Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Vaccinomics: Paving the Way for Personalized Immunization

Author(s): Laith Naser Al-Eitan*, Moh’d. Fahmi Munib ElMotasem, Iliya Yacoub Khair and Saif Zuhair Alahmad

Volume 30, Issue 13, 2024

Published on: 12 December, 2023

Page: [1031 - 1047] Pages: 17

DOI: 10.2174/0113816128280417231204085137

Price: $65

Abstract

Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.

Keywords: Immunization, polymorphism, vaccine, vaccinomics, SNP, HLA.

[1]
Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc Bayl Univ Med Cent 2005; 18(1): 21-5.
[http://dx.doi.org/10.1080/08998280.2005.11928028] [PMID: 16200144]
[2]
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will host genetics affect the response to SARS-CoV-2 vaccines? Historical precedents. Front Med 2022; 9: 802312.
[http://dx.doi.org/10.3389/fmed.2022.802312] [PMID: 35360730]
[3]
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2018; 36(36): 5350-7.
[http://dx.doi.org/10.1016/j.vaccine.2017.07.062] [PMID: 28774561]
[4]
Poland GA, Ovsyannikova IG, Jacobson RM, Smith DI. Heterogeneity in vaccine immune response: The role of immunogenetics and the emerging field of vaccinomics. Clin Pharmacol Ther 2007; 82(6): 653-64.
[http://dx.doi.org/10.1038/sj.clpt.6100415] [PMID: 17971814]
[5]
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Lambert ND, Pankratz VS, Poland GA. Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics 2014; 66(7-8): 493-9.
[http://dx.doi.org/10.1007/s00251-014-0776-3] [PMID: 24811271]
[6]
Haralambieva IH, Ovsyannikova IG, Pankratz VS, Kennedy RB, Jacobson RM, Poland GA. The genetic basis for interindividual immune response variation to measles vaccine: New understanding and new vaccine approaches. Expert Rev Vaccines 2013; 12(1): 57-70.
[http://dx.doi.org/10.1586/erv.12.134] [PMID: 23256739]
[7]
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80: 31-47.
[http://dx.doi.org/10.1016/j.actbio.2018.08.033] [PMID: 30172933]
[8]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[9]
Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel) 2014; 2(3): 624-41.
[http://dx.doi.org/10.3390/vaccines2030624] [PMID: 26344749]
[10]
Saliou P. Live vaccines. Rev Prat 1995; 45(12): 1492-6.
[PMID: 7660002]
[11]
Barbara Sanders MK. Inactivated viral vaccines. SpringerLink 2015; pp. 45-80.
[http://dx.doi.org/10.1007/978-3-662-45024-6_2]
[12]
Weinshilboum RM, Wang L. Pharmacogenomics: Precision medicine and drug response. Mayo Clin Proc 2017; 92(11): 1711-22.
[http://dx.doi.org/10.1016/j.mayocp.2017.09.001] [PMID: 29101939]
[13]
Tripathi P, Singh J, Lal JA, Tripathi V. Next generation sequencing: An emerging tool for drug designing. Curr Pharm Des 2019; 25(31): 3350-7.
[http://dx.doi.org/10.2174/1381612825666190911155508] [PMID: 31544713]
[14]
Luciani F, Bull RA, Lloyd AR. Next generation deep sequencing and vaccine design: Today and tomorrow. Trends Biotechnol 2012; 30(9): 443-52.
[http://dx.doi.org/10.1016/j.tibtech.2012.05.005] [PMID: 22721705]
[15]
Le T, Sun C, Chang J, Zhang G, Yin X. mRNA vaccine development for emerging animal and zoonotic diseases. Viruses 2022; 14(2): 401.
[http://dx.doi.org/10.3390/v14020401] [PMID: 35215994]
[16]
Fortner A, Bucur O. mRNA-based vaccine technology for HIV. Discoveries 2022; 10(2): e150.
[http://dx.doi.org/10.15190/d.2022.9] [PMID: 36438441]
[17]
Hogan MJ, Pardi N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu Rev Med 2022; 73(1): 17-39.
[http://dx.doi.org/10.1146/annurev-med-042420-112725] [PMID: 34669432]
[18]
Pardi N. mRNA innovates the vaccine field. Vaccines 2021; 9(5): 486.
[http://dx.doi.org/10.3390/vaccines9050486] [PMID: 34064557]
[19]
Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20(11): 817-38.
[http://dx.doi.org/10.1038/s41573-021-00283-5] [PMID: 34433919]
[20]
Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012; 9(11): 1319-30.
[http://dx.doi.org/10.4161/rna.22269] [PMID: 23064118]
[21]
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 2021; 28(3-4): 117-29.
[http://dx.doi.org/10.1038/s41434-020-00204-y] [PMID: 33093657]
[22]
Nilsson LJ, Regnström KJ. Pharmacogenomics in the evaluation of efficacy and adverse events during clinical development of vaccines. Methods Mol Biol 2008; 448: 469-79.
[http://dx.doi.org/10.1007/978-1-59745-205-2_17] [PMID: 18370243]
[23]
Al-Eitan L, Haddad Y. Emergence of pharmacogenomics in academic medicine and public health in Jordan: History, present state and prospects. Curr Pharmacogenomics Person Med 2015; 12(3): 167-75.
[http://dx.doi.org/10.2174/1875692113666150115221210]
[24]
AL-Eitan L, Tarkhan A. Practical challenges and translational issues in pharmacogenomics and personalized medicine from 2010 onwards. Curr Pharmacogenomics Person Med 2017; 14(1): 7-17.
[http://dx.doi.org/10.2174/1875692115666161215103842]
[25]
Evans DAP, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. BMJ 1960; 2(5197): 485-91.
[http://dx.doi.org/10.1136/bmj.2.5197.485] [PMID: 13820968]
[26]
Evans DA, Storey PB, McKusick VA. Further observations on the determination of the isoniazid inactivator phenotype. Bull Johns Hopkins Hosp 1961; 108: 60-6.
[PMID: 13697555]
[27]
Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10(5): 837-52.
[http://dx.doi.org/10.2217/pgs.09.25] [PMID: 19450131]
[28]
Poland GA, Ovsyannikova IG, Kennedy RB. Pharmacogenomics and vaccine development. Clin Pharmacol Ther 2021; 110(3): 546-8.
[http://dx.doi.org/10.1002/cpt.2288] [PMID: 34097754]
[29]
Poland GA, Kennedy RB, McKinney BA, et al. Vaccinomics, adversomics, and the immune response network theory: Individualized vaccinology in the 21st century. Semin Immunol 2013; 25(2): 89-103.
[http://dx.doi.org/10.1016/j.smim.2013.04.007] [PMID: 23755893]
[30]
Thomas C, Moridani M. Interindividual variations in the efficacy and toxicity of vaccines. Toxicology 2010; 278(2): 204-10.
[http://dx.doi.org/10.1016/j.tox.2009.10.008] [PMID: 19837123]
[31]
Kimman TG, Vandebriel RJ, Hoebee B. Genetic variation in the response to vaccination. Public Health Genomics 2007; 10(4): 201-17.
[http://dx.doi.org/10.1159/000106559] [PMID: 17895626]
[32]
Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin Microbiol Rev 2019; 32(2): e00084-18.
[http://dx.doi.org/10.1128/CMR.00084-18] [PMID: 30867162]
[33]
Newport MJ, Goetghebuer T, Weiss HA, Whittle H, Siegrist C-A, Marchant A. Genetic regulation of immune responses to vaccines in early life. Genes Immun 2004; 5(2): 122-9.
[http://dx.doi.org/10.1038/sj.gene.6364051] [PMID: 14737096]
[34]
Höhler T, Reuss E, Freitag CM, Schneider PM. A functional polymorphism in the IL-10 promoter influences the response after vaccination with HBsAg and hepatitis A. Hepatology 2005; 42(1): 72-6.
[http://dx.doi.org/10.1002/hep.20740] [PMID: 15918171]
[35]
Khan T, Khan A, Wei DQ. MMV-db: Vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database 2021; 2021: baab063.
[http://dx.doi.org/10.1093/database/baab063] [PMID: 34679165]
[36]
Khan A, Khan S, Ahmad S, et al. HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents. Microb Pathog 2021; 160: 105161.
[http://dx.doi.org/10.1016/j.micpath.2021.105161] [PMID: 34461244]
[37]
Khan T, Khan A, Nasir SN, Ahmad S, Ali SS, Wei DQ. CytomegaloVirusDb: Multi-omics knowledge database for cytomegaloviruses. Comput Biol Med 2021; 135: 104563.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104563] [PMID: 34256256]
[38]
Vlasova-St. Louis. COVID-19-Omics report: From individual omics approaches to precision medicine. Reports 2023; 6(4): 45.
[http://dx.doi.org/10.3390/reports6040045]
[39]
Wang D, Kumar V, Burnham KL, Mentzer AJ, Marsden BD, Knight JC. COMBATdb: A database for the COVID-19 multi-omics blood ATlas. Nucleic Acids Res 2023; 51(D1): D896-905.
[http://dx.doi.org/10.1093/nar/gkac1019] [PMID: 36353986]
[40]
O’Connor D, Pollard AJ. Characterizing vaccine responses using host genomic and transcriptomic analysis. Clin Infect Dis 2013; 57(6): 860-9.
[http://dx.doi.org/10.1093/cid/cit373] [PMID: 23728145]
[41]
Wang IM, Bett AJ, Cristescu R, Loboda A, ter Meulen J. Transcriptional profiling of vaccine‐induced immune responses in humans and non‐human primates. Microb Biotechnol 2012; 5(2): 177-87.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00317.x] [PMID: 22103427]
[42]
Kennedy RB, Oberg AL, Ovsyannikova IG, Haralambieva IH, Grill D, Poland GA. Transcriptomic profiles of high and low antibody responders to smallpox vaccine. Genes Immun 2013; 14(5): 277-85.
[http://dx.doi.org/10.1038/gene.2013.14] [PMID: 23594957]
[43]
Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27(3): 234-6.
[http://dx.doi.org/10.1038/85776] [PMID: 11242096]
[44]
Al-Koofee D, Mubarak S. Genetic polymorphisms. IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.88063]
[45]
RJ T. Forensic Medicine and Science, in Molecular Medicine. Amsterdam, Boston: Elsevier 2005; pp. 221-36.
[46]
Yousefi S, Abbassi-Daloii T, Kraaijenbrink T, et al. A SNP panel for identification of DNA and RNA specimens. BMC Genomics 2018; 19(1): 90.
[http://dx.doi.org/10.1186/s12864-018-4482-7] [PMID: 29370748]
[47]
Palmer LJ, Cardon LR. Shaking the tree: Mapping complex disease genes with linkage disequilibrium. Lancet 2005; 366(9492): 1223-34.
[http://dx.doi.org/10.1016/S0140-6736(05)67485-5] [PMID: 16198771]
[48]
Schichman SA, Suess P, Vertino AM, Gray PS. Comparison of short tandem repeat and variable number tandem repeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment. Bone Marrow Transplant 2002; 29(3): 243-8.
[http://dx.doi.org/10.1038/sj.bmt.1703360] [PMID: 11859397]
[49]
Lassaunière R, Tiemessen CT. FcγR genetic variation and HIV-1 vaccine efficacy: Context and considerations. Front Immunol 2021; 12: 788203.
[http://dx.doi.org/10.3389/fimmu.2021.788203] [PMID: 34975881]
[50]
Degenhardt JD, de Candia P, Chabot A, et al. Copy number variation of CCL3-like genes affects rate of progression to simian-AIDS in Rhesus macaques (Macaca mulatta). PLoS Genet 2009; 5(1): e1000346.
[http://dx.doi.org/10.1371/journal.pgen.1000346] [PMID: 19165326]
[51]
Pelak K, Need AC, Fellay J, et al. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol 2011; 9(11): e1001208.
[http://dx.doi.org/10.1371/journal.pbio.1001208] [PMID: 22140359]
[52]
Naranbhai V, Carrington M. Host genetic variation and HIV disease: From mapping to mechanism. Immunogenetics 2017; 69(8-9): 489-98.
[http://dx.doi.org/10.1007/s00251-017-1000-z] [PMID: 28695282]
[53]
Colucci M, De Santis E, Totti B, et al. Associations between allelic Variants of the human IgH 3′ regulatory region 1 and the immune response to BNT162b2 mRNA vaccine. Vaccines 2021; 9(10): 1207.
[http://dx.doi.org/10.3390/vaccines9101207] [PMID: 34696315]
[54]
AL-Eitan LN, Alahmad SZ. Pharmacogenomics of genetic polymorphism within the genes responsible for SARS‐CoV‐2 susceptibility and the drug‐metabolising genes used in treatment. Rev Med Virol 2021; 31(4): e2194.
[http://dx.doi.org/10.1002/rmv.2194] [PMID: 33205496]
[55]
AL-Eitan LN, Alahmad SZ. Allelic and genotypic analysis of the ACE I/D polymorphism for the possible prediction of COVID-19-related mortality and morbidity in Jordanian Arabs. J Biosaf Biosec 2023; 5(3): 89-95.
[http://dx.doi.org/10.1016/j.jobb.2023.07.005]
[56]
Li M, Wang H, Tian L, et al. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7(1): 146.
[http://dx.doi.org/10.1038/s41392-022-00996-y] [PMID: 35504917]
[57]
Lombardi A, Bozzi G, Ungaro R, et al. Mini review immunological consequences of immunization with COVID-19 mRNA vaccines: Preliminary results. Front Immunol 2021; 12: 657711.
[http://dx.doi.org/10.3389/fimmu.2021.657711] [PMID: 33777055]
[58]
Goel RR, Apostolidis SA, Painter MM, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination. Sci Immunol 2021; 6(58): eabi6950.
[http://dx.doi.org/10.1126/sciimmunol.abi6950] [PMID: 33858945]
[59]
Turner JS, O’Halloran JA, Kalaidina E, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021; 596(7870): 109-13.
[http://dx.doi.org/10.1038/s41586-021-03738-2] [PMID: 34182569]
[60]
Rogers CH, Mielczarek O, Corcoran AE. Dynamic 3D locus organization and its drivers underpin immunoglobulin recombination. Front Immunol 2021; 11: 633705.
[http://dx.doi.org/10.3389/fimmu.2020.633705] [PMID: 33679727]
[61]
Gemmati D, Longo G, Gallo I, et al. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet 2022; 13: 1028081.
[http://dx.doi.org/10.3389/fgene.2022.1028081] [PMID: 36531241]
[62]
Li M, Wei H, Zhong S, et al. Association of single nucleotide polymorphisms in LEP, LEPR, and PPARG with humoral immune response to influenza vaccine. Front Genet 2021; 12: 725538.
[http://dx.doi.org/10.3389/fgene.2021.725538] [PMID: 34745208]
[63]
Moss AJ, Gaughran FP, Karasu A, et al. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination. PLoS One 2013; 8(8): e71376.
[http://dx.doi.org/10.1371/journal.pone.0071376] [PMID: 23951151]
[64]
Castrucci MR. Factors affecting immune responses to the influenza vaccine. Hum Vaccin Immunother 2018; 14(3): 637-46.
[http://dx.doi.org/10.1080/21645515.2017.1338547] [PMID: 28617077]
[65]
Poland GA, Ovsyannikova IG, Jacobson RM. Immunogenetics of seasonal influenza vaccine response. Vaccine 2008; 26(Suppl 4) (4): D35-40.
[http://dx.doi.org/10.1016/j.vaccine.2008.07.065] [PMID: 19230157]
[66]
Posteraro B, Pastorino R, Di Giannantonio P, et al. The link between genetic variation and variability in vaccine responses: Systematic review and meta-analyses. Vaccine 2014; 32(15): 1661-9.
[http://dx.doi.org/10.1016/j.vaccine.2014.01.057] [PMID: 24513009]
[67]
Lei N, Li Y, Sun Q, et al. IFITM3 affects the level of antibody response after influenza vaccination. Emerg Microbes Infect 2020; 9(1): 976-87.
[http://dx.doi.org/10.1080/22221751.2020.1756696] [PMID: 32321380]
[68]
Linnik JE, Egli A. Impact of host genetic polymorphisms on vaccine induced antibody response. Hum Vaccin Immunother 2016; 12(4): 907-15.
[http://dx.doi.org/10.1080/21645515.2015.1119345] [PMID: 26809773]
[69]
Franco LM, Bucasas KL, Wells JM, et al. Integrative genomic analysis of the human immune response to influenza vaccination. eLife 2013; 2: e00299.
[http://dx.doi.org/10.7554/eLife.00299] [PMID: 23878721]
[70]
Bucasas KL, Franco LM, Shaw CA, et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis 2011; 203(7): 921-9.
[http://dx.doi.org/10.1093/infdis/jiq156] [PMID: 21357945]
[71]
Meyer H, Ehmann R, Smith GL. Smallpox in the post-eradication era. Viruses 2020; 12(2): 138.
[http://dx.doi.org/10.3390/v12020138] [PMID: 31991671]
[72]
Henderson DA, Inglesby TV, Bartlett JG, et al. Smallpox as a biological weapon: Medical and public health management. JAMA 1999; 281(22): 2127-37.
[http://dx.doi.org/10.1001/jama.281.22.2127] [PMID: 10367824]
[73]
World Health Organization. Global Commission for the Certification of Smallpox, E and O World Health, The global eradication of smallpox: Final report of the Global Commission for the Certification of Smallpox Eradication. Geneva: World Health Organization 1980.
[74]
Kaynarcalidan O, Moreno Mascaraque S, Drexler I. Vaccinia virus: From crude smallpox vaccines to elaborate viral vector vaccine design. Biomedicines 2021; 9(12): 1780.
[http://dx.doi.org/10.3390/biomedicines9121780] [PMID: 34944596]
[75]
Ovsyannikova IG, Kennedy RB, O’Byrne M, Jacobson RM, Pankratz VS, Poland GA. Genome-wide association study of antibody response to smallpox vaccine. Vaccine 2012; 30(28): 4182-9.
[http://dx.doi.org/10.1016/j.vaccine.2012.04.055] [PMID: 22542470]
[76]
Ramamoorthy A, Kim HH, Shah-Williams E, Zhang L. Racial and ethnic differences in drug disposition and response: Review of new molecular entities approved between 2014 and 2019. J Clin Pharmacol 2022; 62(4): 486-93.
[http://dx.doi.org/10.1002/jcph.1978] [PMID: 34608640]
[77]
Hepatitis. 2019. Available from: https://www.who.int/health-topics/hepatitis#tab=tab_1 [cited 2019 Sep 1st
[78]
Jeong SH, Lee HS. Hepatitis A: Clinical manifestations and management. Intervirology 2010; 53(1): 15-9.
[http://dx.doi.org/10.1159/000252779] [PMID: 20068336]
[79]
Thuener J. Hepatitis A and B infections. Prim Care 2017; 44(4): 621-9.
[http://dx.doi.org/10.1016/j.pop.2017.07.005] [PMID: 29132524]
[80]
Schwarz KB, Balistreri W. Viral hepatitis. J Pediatr Gastroenterol Nutr 2002; 35(1): S29-32.
[http://dx.doi.org/10.1097/00005176-200207001-00008] [PMID: 12151818]
[81]
Chang M-H, Schwarz KB. Viral hepatitis in children: Prevention and management. SpringerLink 2019.
[http://dx.doi.org/10.1007/978-981-13-0050-9]
[82]
Wu JF, Chen CH, Ni YH, et al. Toll-like receptor and hepatitis B virus clearance in chronic infected patients: A long-term prospective cohort study in Taiwan. J Infect Dis 2012; 206(5): 662-8.
[http://dx.doi.org/10.1093/infdis/jis420] [PMID: 22740716]
[83]
Höhler T, Reuss E, Evers N, et al. Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: A vaccination study in twins. Lancet 2002; 360(9338): 991-5.
[http://dx.doi.org/10.1016/S0140-6736(02)11083-X] [PMID: 12383669]
[84]
Strebel PM. Measles vaccines, in Plotkin's vaccines. Elsevier 2018; pp. 579-618.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00037-7]
[85]
DeStefano F, Shimabukuro TT. The MMR vaccine and autism. Annu Rev Virol 2019; 6(1): 585-600.
[http://dx.doi.org/10.1146/annurev-virology-092818-015515] [PMID: 30986133]
[86]
SA R. Mumps vaccines Plotkin’s vaccines. Elsevier 2018; pp. 663-88.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00039-0]
[87]
Reef SE. Rubella vaccines. Plotkin’s vaccines. Elsevier 2018; pp. 970-1000.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00052-3]
[88]
Ovsyannikova IG, Schaid DJ, Larrabee BR, Haralambieva IH, Kennedy RB, Poland GA. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses. PLoS One 2017; 12(2): e0171261.
[http://dx.doi.org/10.1371/journal.pone.0171261] [PMID: 28158231]
[89]
Tan PL, Jacobson RM, Poland GA, Jacobsen SJ, Pankratz VS. Twin studies of immunogenicity determining the genetic contribution to vaccine failure. Vaccine 2001; 19(17-19): 2434-9.
[http://dx.doi.org/10.1016/S0264-410X(00)00468-0] [PMID: 11257374]
[90]
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Whitaker JA, Poland GA. Variability in humoral immunity to measles vaccine: New developments. Trends Mol Med 2015; 21(12): 789-801.
[http://dx.doi.org/10.1016/j.molmed.2015.10.005] [PMID: 26602762]
[91]
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of Ebola virus disease. Annu Rev Pathol 2017; 12(1): 387-418.
[http://dx.doi.org/10.1146/annurev-pathol-052016-100506] [PMID: 27959626]
[92]
Jacob ST, Crozier I, Fischer WA II, et al. Ebola virus disease. Nat Rev Dis Primers 2020; 6(1): 13.
[http://dx.doi.org/10.1038/s41572-020-0147-3] [PMID: 32080199]
[93]
Ebola virus disease 2023. Available from: https://www.who.int/health-topics/ebola/#tab=tab_1
[94]
Geisbert TW, Hensley LE, Larsen T, et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 2003; 163(6): 2347-70.
[http://dx.doi.org/10.1016/S0002-9440(10)63591-2] [PMID: 14633608]
[95]
First vaccine to protect against Ebola 2019. Available from: https://www.ema.europa.eu/en/news/first-vaccine-protect-against-ebola
[96]
First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response. 2019.
[97]
Woolsey C, Geisbert TW. Current state of Ebola virus vaccines: A snapshot. PLoS Pathog 2021; 17(12): e1010078.
[http://dx.doi.org/10.1371/journal.ppat.1010078] [PMID: 34882741]
[98]
PREVAC Study team. Randomized trial of vaccines for zaire Ebola virus disease. N Engl J Med 2022; 387(26): 2411-24.
[http://dx.doi.org/10.1056/NEJMoa2200072] [PMID: 36516078]
[99]
Pasin C, Balelli I, Van Effelterre T, et al. Dynamics of the humoral immune response to a prime-boost Ebola vaccine: Quantification and sources of variation. J Virol 2019; 93(18): e00579-19.
[http://dx.doi.org/10.1128/JVI.00579-19] [PMID: 31243126]
[100]
Barré-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983; 220(4599): 868-71.
[http://dx.doi.org/10.1126/science.6189183] [PMID: 6189183]
[101]
[102]
Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Ann Ist Super Sanita 2010; 46(1): 5-14.
[http://dx.doi.org/10.1590/S0021-25712010000100002] [PMID: 20348614]
[103]
How is HIV passed from one person to another? 2022. Available from: https://www.cdc.gov/hiv/basics/hiv-transmission/ways-people-get-hiv.html
[104]
Little SJ, McLean AR, Spina CA, Richman DD, Havlir DV. Viral dynamics of acute HIV-1 infection. J Exp Med 1999; 190(6): 841-50.
[http://dx.doi.org/10.1084/jem.190.6.841] [PMID: 10499922]
[105]
Lucas S, Nelson AM. HIV and the spectrum of human disease. J Pathol 2015; 235(2): 229-41.
[http://dx.doi.org/10.1002/path.4449] [PMID: 25251832]
[106]
Haynes BF, Wiehe K, Borrow P, et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23(3): 142-58.
[http://dx.doi.org/10.1038/s41577-022-00753-w] [PMID: 35962033]
[107]
Deeks SG, Overbaugh J, Phillips A, Buchbinder S. HIV infection. Nat Rev Dis Primers 2015; 1(1): 15035.
[http://dx.doi.org/10.1038/nrdp.2015.35] [PMID: 27188527]
[108]
Hsu DC, O’Connell RJ. Progress in HIV vaccine development. Hum Vaccin Immunother 2017; 13(5): 1018-30.
[http://dx.doi.org/10.1080/21645515.2016.1276138] [PMID: 28281871]
[109]
Huang Y, Follmann D, Nason M, et al. Effect of rAd5-vector HIV-1 preventive vaccines on HIV-1 acquisition: A participant-level meta-analysis of randomized trials. PLoS One 2015; 10(9): e0136626.
[http://dx.doi.org/10.1371/journal.pone.0136626] [PMID: 26332672]
[110]
Kaur G, Mehra N. Genetic determinants of HIV‐1 infection and progression to AIDS: Immune response genes. Tissue Antigens 2009; 74(5): 373-85.
[http://dx.doi.org/10.1111/j.1399-0039.2009.01337.x] [PMID: 19765261]
[111]
Kaur G, Mehra N. Genetic determinants of HIV‐1 infection and progression to AIDS: Susceptibility to HIV infection. Tissue Antigens 2009; 73(4): 289-301.
[http://dx.doi.org/10.1111/j.1399-0039.2009.01220.x] [PMID: 19317737]
[112]
Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996; 273(5283): 1856-62.
[http://dx.doi.org/10.1126/science.273.5283.1856] [PMID: 8791590]
[113]
Li SS, Gilbert PB, Tomaras GD, et al. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. J Clin Invest 2014; 124(9): 3879-90.
[http://dx.doi.org/10.1172/JCI75539] [PMID: 25105367]
[114]
Li SS, Gilbert PB, Carpp LN, et al. Fc gamma receptor polymorphisms modulated the vaccine effect on HIV-1 risk in the HVTN 505 HIV vaccine trial. J Virol 2019; 93(21): e02041-18.
[http://dx.doi.org/10.1128/JVI.02041-18] [PMID: 31434737]
[115]
Davis NA, Crowe JE Jr, Pajewski NM, McKinney BA. Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine. Genes Immun 2010; 11(8): 630-6.
[http://dx.doi.org/10.1038/gene.2010.37] [PMID: 20613780]
[116]
Davila S, Froeling FEM, Tan A, et al. New genetic associations detected in a host response study to hepatitis B vaccine. Genes Immun 2010; 11(3): 232-8.
[http://dx.doi.org/10.1038/gene.2010.1] [PMID: 20237496]
[117]
Nishida N, Sugiyama M, Sawai H, et al. Key HLA‐DRB1‐DQB1 haplotypes and role of the BTNL2 gene for response to a hepatitis B vaccine. Hepatology 2018; 68(3): 848-58.
[http://dx.doi.org/10.1002/hep.29876] [PMID: 29534301]
[118]
Lin YJ, Lan YC, Huang YC, et al. Effects of cytokine and cytokine receptor gene variation on high anti-HB titers: Following up on Taiwan’s neonatal hepatitis B immunization program. Clin Chim Acta 2012; 413(15-16): 1194-8.
[http://dx.doi.org/10.1016/j.cca.2012.03.004] [PMID: 22484276]
[119]
Dhiman N, Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Associations between cytokine/cytokine receptor single nucleotide polymorphisms and humoral immunity to measles, mumps and rubella in a Somali population. Tissue Antigens 2008; 72(3): 211-20.
[http://dx.doi.org/10.1111/j.1399-0039.2008.01097.x] [PMID: 18715339]
[120]
Yucesoy B, Johnson VJ, Fluharty K, et al. Influence of cytokine gene variations on immunization to childhood vaccines. Vaccine 2009; 27(50): 6991-7.
[http://dx.doi.org/10.1016/j.vaccine.2009.09.076] [PMID: 19819209]
[121]
Ganczak M, Skonieczna-Żydecka K, Drozd-Dąbrowska M, Adler G. Possible impact of 190G > A CCR2 and Δ32 CCR5 mutations on decrease of the HBV vaccine immunogenicity: A preliminary report. Int J Environ Res Public Health 2017; 14(2): 166.
[http://dx.doi.org/10.3390/ijerph14020166] [PMID: 28208753]
[122]
Pan L, Zhang L, Zhang W, et al. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum Mol Genet 2014; 23(8): 2210-9.
[http://dx.doi.org/10.1093/hmg/ddt586] [PMID: 24282030]
[123]
Png E, Thalamuthu A, Ong RTH, Snippe H, Boland GJ, Seielstad M. A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region. Hum Mol Genet 2011; 20(19): 3893-8.
[http://dx.doi.org/10.1093/hmg/ddr302] [PMID: 21764829]
[124]
Wu TW, Chu CC, Ho TY, et al. Responses to booster hepatitis B vaccination are significantly correlated with genotypes of human leukocyte antigen (HLA)-DPB1 in neonatally vaccinated adolescents. Hum Genet 2013; 132(10): 1131-9.
[http://dx.doi.org/10.1007/s00439-013-1320-5] [PMID: 23739870]
[125]
Martinetti M, De Silvestri A, Belloni C, et al. Humoral response to recombinant hepatitis B virus vaccine at birth: Role of HLA and beyond. Clin Immunol 2000; 97(3): 234-40.
[http://dx.doi.org/10.1006/clim.2000.4933] [PMID: 11112362]
[126]
Milich DR, Leroux-Roels GG. Immunogenetics of the response to HBsAg vaccination. Autoimmun Rev 2003; 2(5): 248-57.
[http://dx.doi.org/10.1016/S1568-9972(03)00031-4] [PMID: 12965175]
[127]
Hennig BJ, Fielding K, Broxholme J, et al. Host genetic factors and vaccine-induced immunity to hepatitis B virus infection. PLoS One 2008; 3(3): e1898.
[http://dx.doi.org/10.1371/journal.pone.0001898] [PMID: 18365030]
[128]
Duan Z, Chen X, Liang Z, et al. Genetic polymorphisms of CXCR5 and CXCL13 are associated with non-responsiveness to the hepatitis B vaccine. Vaccine 2014; 32(41): 5316-22.
[http://dx.doi.org/10.1016/j.vaccine.2014.07.064] [PMID: 25077417]
[129]
Ryckman KK, Fielding K, Hill AV, et al. Host genetic factors and vaccine-induced immunity to HBV infection: Haplotype analysis. PLoS One 2010; 5(8): e12273.
[http://dx.doi.org/10.1371/journal.pone.0012273] [PMID: 20806065]
[130]
Wang Y, Xu P, Zhu D, et al. Association of polymorphisms of cytokine and TLR-2 genes with long-term immunity to hepatitis B in children vaccinated early in life. Vaccine 2012; 30(39): 5708-13.
[http://dx.doi.org/10.1016/j.vaccine.2012.07.010] [PMID: 22824342]
[131]
Yucesoy B, Talzhanov Y, Johnson VJ, et al. Genetic variants within the MHC region are associated with immune responsiveness to childhood vaccinations. Vaccine 2013; 31(46): 5381-91.
[http://dx.doi.org/10.1016/j.vaccine.2013.09.026] [PMID: 24075919]
[132]
Wu TW, Chen CF, Lai SK, Lin HH, Chu CC, Wang LY. SNP rs7770370 in HLA‐DPB 1 loci as a major genetic determinant of response to booster hepatitis B vaccination: Results of a genome‐wide association study. J Gastroenterol Hepatol 2015; 30(5): 891-9.
[http://dx.doi.org/10.1111/jgh.12845] [PMID: 25389088]
[133]
Ovsyannikova IG, Pankratz VS, Vierkant RA, Jacobson RM, Poland GA. Human leukocyte antigen haplotypes in the genetic control of immune response to measles-mumps-rubella vaccine. J Infect Dis 2006; 193(5): 655-63.
[http://dx.doi.org/10.1086/500144] [PMID: 16453260]
[134]
Dhiman N, Ovsyannikova IG, Cunningham JM, et al. Associations between measles vaccine immunity and single-nucleotide polymorphisms in cytokine and cytokine receptor genes. J Infect Dis 2007; 195(1): 21-9.
[http://dx.doi.org/10.1086/510596] [PMID: 17152005]
[135]
Haralambieva IH, Ovsyannikova IG, Kennedy RB, et al. Associations between single nucleotide polymorphisms and haplotypes in cytokine and cytokine receptor genes and immunity to measles vaccination. Vaccine 2011; 29(45): 7883-95.
[http://dx.doi.org/10.1016/j.vaccine.2011.08.083] [PMID: 21875636]
[136]
Ovsyannikova IG, Haralambieva IH, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Hum Genet 2011; 130(4): 547-61.
[http://dx.doi.org/10.1007/s00439-011-0977-x] [PMID: 21424379]
[137]
Ovsyannikova IG, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, Poland GA. Effects of vitamin A and D receptor gene polymorphisms/haplotypes on immune responses to measles vaccine. Pharmacogenet Genomics 2012; 22(1): 20-31.
[http://dx.doi.org/10.1097/FPC.0b013e32834df186] [PMID: 22082653]
[138]
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines. Immunogenetics 2014; 66(11): 663-9.
[http://dx.doi.org/10.1007/s00251-014-0796-z] [PMID: 25139337]
[139]
Dhiman N, Poland GA, Cunningham JM, et al. Variations in measles vaccine–specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J Allergy Clin Immunol 2007; 120(3): 666-72.
[http://dx.doi.org/10.1016/j.jaci.2007.04.036] [PMID: 17560639]
[140]
White SJ, Haralambieva IH, Ovsyannikova IG, Vierkant RA, O’Byrne MM, Poland GA. Replication of associations between cytokine and cytokine receptor single nucleotide polymorphisms and measles-specific adaptive immunophenotypic extremes. Hum Immunol 2012; 73(6): 636-40.
[http://dx.doi.org/10.1016/j.humimm.2012.03.015] [PMID: 22504412]
[141]
Omersel J, Karas Kuželički N. Vaccinomics and adversomics in the era of precision medicine: A review based on HBV, MMR, HPV, and COVID-19 vaccines. J Clin Med 2020; 9(11): 3561.
[http://dx.doi.org/10.3390/jcm9113561] [PMID: 33167413]
[142]
Haralambieva IH, Ovsyannikova IG, Umlauf BJ, et al. Genetic polymorphisms in host antiviral genes: Associations with humoral and cellular immunity to measles vaccine. Vaccine 2011; 29(48): 8988-97.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.043] [PMID: 21939710]
[143]
Ovsyannikova IG, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, Poland GA. The association of CD46, SLAM and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses: A replication study and examination of novel polymorphisms. Hum Hered 2011; 72(3): 206-23.
[http://dx.doi.org/10.1159/000331585] [PMID: 22086389]
[144]
Dhiman N, Ovsyannikova IG, Vierkant RA, et al. Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: Preliminary results. Vaccine 2008; 26(14): 1731-6.
[http://dx.doi.org/10.1016/j.vaccine.2008.01.017] [PMID: 18325643]
[145]
Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity. PLoS One 2010; 5(7): e11806.
[http://dx.doi.org/10.1371/journal.pone.0011806] [PMID: 20668555]
[146]
Ovsyannikova IG, Jacobson RM, Dhiman N, Vierkant RA, Pankratz VS, Poland GA. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics 2008; 121(5): e1091-9.
[http://dx.doi.org/10.1542/peds.2007-1575] [PMID: 18450852]
[147]
Lambert ND, Haralambieva IH, Kennedy RB, Ovsyannikova IG, Pankratz VS, Poland GA. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination. J Infect Dis 2015; 211(6): 898-905.
[http://dx.doi.org/10.1093/infdis/jiu553] [PMID: 25293367]
[148]
Dhiman N, Haralambieva IH, Kennedy RB, et al. SNP/haplotype associations in cytokine and cytokine receptor genes and immunity to rubella vaccine. Immunogenetics 2010; 62(4): 197-210.
[http://dx.doi.org/10.1007/s00251-010-0423-6] [PMID: 20217072]
[149]
Ovsyannikova IG, Haralambieva IH, Dhiman N, et al. Polymorphisms in the vitamin A receptor and innate immunity genes influence the antibody response to rubella vaccination. J Infect Dis 2010; 201(2): 207-13.
[http://dx.doi.org/10.1086/649588] [PMID: 20001730]
[150]
Ovsyannikova IG, Jacobson RM, Vierkant RA, O’Byrne MM, Poland GA. Replication of rubella vaccine population genetic studies: Validation of HLA genotype and humoral response associations. Vaccine 2009; 27(49): 6926-31.
[http://dx.doi.org/10.1016/j.vaccine.2009.08.109] [PMID: 19761839]
[151]
Ovsyannikova IG, Vierkant RA, Pankratz VS, O’Byrne MM, Jacobson RM, Poland GA. HLA haplotype and supertype associations with cellular immune responses and cytokine production in healthy children after rubella vaccine. Vaccine 2009; 27(25-26): 3349-58.
[http://dx.doi.org/10.1016/j.vaccine.2009.01.080] [PMID: 19200828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy