Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Theoretical Evaluation of Oleocanthal Reactive Centers

Author(s): Mohammad Hossein Asgarshamsi, Mehrdad Mohammadpour Dehkordi, Seyed Mohamad Reza Nazifi* and Krzysztof K. Zborowski*

Volume 24, Issue 11, 2023

Published on: 19 December, 2023

Page: [756 - 762] Pages: 7

DOI: 10.2174/0113892002276499231201094142

Price: $65

Abstract

Background: Decarboxymethyl ligstroside aglycone (Oleocanthal) is an essential component of olive oil. It is therefore interesting to study its metabolism in the human body. In order to find the best possible starting point for this metabolism, a theoretical study was carried out using DFT calculations and docking studies.

Methods: The DFT, B3LYP/6-311++G** and the PCM solvation model calculations were used to study the initial process of Oleocanthal metabolism by the CYP1A2 enzyme. Structures of radicals formed by homolytic dissociation of hydrogen atoms from the Oleocanthal structure were obtained and their properties were studied. Several parameters such as HOMO and LUMO energy gaps, Bond Dissociation Energy (BDE), hardness, and spin density of possible Oleocanthal radicals were taken into account. Docking of Oleocanthal into an enzyme binding pocket was also performed to locate the most probably metabolic site. Detailed analysis of the theoretical results allows the determination of the most likely reaction sites in Oleocanthal. The mode of binding of Oleocanthal to the CYP1A2 enzyme was also predicted.

Results: The results of the molecular docking studies are in agreement with the calculated quantum parameters. The theoretical predictions were compared with experimental data available in the scientific literature. A high correlation between theoretical calculations and experimental data was observed. The most likely site of Oleocanthal metabolism was identified.

Conclusion: The results of our research support the usefulness of theoretical calculations in predicting metabolic pathways.

Keywords: Docking simulations, Oleocanthal, CYPIA2, theoretical calculations, CYP1A2 enzyme, metabolic pathways.

Graphical Abstract
[1]
Pang, K.L.; Chin, K.Y. The biological activities of Oleocanthal from a molecular perspective. Nutrients, 2018, 10(5), 570.
[http://dx.doi.org/10.3390/nu10050570] [PMID: 29734791]
[2]
Parkinson, L.; Keast, R. Oleocanthal, a phenolic derived from virgin olive oil: A review of the beneficial effects on inflammatory disease. Int. J. Mol. Sci., 2014, 15(7), 12323-12334.
[http://dx.doi.org/10.3390/ijms150712323] [PMID: 25019344]
[3]
LeGendre, O.; Breslin, P.A.S.; Foster, D.A. (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Mol. Cell. Oncol., 2015, 2(4), e1006077.
[http://dx.doi.org/10.1080/23723556.2015.1006077] [PMID: 26380379]
[4]
Lucas, L.; Russell, A.; Keast, R. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound Oleocanthal. Curr. Pharm. Des., 2011, 17(8), 754-768.
[http://dx.doi.org/10.2174/138161211795428911] [PMID: 21443487]
[5]
Casamenti, F.; Stefani, M. Olive polyphenols: New promising agents to combat aging-associated neurodegeneration. Expert Rev. Neurother., 2017, 17(4), 345-358.
[http://dx.doi.org/10.1080/14737175.2017.1245617] [PMID: 27762153]
[6]
Covas, M.I.; Konstantinidou, V.; Fitó, M. Olive oil and cardiovascular health. J. Cardiovasc. Pharmacol., 2009, 54(6), 477-482.
[http://dx.doi.org/10.1097/FJC.0b013e3181c5e7fd] [PMID: 19858733]
[7]
Scotece, M.; Conde, J.; Abella, V.; Lopez, V.; Pino, J.; Lago, F.; Smith, A.B., III; Gómez-Reino, J.J.; Gualillo, O. New drugs from ancient natural foods. Oleocanthal, the natural occurring spicy compound of olive oil: a brief history. Drug Discov. Today, 2015, 20(4), 406-410.
[http://dx.doi.org/10.1016/j.drudis.2014.10.017] [PMID: 25448758]
[8]
Mete, M.; Aydemir, I.; Unsal, U.U.; Collu, F.; Vatandas, G.; Gurcu, B.; Duransoy, Y.K.; Taneli, F.; Tuglu, M.I.; Selcuki, M. Neuroprotective effects of Oleocanthal, a compound in virgin olive oil, in a rat model of traumatic brain injury. Turk Neurosurg., 2018, 28(6), 858-865.
[PMID: 29204981]
[9]
Margarucci, L.; Monti, M.C.; Cassiano, C.; Mozzicafreddo, M.; Angeletti, M.; Riccio, R.; Tosco, A.; Casapullo, A. Chemical proteomics-driven discovery of Oleocanthal as an Hsp90 inhibitor. Chem. Commun. , 2013, 49(52), 5844-5846.
[http://dx.doi.org/10.1039/c3cc41858h] [PMID: 23703283]
[10]
Pei, T. Meng, Q.; Han, J.; Sun, H.; Li, L.; Song, R.; Sun, B.; Pan, S.; Liang, D.; Liu, L. (−)-Oleocanthal inhibits growth and metastasis by blocking activation of STAT3 in human hepatocellular carcinoma. Oncotarget, 2016, 7(28), 43475-43491.
[http://dx.doi.org/10.18632/oncotarget.9782] [PMID: 27259268]
[11]
Segura-Carretero, A.; Curiel, J. Current disease-targets for Oleocanthal as promising natural therapeutic agent. Int. J. Mol. Sci., 2018, 19(10), 2899.
[http://dx.doi.org/10.3390/ijms19102899] [PMID: 30250008]
[12]
Vougogiannopoulou, K.; Lemus, C.; Halabalaki, M.; Pergola, C.; Werz, O.; Smith, A.B., III; Michel, S.; Skaltsounis, L.; Deguin, B. One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. J. Nat. Prod., 2014, 77(3), 441-445.
[http://dx.doi.org/10.1021/np401010x] [PMID: 24568174]
[13]
Scotece, M.; Gómez, R.; Conde, J.; Lopez, V.; Gómez-Reino, J.J.; Lago, F.; Smith, A.B., III; Gualillo, O. Oleocanthal inhibits proliferation and MIP-1α expression in human multiple myeloma cells. Curr. Med. Chem., 2013, 20(19), 2467-2475.
[http://dx.doi.org/10.2174/0929867311320190006] [PMID: 23521677]
[14]
Fogli, S.; Arena, C.; Carpi, S.; Polini, B.; Bertini, S.; Digiacomo, M.; Gado, F.; Saba, A.; Saccomanni, G.; Breschi, M.C.; Nieri, P.; Manera, C.; Macchia, M. Cytotoxic activity of Oleocanthal isolated from virgin olive oil on human melanoma cells. Nutr. Cancer, 2016, 68(5), 873-877.
[http://dx.doi.org/10.1080/01635581.2016.1180407] [PMID: 27266366]
[15]
Negro, C.; Aprile, A.; Luvisi, A.; Nicolì, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; Sabella, E.; De Bellis, L. Phenolic profile and antioxidant activity of Italian monovarietal extra virgin olive oils. Antioxidants, 2019, 8(6), 161.
[http://dx.doi.org/10.3390/antiox8060161] [PMID: 31195713]
[16]
Giusti, L.; Angeloni, C.; Barbalace, M.; Lacerenza, S.; Ciregia, F.; Ronci, M.; Urbani, A.; Manera, C.; Digiacomo, M.; Macchia, M.; Mazzoni, M.; Lucacchini, A.; Hrelia, S. Proteomic approach to uncover neuroprotective mechanisms of Oleocanthal against oxidative stress. Int. J. Mol. Sci., 2018, 19(8), 2329.
[http://dx.doi.org/10.3390/ijms19082329] [PMID: 30096819]
[17]
López-Yerena, A.; Vallverdú-Queralt, A.; Jáuregui, O.; Garcia-Sala, X.; Lamuela-Raventós, R.M.; Escribano-Ferrer, E. Tissue distribution of Oleocanthal and its metabolites after oral ingestion in rats. Antioxidants, 2021, 10(5), 688.
[http://dx.doi.org/10.3390/antiox10050688] [PMID: 33925686]
[18]
García-Villalba, R.; Carrasco-Pancorbo, A.; Nevedomskaya, E.; Mayboroda, O.A.; Deelder, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Exploratory analysis of human urine by LC–ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Anal. Bioanal. Chem., 2010, 398(1), 463-475.
[http://dx.doi.org/10.1007/s00216-010-3899-x] [PMID: 20582699]
[19]
Yerena, A.; VallverdúQueralt, A.; Mols, R.; Augustijns, P.; LamuelaRaventós, R.M.; Ferrer, E. Absorption and intestinal metabolic profile of Oleocanthal in rats. Pharmaceutics, 2020, 12(2), 134.
[http://dx.doi.org/10.3390/pharmaceutics12020134]
[20]
Guengerich, F.P. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J., 2006, 8(1), E101-E111.
[http://dx.doi.org/10.1208/aapsj080112] [PMID: 16584116]
[21]
Anzenbacher, P.; Anzenbacherová, E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci., 2001, 58(5), 737-747.
[http://dx.doi.org/10.1007/PL00000897] [PMID: 11437235]
[22]
Danielson, P.B. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab., 2002, 3(6), 561-597.
[http://dx.doi.org/10.2174/1389200023337054] [PMID: 12369887]
[23]
Rydberg, P.; Jørgensen, F.S.; Olsen, L. Use of density functional theory in drug metabolism studies. Expert Opin. Drug Metab. Toxicol., 2014, 10(2), 215-227.
[http://dx.doi.org/10.1517/17425255.2014.864278] [PMID: 24295134]
[24]
Mahmoudi, S.; Dehkordi, M.M.; Asgarshamsi, M.H. Density functional theory studies of the antioxidants—a review. J. Mol. Model., 2021, 27(9), 271.
[http://dx.doi.org/10.1007/s00894-021-04891-1] [PMID: 34463834]
[25]
Messaadia, L.; Bekkar, Y.; Benamira, M.; Lahmar, H. Predicting the antioxidant activity of some flavonoids of Arbutus plant: A theoretical approach. Chem. Physi. Impact., 2020, 1, 100007.
[http://dx.doi.org/10.1016/j.chphi.2020.100007]
[26]
Dehkordi, M.M.; Asgarshamsi, M.H.; Fassihi, A.; Zborowski, K.K. A Comparative DFT study on the antioxidant activity of some novel 3-Hydroxypyridine-4-one derivatives. Chem. Biodivers., 2022, 19(3), e202100703.
[http://dx.doi.org/10.1002/cbdv.202100703] [PMID: 34997823]
[27]
Ceylan, M.; Erkan, S.; Yaglioglu, A.S.; Akdogan Uremis, N.; Koç, E. Antiproliferative evaluation of some 2-[2-(2-phenylethenyl)-cyclopent-3-en-1-yl]-1,3-benzothiazoles: DFT and molecular docking study. Chem. Biodivers., 2020, 17(4), e1900675.
[http://dx.doi.org/10.1002/cbdv.201900675] [PMID: 32141675]
[28]
Li, D.; Wang, Y.; Han, K. Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coord. Chem. Rev., 2012, 256(11-12), 1137-1150.
[http://dx.doi.org/10.1016/j.ccr.2012.01.016]
[29]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.r. Gaussian 09, Revision D.01, In: Gaussian, Inc; Wallingford CT., , 2013.
[30]
Drew, K.L.M.; Reynisson, J. The impact of carbon–hydrogen bond dissociation energies on the prediction of the cytochrome P450 mediated major metabolic site of drug-like compounds. Eur. J. Med. Chem., 2012, 56, 48-55.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.017] [PMID: 22960693]
[31]
Qu, X.; Latino, D.A.R.S.; Aires-de-Sousa, J. A big data approach to the ultra-fast prediction of DFT-calculated bond energies. J. Cheminform., 2013, 5(1), 34.
[http://dx.doi.org/10.1186/1758-2946-5-34] [PMID: 23849655]
[32]
Khemalapure, S.S.; Katti, V.S.; Hiremath, C.S.; Basanagouda, M.; Hiremath, S.M. ArmakovićS.J.ArmakovićS.Molecular structure, optoelectronic properties, spectroscopic (FT-IR, FT-Raman and UV–Vis), H-BDE, NBO and drug likeness investigations on 7, 8-benzocoumarin-4-acetic acid (7BAA). J. Mol. Struct., 2019, 1195, 815-826.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.032]
[33]
Alves, C.N.; Borges, R.S.; Da Silva, A.B.F. Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int. J. Quantum Chem., 2006, 106(13), 2617-2623.
[http://dx.doi.org/10.1002/qua.20992]
[34]
Uzzaman, M.; Hoque, M. Molecular docking, pharmacokinetic, and DFT calculation of naproxen and its degradants. Biomed. J. Sci. Tech. Res., 2018, 9, 7360.
[35]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[36]
Kato, H. Computational prediction of cytochrome P450 inhibition and induction. Drug Metab. Pharmacokinet., 2020, 35(1), 30-44.
[http://dx.doi.org/10.1016/j.dmpk.2019.11.006] [PMID: 31902468]
[37]
Riahi, N.; Kefayat, A.; Ghasemi, A.; Asgarshamsi, M.; Panjehpoor, M.; Fassihi, A. Design, synthesis and molecular docking studies of some tetrahydropyrimidine derivatives as possible fascin inhibitors. Chem. Biodivers., 2019, 16(2), e1800339.
[http://dx.doi.org/10.1002/cbdv.201800339] [PMID: 30284762]
[38]
Guengerich, F.P.; Yoshimoto, F.K. Formation and cleavage of C-C bonds by enzymatic oxidation-reduction reactions. Chem. Rev., 2018, 118(14), 6573-6655.
[http://dx.doi.org/10.1021/acs.chemrev.8b00031] [PMID: 29932643]
[39]
Baysal, G.; Kasapbaşı, E.E; Yavuz, N.; Hür, Z.; Genç, K.; Genç, M. Determination of theoretical calculations by DFT method and investigation of antioxidant, antimicrobial properties of olive leaf extracts from different regions. J. Food Sci. Technol., 2021, 58(5), 1909-1917.
[http://dx.doi.org/10.1007/s13197-020-04702-0] [PMID: 33897027]
[40]
Hassanzadeh, K.; Akhtari, K.; Hassanzadeh, H.; Zarei, S.A.; Fakhraei, N.; Hassanzadeh, K. The role of structural CH compared with phenolic OH sites on the antioxidant activity of oleuropein and its derivatives as a great non-flavonoid family of the olive components: A DFT study. Food Chem., 2014, 164, 251-258.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.015] [PMID: 24996331]
[41]
Jaladanki, C.K.; Gahlawat, A.; Rathod, G.; Sandhu, H.; Jahan, K.; Bharatam, P.V. Mechanistic studies on the drug metabolism and toxicity originating from cytochromes P450. Drug Metab. Rev., 2020, 52(3), 366-394.
[http://dx.doi.org/10.1080/03602532.2020.1765792] [PMID: 32645272]
[42]
Reza Nazifi, S.M.; Asgharshamsi, M.H.; Dehkordi, M.M.; Zborowski, K.K. Antioxidant properties of Aloe vera components: A DFT theoretical evaluation. Free Radic. Res., 2019, 53(8), 922-931.
[http://dx.doi.org/10.1080/10715762.2019.1648798] [PMID: 31357895]
[43]
Fassihi, A.; Hasanzadeh, F.; Attar, A.; Saghaie, L.; Mohammadpour, M. Synthesis and evaluation of antioxidant activity of some novel hydroxypyridinone derivatives: A DFT approach for explanation of their radical scavenging activity. Res. Pharm. Sci., 2020, 15(6), 515-528.
[http://dx.doi.org/10.4103/1735-5362.301336] [PMID: 33828595]
[44]
Ridhwan, M.J.M.; Abu Bakar, S.I.; Latip, N.A. Comprehensive analysis of human CYP3A4 crystal structures as a potential tool for molecular docking-based site of metabolism and enzyme inhibition studies. JCBC, 2022, 21, 259.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy