atiqur Rahman*, Abu Reza, Nilufar Yasmin Liza, Sezer Okay, Mohammad Abu Hena Mostofa Jamal* and Ibrahim Demirtas*

Volume 22, Issue 2, 2024

Published on: 20 December, 2023

Article ID: e201223224715 Pages: 11

DOI: 10.2174/0122113525274800231120065500

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The species of the genus Ocimum has been used since ancient times in the Indian subcontinent to cure various illnesses. Essential oil from Ocimum species has antimicrobial activity.

Objective: The main objective of this study was to extract essential oils from different parts of two Ocimum species and test their antimicrobial activity.

Methods: Hydrodistillation was used to extract essential oils from various parts of two basil species, GC-MS was used to identify the chemical compounds. The disk diffusion method was used to assess their antimicrobial activity.

Results: A total of sixty-seven chemical compounds from Ocimum sanctum L. and Ocimum gratissimum L. were identified using GC-MS. Among them, eugenol (1.00-27.66%), methyl eugenol (0.78-28.52%), β-elemene (5.10-20.98%), caryophyllene (0.94-43.18%), caryophyllene oxide (1.1-10.81%), palmitic acid methyl ester (3.20-21.38%), oleic acid methyl ester (2.91-40.7%) and linoleic acid methyl ester (1.55-74.71%) comprised the majority of the makeup of essential oils, due to diverse plant species and body sections, the percentage differed significantly. The essential oils contained monoterpenes, sesquiterpenes, and aldehydes/ketonic derivatives in the flower and leaf parts of O. sanctum and the leaf part of O. gratissimum. The essential oils of these Ocimum species showed good antibacterial activities against the bacteria, methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis with inhibition zones ranging from 10-36 mm.

Conclusion: These two species of Ocimum showed significant variation in chemical composition and antibacterial activity.

Keywords: Ocimum sanctum L, Ocimum gratissimum L, essential oil, disk diffusion, antibacterial activities, GC-MS.

Graphical Abstract
[1]
Dima, C.; Dima, S. Essential oils in foods: Extraction, stabilization, and toxicity. Curr. Opin. Food Sci., 2015, 5, 29-35.
[http://dx.doi.org/10.1016/j.cofs.2015.07.003]
[2]
Shaaban, H.A.E.; El-Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components (Review). J. Essent. Oil Res., 2012, 24(2), 203-212.
[http://dx.doi.org/10.1080/10412905.2012.659528]
[3]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[4]
Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X, 2022, 13, 100217.
[http://dx.doi.org/10.1016/j.fochx.2022.100217] [PMID: 35498985]
[5]
Garrido-Miranda, K. A.; Giraldo, J. D.; Schoebitz, M. Essential oils and their formulations for the control of curculionidae pests. Front. Agron., 2022, 4
[6]
Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 2017, 6(4), e00459.
[http://dx.doi.org/10.1002/mbo3.459] [PMID: 28296357]
[7]
Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci., 2021, 22(11), 5710.
[http://dx.doi.org/10.3390/ijms22115710] [PMID: 34071919]
[8]
Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 3rd ed; CRC Press: Boca Raton, 2020.
[http://dx.doi.org/10.1201/9781351246460]
[9]
Liang, J.; Zhang, Y.; Chi, P.; Liu, H.; Jing, Z.; Cao, H.; Du, Y.; Zhao, Y.; Qin, X.; Zhang, W.; Kong, D. Essential oils: Chemical constituents, potential neuropharmacological effects and aromatherapy - A review. Pharmacol. Res. - Modern Chinese Med., 2023, 6, 100210.
[http://dx.doi.org/10.1016/j.prmcm.2022.100210]
[10]
Benomari, F.Z.; Sarazin, M.; Chaib, D.; Pichette, A.; Boumghar, H.; Boumghar, Y.; Djabou, N. Chemical variability and chemotype concept of essential oils from Algerian wild plants. Molecules, 2023, 28(11), 4439.
[http://dx.doi.org/10.3390/molecules28114439] [PMID: 37298915]
[11]
Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun., 2009, 4(8), 1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400827] [PMID: 19769002]
[12]
Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In: Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer: Cham, 2015; pp. 19-61.
[http://dx.doi.org/10.1007/978-3-319-19144-7_2]
[13]
Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents-myth or real alternative? Molecules, 2019, 24(11), 2130.
[http://dx.doi.org/10.3390/molecules24112130] [PMID: 31195752]
[14]
Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J. Essent. Oil Res., 2010, 22(1), 78-84.
[http://dx.doi.org/10.1080/10412905.2010.9700269]
[15]
Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol., 2017, 7, 2161.
[http://dx.doi.org/10.3389/fmicb.2016.02161] [PMID: 28138324]
[16]
Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol., 2012, 3, 12.
[http://dx.doi.org/10.3389/fmicb.2012.00012] [PMID: 22291693]
[17]
Dev Sharma, A.; Kaur, I.; Angish, S.; Thakur, A.; Sania, S.; Singh, A. Comparative phytochemistry, antioxidant, antidiabetic, and anti-inflammatory activities of traditionally used Ocimum basilicum L. Ocimum gratissimum L., and Ocimum tenuiflorum L. BioTechnologia, 2022, 103(2), 131-376.
[http://dx.doi.org/10.5114/bta.2022.116206] [PMID: 36606068]
[18]
Pandey, V.; Swami, R.K.; Narula, A. Harnessing the potential of roots of traditional power plant. Ocimum. Front. Plant Sci., 2021, 12, 765024.
[http://dx.doi.org/10.3389/fpls.2021.765024] [PMID: 34790216]
[19]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[20]
Prakash, P.; Gupta, N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol., 2005, 49(2), 125-131.
[PMID: 16170979]
[21]
Jamshidi, N.; Cohen, M.M. The clinical efficacy and safety of tulsi in humans: A systematic review of the literature. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/9217567] [PMID: 28400848]
[22]
Saleh, A.A.; Mohammed, A.A.; Ahmad, A.; Arshad Husain, R. Ocimum sanctum: Role in diseases management through modulating various biological activity. Pharmacogn. J., 2020, 12(5)
[23]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[24]
Dharsono, H.D.A.; Putri, S.A.; Kurnia, D.; Dudi, D.; Satari, M.H. Ocimum species: A review on chemical constituents and antibacterial activity. Molecules, 2022, 27(19), 6350.
[http://dx.doi.org/10.3390/molecules27196350] [PMID: 36234883]
[25]
Prabhu, K.; Lobo, R.; Shirwaikar, A.; Shirwaikar, A.J. Ocimum gratissimum: A review of its chemical, pharmacological and ethnomedicinal properties. Open J. Comp. Med., 2009, 1(1)
[26]
Singh, S.; Taneja, M.; Majumdar, D.K. Biological activities of Ocimum sanctum L. fixed oil--an overview. Indian J. Exp. Biol., 2007, 45(5), 403-412.
[PMID: 17569280]
[27]
Bahr, T.A.; Rodriguez, D.; Beaumont, C.; Allred, K. The effects of various essential oils on epilepsy and acute seizure: A systematic review. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/6216745] [PMID: 31239862]
[28]
Ugbogu, O.C.; Emmanuel, O.; Agi, G.O.; Ibe, C.; Ekweogu, C.N.; Ude, V.C.; Uche, M.E.; Nnanna, R.O.; Ugbogu, E.A. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon, 2021, 7(11), e08404.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08404] [PMID: 34901489]
[29]
Elyemni, M.; Louaste, B.; Nechad, I.; Elkamli, T.; Bouia, A.; Taleb, M.; Chaouch, M.; Eloutassi, N. Extraction of essential oils of Rosmarinus officinalis L. by two different methods: Hydrodistillation and microwave assisted hydrodistillation. Sci. World J., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/3659432] [PMID: 31057339]
[30]
Asgharpour, F.; Moghadamnia, A.A.; Kazemi, S.; Nouri, H.R.; Motallebnejad, M. Applying GC-MS analysis to identify chemical composition of Iranian propolis prepared with different solvent and evaluation of its biological activity. Caspian J. Intern. Med., 2020, 11(2), 191-198.
[PMID: 32509248]
[31]
Alves-Silva, J.M.; Guerra, I.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Figueirinha, A.; Salgueiro, L. Chemical composition of Crithmum maritimum L. essential oil and hydrodistillation residual water by GC-MS and HPLC-DAD-MS/MS, and their biological activities. Ind. Crops Prod., 2020, 149, 112329.
[http://dx.doi.org/10.1016/j.indcrop.2020.112329]
[32]
Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry. Allured publishing corporation Carol Stream. 2007.
[33]
Yao, H.; Liu, J.; Jiang, X.; Chen, F.; Lu, X.; Zhang, J. Analysis of the clinical effect of combined drug susceptibility to guide medication for carbapenem-resistant klebsiella pneumoniae patients based on the kirby–bauer disk diffusion method. Infect. Drug Resist., 2021, 14, 79-87.
[http://dx.doi.org/10.2147/IDR.S282386] [PMID: 33469322]
[34]
Al Mashud, M.A.; Moinuzzaman, M.; Hossain, M.S.; Ahmed, S.; Ahsan, G.; Reza, A.; Anwar Ratul, R.B.; Uddin, M.H.; Momin, M.A.; Hena Mostofa Jamal, M.A. Green synthesis of silver nanoparticles using Cinnamomum tamala (Tejpata) leaf and their potential application to control multidrug resistant Pseudomonas aeruginosa isolated from hospital drainage water. Heliyon, 2022, 8(7), e09920.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09920] [PMID: 35855998]
[35]
Jain, V.; Karibasappa, G.; Dodamani, A.; Prashanth, V.; Mali, G. Comparative assessment of antimicrobial efficacy of different hand sanitizers: An in vitro study. Dent. Res. J., 2016, 13(5), 424-431.
[http://dx.doi.org/10.4103/1735-3327.192283] [PMID: 27857768]
[36]
Mitteer, D.R.; Greer, B.D.; Fisher, W.W.; Cohrs, V.L. Teaching behavior technicians to create publication‐quality, single‐case design graphs in graphpad prism 7. J. Appl. Behav. Anal., 2018, 51(4), 998-1010.
[http://dx.doi.org/10.1002/jaba.483] [PMID: 29971776]
[37]
Mohamed, A.A.; Alotaibi, B.M. Essential oils of some medicinal plants and their biological activities: A mini review. J. Umm Al-Qura Univ. Appl. Sci., 2023, 9(1), 40-49.
[38]
Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod., 2018, 118, 367-382.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.048]
[39]
Joshi, R. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life, 2014, 33(3), 149.
[http://dx.doi.org/10.4103/0257-7941.144618] [PMID: 25538349]
[40]
Tangpao, T.; Chung, H.H.; Sommano, S.R. Aromatic profiles of essential oils from five commonly used thai basils. Foods, 2018, 7(11)
[41]
Caputo, L.; Amato, G.; de Bartolomeis, P.; De Martino, L.; Manna, F.; Nazzaro, F.; De Feo, V.; Barba, A.A. Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Sci. Rep., 2022, 12(1), 3845.
[42]
Rowshan, V.; Bahmanzadegan, A.; Saharkhiz, M.J. Influence of storage conditions on the essential oil composition of Thymus daenensis Celak. Ind. Crops Prod., 2013, 49, 97-101.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.029]
[43]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils - A review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[44]
Boveiri Dehsheikh, A.; Mahmoodi Sourestani, M.; Boveiri Dehsheikh, P.; Vitalini, S.; Iriti, M.; Mottaghipisheh, J. A comparative study of essential oil constituents and phenolic compounds of arabian lilac (Vitex trifolia var. purpurea): An evidence of season effects. Foods, 2019, 8(2)
[45]
Liao, Z.; Huang, Q.; Cheng, Q.; Khan, S.; Yu, X. Seasonal variation in chemical compositions of essential oils extracted from lavandin flowers in the yun-gui plateau of China. Molecules, 2021, 26(18), 5639.
[http://dx.doi.org/10.3390/molecules26185639] [PMID: 34577110]
[46]
Sun, J.; Sun, P.; Kang, C.; Zhang, L.; Guo, L.; Kou, Y. Chemical composition and biological activities of essential oils from six lamiaceae folk medicinal plants. Front. Plant Sci., 2022, 13, 919294.
[http://dx.doi.org/10.3389/fpls.2022.919294] [PMID: 35979072]
[47]
Şanli, A.; Karadoğan, T. Geographical impact on essential oil composition of endemickundmanniaanatolicahub.-mor.(apiaceae). Afr. J. Tradit. Complement. Altern. Med., 2016, 14(1), 131-137.
[http://dx.doi.org/10.21010/ajtcam.v14i1.14] [PMID: 28480390]
[48]
Barbosa, L.; Filomeno, C.; Teixeira, R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules, 2016, 21(12), 1671.
[http://dx.doi.org/10.3390/molecules21121671] [PMID: 27941612]
[49]
Sá Filho, J.C.F.; Nizio, D.A.C.; Oliveira, A.M.S.; Alves, M.F.; Oliveira, R.C.; Luz, J.M.Q.; Nogueira, P.C.L.; Arrigoni-Blank, M.F.; Blank, A.F. Geographic location and seasonality affect the chemical composition of essential oils of Lippia alba accessions. Ind. Crops Prod., 2022, 188, 115602.
[http://dx.doi.org/10.1016/j.indcrop.2022.115602]
[50]
Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 2013, 6(12), 1451-1474.
[http://dx.doi.org/10.3390/ph6121451] [PMID: 24287491]
[51]
Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int. J. Med. Microbiol., 2020, 310(5), 151435.
[http://dx.doi.org/10.1016/j.ijmm.2020.151435] [PMID: 32654773]
[52]
Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules, 2012, 17(4), 3989-4006.
[http://dx.doi.org/10.3390/molecules17043989] [PMID: 22469594]
[53]
Andrade-Ochoa, S.; Chacón-Vargas, K.F.; Sánchez-Torres, L.E.; Rivera-Chavira, B.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. Differential antimicrobial effect of essential oils and their main components: Insights based on the cell membrane and external structure. Membranes, 2021, 11(6), 405.
[http://dx.doi.org/10.3390/membranes11060405] [PMID: 34071618]
[54]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 2017, 4(3), 58.
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[55]
Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/795435] [PMID: 26221178]
[56]
Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x] [PMID: 10736000]
[57]
Kawai, Y.; Kawai, M.; Mackenzie, E.S.; Dashti, Y.; Kepplinger, B.; Waldron, K.J.; Errington, J. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat. Commun., 2023, 14(1), 4123.
[http://dx.doi.org/10.1038/s41467-023-39723-8] [PMID: 37433811]
[58]
Yammine, J.; Chihib, N.E.; Gharsallaoui, A.; Dumas, E.; Ismail, A.; Karam, L. Essential oils and their active components applied as: Free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon, 2022, 8(12), e12472.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12472] [PMID: 36590515]
[59]
Maillard, J.Y. Bacterial target sites for biocide action. J. Appl. Microbiol., 2002, 92(s1), 16S-27S.
[http://dx.doi.org/10.1046/j.1365-2672.92.5s1.3.x] [PMID: 12000609]
[60]
Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol., 2019, 2(2), 49-55.
[http://dx.doi.org/10.1016/j.gaost.2019.03.001]
[61]
Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complementary Altern. Med., 2016, 2016, 3012462.
[62]
Li, H.; Song, X.; Li, H.; Zhu, L.; Cao, S.; Liu, J. Sesquiterpenes and monoterpenes from the leaves and stems of Illicium simonsii and their antibacterial activity. Molecules, 2022, 27(3), 1115.
[http://dx.doi.org/10.3390/molecules27031115] [PMID: 35164380]
[63]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, 24(13), 2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[64]
Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 2019, 24(14), 2631.
[http://dx.doi.org/10.3390/molecules24142631] [PMID: 31330955]
[65]
Zengin, H.; Baysal, A. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 2014, 19(11), 17773-17798.
[http://dx.doi.org/10.3390/molecules191117773] [PMID: 25372394]
[66]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005] [PMID: 15917549]
[67]
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[68]
Canillac, N.; Mourey, A. Antibacterial activity of the essential oil of Picea excelsa on Listeria, Staphylococcus aureus and coliform bacteria. Food Microbiol., 2001, 18(3), 261-268.
[http://dx.doi.org/10.1006/fmic.2000.0397]
[69]
Mourey, A.; Canillac, N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control, 2002, 13(4-5), 289-292.
[http://dx.doi.org/10.1016/S0956-7135(02)00026-9]
[70]
Ghavam, M.; Manca, M.L.; Manconi, M.; Bacchetta, G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci. Rep., 2020, 10(1), 15647.
[http://dx.doi.org/10.1038/s41598-020-73193-y] [PMID: 32973295]
[71]
Rahman, A.; Na, M.; Kang, S.C. Antilisterial Potential of Imperatorin and Limonin from Poncirus Trifoliata rafin. J. Food Biochem., 2012, 36(2), 217-223.
[http://dx.doi.org/10.1111/j.1745-4514.2010.00528.x]
[72]
Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol., 2003, 36(3), 162-167.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01285.x] [PMID: 12581376]
[73]
Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. Proteins Proteomics, 2009, 1794(5), 808-816.
[http://dx.doi.org/10.1016/j.bbapap.2008.11.005] [PMID: 19100346]
[74]
Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens, 2019, 8(1), 15.
[http://dx.doi.org/10.3390/pathogens8010015] [PMID: 30696051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy