[9]
Gajula, S.N.R.; Vora, S.A.; Dikundwar, A.G.; Sonti, R. In vitro drug metabolism studies using human liver microsomes. In: Dosage Forms; IntechOpen, 2022.
[14]
Gajula, S.N.R.; Bale, D.N.J.; Nanjappan, S.K. Analytical and omics approaches in the identification of oxidative stress-induced cancer biomarkers. In: Handbook of Oxidative Stress in Cancer: Mechanistic Aspects; Springer: Singapore, 2020.
[16]
Gajula, S.N.R. Chapter 5- Metabolomics: A recent advanced omics technology in herbal medicine research. In: Medicinal and Aromatic Plants; Elsevier, 2021; pp. 97-117.
[23]
Krüger, A.; Gonçalves Maltarollo, V.; Wrenger, C.; Kronenberger, T. ADME profiling in drug discovery and a new path paved on silica. In: Drug discovery and development-new advances; IntechOpen, 2019.
[38]
Gajula, S.N.R.; Talari, S.; Chilvery, S.; Chandraiah, G.; Sonti, R. A unique in vivo pharmacokinetic profile, in vitro metabolic stability, and hepatic first-pass metabolism of garcinol, a promising novel anticancer phytoconstituent, by liquid chromatography-mass spectrometry. RPS Pharma. Pharmacol. Reports, 2023, rqad017,
[43]
Farrier, D.S. PK Solutions 2.0. Noncompartmental pharmacokinetics data analysis; Summit Research Services: Ashland, USA, 2003.
[46]
Johansson, F.; Paterson, R. Physiologically based in silico models for the prediction of oral drug absorption. In: Drug Absorption Studies: In Situ, in vitro and in silico Models; Springer: Boston, MA, 2008; pp. 486-509.
[66]
Ahuja, V.; Krishnappa, M.; Kandarova, H. In silico toxicity prediction using Derek Nexus® for skin sensitization, phototoxicity, hepatotoxicity and in vitro hERG inhibition. Toxicol. Lett., 2021, 350, S250-S250.
[68]
Judson, P. DEREK-predicting toxicity. Knowledge-based expert systems in chemistry: Artificial intelligence in decision making, 2nd ed; Royal Society of Chemistry: London, 2019, pp. 125-133.
[75]
Lo Piparo, E.; Worth, A. Review of QSAR models and software tools for predicting developmental and reproductive toxicity; JRC European Commission, 2010.
[84]
Pawar, B. Essentials of Pharmatoxicology in Drug Research; Elsevier, 2023.
[88]
Toropov, A.A.; Toropova, A.P.; Mukhamedzhanoval, D.V.; Gutman, I. Simplified molecular input line entry system (SMILES) as an alternative for constructing quantitative structure-property relationships; QSPR, 2005.
[90]
Talapatra, S.N.; Sarkar, A. Acute toxicity prediction of synthetic and natural preservatives in rat by using QSAR modeling software. Int. J. Adv. Res. , 2015, 3(7), 1424-1438.
[91]
Schultz, T.W.; Diderich, R.; Kuseva, C.D.; Mekenyan, O.G. The OECD QSAR toolbox starts its second decade. Computat. Toxicol. Methods Protocol, 2018, 55-77.
[101]
Benfenati, E.; Roncaglioni, A.; Lombardo, A.; Manganaro, A. Integrating QSAR, read-across, and screening tools: the VEGAHUB platform as an example. In: Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science; Springer, 2019; pp. 365-381.
[102]
Nasrullah, I.; Kartasasmita, R.E.; Damayanti, S. Advances in computer science research. 3rd International Conference on Computation for Science and Technology (ICCST-3) 2015, pp. 49-58.
[116]
Djukić-Ćosić, D.; Baralić,, K.; Jorgovanović, D.; Živančević, K.; Javorac, D.; Stojilković, N.; Radović, B.; Marić, D.; Ćurčić,, M.; Djordjević, A.B. In silico toxicology methods in drug safety assessment. Arch. Pharma., 2021, 71, 257-278.