Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

New Ureas and Amides - An Account of Recent Trends and Developments in Low Molecular Weight Gelators

Author(s): Ajaykumar Manibhai Patel, Varsha Bhardwaj and Amar Ballabh*

Volume 28, Issue 13, 2024

Published on: 11 December, 2023

Page: [1046 - 1058] Pages: 13

DOI: 10.2174/0113852728277924231124094902

Price: $65

Open Access Journals Promotions 2
Abstract

The last 20 years have witnessed major advancements in the field of supramolecular chemistry and have brought us closer to the designing of low molecular weight gelators with desired properties and applications. In that regard, amide- and ureabased gelators comprise a unique class as they are extremely versatile in terms of molecular design and offer a wide range of applications, like anion responsive materials, selective sensing of heavy metal ions, environmental remediation and many more. Both sets of compounds have similar molecular scaffolds, making them an excellent tool to determine the relative importance of the supramolecular interactions involved in the gelation process. Besides, the concept of crystal engineering can also be employed to understand the underlying mechanism of gelation by scrutinizing the interactions and supramolecular assemblies formed by these systems. In this article, we focus on various supramolecular assemblies formed by various amide and urea derivatives and their recently reported applications to establish structure-property correlation and their futuristic aspects.

Keywords: Low molecular weight-gelators, crystal engineering, self-assembled fibrillar networks, structure-property correlation, SANS, nucleic acids.

Graphical Abstract
[1]
Weiss, R.G. Introduction: An overview of the “What” and “Why” of molecular gels. In: Molecular Gels Structure and Dynamics; Weiss, R.G., Ed.; The Royal Society of Chemistry, 2018, pp. 1-27.
[http://dx.doi.org/10.1039/9781788013147-00001]
[2]
Raghavan, S.R.; Douglas, J.F. The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: Gelation without cross-links? Soft Matter, 2012, 8(33), 8539-8546.
[http://dx.doi.org/10.1039/c2sm25107h]
[3]
Hirst, A.R.; Escuder, B.; Miravet, J.F.; Smith, D.K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed., 2008, 47(42), 8002-8018.
[http://dx.doi.org/10.1002/anie.200800022] [PMID: 18825737]
[4]
Bhardwaj, V.; Ballabh, A. Multifunctional supramolecular gels – an overview.In: Advances in Chemistry Research; Nova Science Publishers, Inc, 2022, pp. 37-74.
[http://dx.doi.org/10.52305/FHWI1475]
[5]
Dastidar, P.; Roy, R.; Parveen, R.; Ganguly, S.; Majumder, J.; Paul, M. Designing soft supramolecular materials using intermolecular interactions.In: Functional Supramolecular Materials: From Surfaces to MOFs; Banerjee, R., Ed.; The Royal Society of Chemistry, 2017, pp. 37-74.
[http://dx.doi.org/10.1039/9781788010276-00037]
[6]
Yu, X.; Chen, L.; Zhang, M.; Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem. Soc. Rev., 2014, 43(15), 5346-5371.
[http://dx.doi.org/10.1039/C4CS00066H] [PMID: 24770929]
[7]
Dastidar, P. Designing supramolecular gelators: Challenges, frustrations, and hopes. Gels, 2019, 5(1), 15.
[http://dx.doi.org/10.3390/gels5010015] [PMID: 30857187]
[8]
Dastidar, P. Supramolecular gelling agents: Can they be designed? Chem. Soc. Rev., 2008, 37(12), 2699-2715.
[http://dx.doi.org/10.1039/b807346e] [PMID: 19020683]
[9]
Chivers, P.R.A.; Smith, D.K. Shaping and structuring supramolecular gels. Nat. Rev. Mater., 2019, 4(7), 463-478.
[http://dx.doi.org/10.1038/s41578-019-0111-6]
[10]
Draper, E.R.; Adams, D.J. Low-molecular-weight gels: The state of the art. Chem, 2017, 3(3), 390-410.
[http://dx.doi.org/10.1016/j.chempr.2017.07.012]
[11]
Bhardwaj, V.; Ballabh, A. Low molecular mass gelators based on thiazole derivatives: Design and function. In: Advances, in Chemistry Research; Nova Science Publishers, Inc., 2022, pp. 147-174.
[http://dx.doi.org/10.52305/KTRF2986]
[12]
Bhardwaj, V.; Ballabh, A. Design, synthesis, and application of a new series of organogelator using crystal engineering approach and solvent parameter study: A synergetic approach. J. Mol. Liq., 2021, 322, 114520.
[http://dx.doi.org/10.1016/j.molliq.2020.114520]
[13]
Okesola, B.O.; Smith, D.K. Applying low-molecular weight supramolecular gelators in an environmental setting – self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev., 2016, 45(15), 4226-4251.
[http://dx.doi.org/10.1039/C6CS00124F] [PMID: 27241027]
[14]
Soundarajan, K.; Mohan Das, T. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water. Carbohydr. Res., 2019, 481, 60-66.
[http://dx.doi.org/10.1016/j.carres.2019.06.011] [PMID: 31252336]
[15]
Ohsedo, Y. Low-molecular-weight organogelators as functional materials for oil spill remediation. Polym. Adv. Technol., 2016, 27(6), 704-711.
[http://dx.doi.org/10.1002/pat.3712]
[16]
Bhardwaj, V.; Ballabh, A. A series of multifunctional pivalamide based Low Molecular Mass Gelators (LMOGs) with potential applications in oil-spill remediation and toxic dye removal. Colloids Surf. A Physicochem. Eng. Asp., 2022, 632, 127813.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127813]
[17]
Bhardwaj, V.; Ballabh, A. Remediation of marine oil spills and water pollution using low molecular weight organo-gelators. Recent Adv. Petrochemical Sci., 2022, 7, 3.
[http://dx.doi.org/10.19080/RAPSCI.2022.07.555714s]
[18]
Samai, S.; Dey, J.; Biradha, K. Amino acid based low-molecular-weight tris(bis-amido) organogelators. Soft Matter, 2011, 7(5), 2121-2126.
[http://dx.doi.org/10.1039/c0sm01293a]
[19]
Cho, E.J.; Jeong, I.Y.; Lee, S.J.; Han, W.S.; Kang, J.K.; Jung, J.H.; Debnath, S.; Shome, A.; Dutta, S.; Das, P.K.; Das, D.; Dasgupta, A.; Kumar, P.; Ray, S.; Das, A.K.; Banerjee, A.; Jada, V.; Recei, V.; No, V.; Re, V.; Recei, M.; December, V.; Adhikari, B.; Palui, G.; Banerjee, A. Terpyridine-based smart organic–inorganic hybrid gel as potential dye-adsorbing agent for water purification. Tetrahedron Lett., 2008, 49(6), 1076-1079.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.212]
[20]
Debnath, S.; Shome, A.; Dutta, S.; Das, P.K. Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification. Chemistry, 2008, 14(23), 6870-6881.
[http://dx.doi.org/10.1002/chem.200800731] [PMID: 18642259]
[21]
Ray, S.; Das, A.K.; Banerjee, A. pH-responsive, bolaamphiphile-based smart metallo-hydrogels as potential dye-adsorbing agents, water purifier, and vitamin B12 carrier. Chem. Mater., 2007, 19(7), 1633-1639.
[http://dx.doi.org/10.1021/cm062672f]
[22]
Adhikari, B.; Palui, G.; Banerjee, A. Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 2009, 5(18), 3452-3460.
[http://dx.doi.org/10.1039/b905985g]
[23]
Knerr, P.J.; Branco, M.C.; Nagarkar, R.; Pochan, D.J.; Schneider, J.P. Heavy metal ion hydrogelation of a self-assembling peptideviacysteinyl chelation. J. Mater. Chem., 2012, 22(4), 1352-1357.
[http://dx.doi.org/10.1039/C1JM14418A]
[24]
Carter, K.K.; Rycenga, H.B.; McNeil, A.J. Improving Hg-triggered gelation via structural modifications. Langmuir, 2014, 30(12), 3522-3527.
[http://dx.doi.org/10.1021/la404567b] [PMID: 24646129]
[25]
King, K.N.; McNeil, A.J. Streamlined approach to a new gelator: inspiration from solid-state interactions for a mercury-induced gelation. Chem. Commun. , 2010, 46(20), 3511-3513.
[http://dx.doi.org/10.1039/c002081h] [PMID: 20582351]
[26]
Okesola, B.O.; Suravaram, S.K.; Parkin, A.; Smith, D.K. Selective extraction and in situ reduction of precious metal salts from model waste to generate hybrid gels with embedded electrocatalytic nanoparticles. Angew. Chem. Int. Ed., 2016, 55(1), 183-187.
[http://dx.doi.org/10.1002/anie.201507684] [PMID: 26549625]
[27]
Trivedi, D.R.; Ballabh, A.; Dastidar, P.; Ganguly, B. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures. Chemistry, 2004, 10(21), 5311-5322.
[http://dx.doi.org/10.1002/chem.200400122] [PMID: 15378683]
[28]
Lin, Q.; Lu, T.T.; Zhu, X.; Sun, B.; Yang, Q.P.; Wei, T.B.; Zhang, Y.M. A novel supramolecular metallogel-based high-resolution anion sensor array. Chem. Commun. , 2015, 51(9), 1635-1638.
[http://dx.doi.org/10.1039/C4CC07814D] [PMID: 25503444]
[29]
Shen, J.S.; Cai, Q.G.; Jiang, Y.B.; Zhang, H.W. Anion-triggered melamine based self-assembly and hydrogel. Chem. Commun. , 2010, 46(36), 6786-6788.
[http://dx.doi.org/10.1039/c0cc02030c] [PMID: 20730213]
[30]
Shen, J.S.; Li, D.H.; Cai, Q.G.; Jiang, Y.B. Highly selective iodide-responsive gel–sol state transition in supramolecular hydrogels. J. Mater. Chem., 2009, 19(34), 6219-6224.
[http://dx.doi.org/10.1039/b908755a]
[31]
Becker, T.; Yong Goh, C.; Jones, F.; McIldowie, M.J.; Mocerino, M.; Ogden, M.I. Proline-functionalised calix[4]arene: An anion-triggered hydrogelator. Chem. Commun. , 2008, 3900–3902(33), 3900-3902.
[http://dx.doi.org/10.1039/b807248e] [PMID: 18726028]
[32]
Xia, Q.; Mao, Y.; Wu, J.; Shu, T.; Yi, T. Two-component organogel for visually detecting nitrite anion. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(10), 1854-1861.
[http://dx.doi.org/10.1039/C3TC32158D]
[33]
Christoff-Tempesta, T.; Lew, A.; Ortony, J. Beyond covalent crosslinks: Applications of supramolecular gels. Gels, 2018, 4(2), 40.
[http://dx.doi.org/10.3390/gels4020040] [PMID: 30674816]
[34]
del Rosario, C.; Rodríguez-Évora, M.; Reyes, R.; Simões, S.; Concheiro, A.; Évora, C.; Alvarez-Lorenzo, C.; Delgado, A. Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels. Int. J. Pharm., 2015, 495(1), 463-473.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.003] [PMID: 26362078]
[35]
Sang, L.; Huang, J.; Luo, D.; Chen, Z.; Li, X. Bone-like nanocomposites based on self-assembled protein-based matrices with Ca2+ capturing capability. J. Mater. Sci. Mater. Med., 2010, 21(9), 2561-2568.
[http://dx.doi.org/10.1007/s10856-010-4117-2] [PMID: 20582716]
[36]
Pakhomov, P.M.; Ovchinnikov, M.M.; Khizhnyak, S.D.; Roshchina, O.A.; Komarov, P.V. A supramolecular medical hydrogel based on L-cysteine and silver ions. Polym. Sci. Ser. A, 2011, 53(9), 820-826.
[http://dx.doi.org/10.1134/S0965545X11090094]
[37]
Mandal, S.K.; Brahmachari, S.; Das, P.K. In situ synthesised silver nanoparticle-infused L -lysine-based injectable hydrogel: Development of a biocompatible, antibacterial, soft nanocomposite. ChemPlusChem, 2014, 79(12), 1733-1746.
[http://dx.doi.org/10.1002/cplu.201402269]
[38]
Paladini, F.; Meikle, S.T.; Cooper, I.R.; Lacey, J.; Perugini, V.; Santin, M. Silver-doped self-assembling di-phenylalanine hydrogels as wound dressing biomaterials. J. Mater. Sci. Mater. Med., 2013, 24(10), 2461-2472.
[http://dx.doi.org/10.1007/s10856-013-4986-2] [PMID: 23793492]
[39]
Zeng, J.; Yin, Y.; Zhang, L.; Hu, W.; Zhang, C.; Chen, W. A supramolecular gel approach to minimize the neural cell damage during cryopreservation process. Macromol. Biosci., 2016, 16(3), 363-370.
[http://dx.doi.org/10.1002/mabi.201500277] [PMID: 26611502]
[40]
Zhou, M.; Smith, A.M.; Das, A.K.; Hodson, N.W.; Collins, R.F.; Ulijn, R.V.; Gough, J.E. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials, 2009, 30(13), 2523-2530.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.010] [PMID: 19201459]
[41]
Latxague, L.; Ramin, M.A.; Appavoo, A.; Berto, P.; Maisani, M.; Ehret, C.; Chassande, O.; Barthélémy, P. Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew. Chem. Int. Ed., 2015, 54(15), 4517-4521.
[http://dx.doi.org/10.1002/anie.201409134] [PMID: 25693962]
[42]
Karlsson, J.O.M.; Toner, M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials, 1996, 17(3), 243-256.
[http://dx.doi.org/10.1016/0142-9612(96)85562-1] [PMID: 8745321]
[43]
Yamamichi, S.; Jinno, Y.; Haraya, N.; Oyoshi, T.; Tomitori, H.; Kashiwagi, K.; Yamanaka, M. Separation of proteins using supramolecular gel electrophoresis. Chem. Commun. , 2011, 47(37), 10344-10346.
[http://dx.doi.org/10.1039/c1cc13826j] [PMID: 21853178]
[44]
Tazawa, S.; Kobayashi, K.; Oyoshi, T.; Yamanaka, M. Supramolecular gel electrophoresis of large DNA fragments. Electrophoresis, 2017, 38(20), 2662-2665.
[http://dx.doi.org/10.1002/elps.201700223] [PMID: 28681974]
[45]
Yang, Z.; Xu, B.; Bay, C.W.; Kong, H. A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem. Commun. , 2004, 1(21), 2424-2425.
[http://dx.doi.org/10.1039/b408897b] [PMID: 15514797]
[46]
He, T.; Li, K.; Wu, M.Y.; Liao, Y.X.; Yu, X.Q. Visual detection of amino acids by supramolecular gel collapse. RSC Advances, 2013, 4(5), 2119-2123.
[http://dx.doi.org/10.1039/C3RA44853C]
[47]
Yang, D.; Liu, C.; Zhang, L.; Liu, M. Visualized discrimination of ATP from ADP and AMP through collapse of supramolecular gels. Chem. Commun. , 2014, 50(84), 12688-12690.
[http://dx.doi.org/10.1039/C4CC05406G] [PMID: 25205284]
[48]
Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features. Angew. Chem. Int. Ed., 2015, 54(18), 5408-5412.
[http://dx.doi.org/10.1002/anie.201411875] [PMID: 25759108]
[49]
Escuder, B.; Rodríguez-Llansola, F.; Miravet, J.F. Supramolecular gels as active media for organic reactions and catalysis. New J. Chem., 2010, 34(6), 1044-1054.
[http://dx.doi.org/10.1039/b9nj00764d]
[50]
Daly, R.; Kotova, O.; Boese, M.; Gunnlaugsson, T.; Boland, J. J. Chemical nano-gardens: Growth of salt nanowires from supramolecular self-assembly gels. ACS Nano, 2013, 7(6), 4838-4845.
[http://dx.doi.org/10.1021/nn305813y] [PMID: 23663045]
[51]
Foster, J.A.; Damodaran, K.K.; Maurin, A.; Day, G.M.; Thompson, H.P.G.; Cameron, G.J.; Bernal, J.C.; Steed, J.W. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel. Chem. Sci. , 2017, 8(1), 78-84.
[http://dx.doi.org/10.1039/C6SC04126D] [PMID: 28451150]
[52]
Huang, G.; Yu, Q.; Cai, M.; Zhou, F.; Liu, W. Highlighting the effect of interfacial interaction on tribological properties of supramolecular gel lubricants. Adv. Mater. Interfaces, 2016, 3(3), 1500489.
[http://dx.doi.org/10.1002/admi.201500489]
[53]
Yu, Q.; Huang, G.; Cai, M.; Zhou, F.; Liu, W. In situ zwitterionic supramolecular gel lubricants for significantly improved tribological properties. Tribol. Int., 2016, 95, 55-65.
[http://dx.doi.org/10.1016/j.triboint.2015.10.032]
[54]
Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator. J. Mater. Chem., 2011, 21(35), 13399-13405.
[http://dx.doi.org/10.1039/c1jm12010g]
[55]
Yu, Q.; Wu, Y.; Li, D.; Cai, M.; Zhou, F.; Liu, W. Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator. J. Colloid Interface Sci., 2017, 487, 130-140.
[http://dx.doi.org/10.1016/j.jcis.2016.10.020] [PMID: 27756002]
[56]
Rogers, M.A. Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review. Food Res. Int., 2009, 42(7), 747-753.
[http://dx.doi.org/10.1016/j.foodres.2009.02.024]
[57]
Rogers, M.A.; Spagnuolo, P.A.; Wang, T.M.; Angka, L. A potential bioactive hard-stock fat replacer comprised of a molecular gel. Food Sci. Nutr., 2017, 5(3), 579-587.
[http://dx.doi.org/10.1002/fsn3.433] [PMID: 28572944]
[58]
Alvarez-Mitre, F.M.; Mallia, V.A.; Weiss, R.G.; Charó-Alonso, M.A.; Toro-Vazquez, J.F. Self-assembly in vegetable oils of ionic gelators derived from (R)-12-hydroxystearic acid. Food Structure, 2017, 13, 56-69.
[http://dx.doi.org/10.1016/j.foostr.2016.07.003]
[59]
Co, E.; Marangoni, A.G. The formation of a 12-hydroxystearic acid/vegetable oil organogel under shear and thermal fields. J. Am. Oil Chem. Soc., 2013, 90(4), 529-544.
[http://dx.doi.org/10.1007/s11746-012-2196-6]
[60]
Bairi, P.; Chakraborty, P.; Shit, A.; Mondal, S.; Roy, B.; Nandi, A.K. A co-assembled gel of a pyromellitic dianhydride derivative and polyaniline with optoelectronic and photovoltaic properties. Langmuir, 2014, 30(25), 7547-7555.
[http://dx.doi.org/10.1021/la500890r] [PMID: 24912087]
[61]
Shi, Y.; Zhang, J.; Pan, L.; Shi, Y.; Yu, G. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today, 2016, 11(6), 738-762.
[http://dx.doi.org/10.1016/j.nantod.2016.10.002]
[62]
Huo, Z.; Wang, L.; Tao, L.; Ding, Y.; Yi, J.; Alsaedi, A.; Hayat, T.; Dai, S. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes. J. Power Sources, 2017, 359, 80-87.
[http://dx.doi.org/10.1016/j.jpowsour.2017.04.099]
[63]
Huo, Z.; Tao, L.; Dai, S.; Zhu, J.; Zhang, C.; Chen, S.; Zhang, B. Quasi-solid-state dye sensitized solar cells using supramolecular gel electrolyte formed from two-component low molecular mass organogelators. Sci. China Mater., 2015, 58(6), 447-454.
[http://dx.doi.org/10.1007/s40843-015-0060-3]
[64]
Duduta, M.; Ho, B.; Wood, V.C.; Limthongkul, P.; Brunini, V.E.; Carter, W.C.; Chiang, Y.M. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater., 2011, 1(4), 511-516.
[http://dx.doi.org/10.1002/aenm.201100152]
[65]
Lyu, F.; Yu, S.; Li, M.; Wang, Z.; Nan, B.; Wu, S.; Cao, L.; Sun, Z.; Yang, M.; Wang, W.; Shang, C.; Lu, Z. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chem. Commun. , 2017, 53(13), 2138-2141.
[http://dx.doi.org/10.1039/C6CC09702B] [PMID: 28134387]
[66]
Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev., 2013, 113(7), 5364-5457.
[http://dx.doi.org/10.1021/cr3001884] [PMID: 23548181]
[67]
Guo, W.; Sun, W.; Wang, Y. Multilayer CuO@NiO hollow spheres: Microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano, 2015, 9(11), 11462-11471.
[http://dx.doi.org/10.1021/acsnano.5b05610] [PMID: 26442790]
[68]
Liang, M.; Liu, X.; Li, W.; Wang, Q. A tough nanocomposite aerogel of manganese oxide and polyaniline as an electrode for a supercapacitor. ChemPlusChem, 2016, 81(1), 40-43.
[http://dx.doi.org/10.1002/cplu.201500399] [PMID: 31968745]
[69]
Dong, X.; Wang, H.; Fang, F.; Li, X.; Yang, Y. Effect of gelator structures on electrochemical properties of ionic-liquid supramolecular gel electrolytes. Electrochim. Acta, 2010, 55(7), 2275-2279.
[http://dx.doi.org/10.1016/j.electacta.2009.11.042]
[70]
Li, W.; Gao, F.; Wang, X.; Zhang, N.; Ma, M. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed., 2016, 55(32), 9196-9201.
[http://dx.doi.org/10.1002/anie.201603417] [PMID: 27328742]
[71]
Ye, Y.S.; Huang, Y.J.; Cheng, C.C.; Chang, F.C. A new supramolecular sulfonated polyimide for use in proton exchange membranes for fuel cells. Chem. Commun. , 2010, 46(40), 7554-7556.
[http://dx.doi.org/10.1039/c0cc02325f] [PMID: 20852764]
[72]
kumar, G.G.; Hashmi, S.; Karthikeyan, C.; GhavamiNejad, A.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J. Graphene oxide/carbon nanotube composite hydrogels—versatile materials for microbial fuel cell applications. Macromol. Rapid Commun., 2014, 35(21), 1861-1865.
[http://dx.doi.org/10.1002/marc.201400332]
[73]
Lu, Y.C.; Xu, Z.; Gasteiger, H.A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc., 2010, 132(35), 12170-12171.
[http://dx.doi.org/10.1021/ja1036572] [PMID: 20527774]
[74]
Ma, X.; Cui, Y.; Liu, S.; Wu, J. A thermo-responsive supramolecular gel and its luminescence enhancement induced by rare earth Y 3+. Soft Matter, 2017, 13(44), 8027-8030.
[http://dx.doi.org/10.1039/C7SM01726J] [PMID: 29104972]
[75]
Ma, X.; Zhang, J.; Tang, N.; Wu, J. A thermo-responsive supramolecular organogel: dual luminescence properties and luminescence conversion induced by Cd 2+. Dalton Trans., 2014, 43(46), 17236-17239.
[http://dx.doi.org/10.1039/C4DT02502D] [PMID: 25336404]
[76]
Mandal, S.K.; Mandal, D.; Das, P.K. Synthesis of a low-molecular-weight fluorescent ambidextrous gelator: Development of graphene- and graphene-oxide-included gel nanocomposites. ChemPlusChem, 2016, 81(2), 213-221.
[http://dx.doi.org/10.1002/cplu.201500457] [PMID: 31968770]
[77]
Tong, X.; Zhao, Y.; An, B.K.; Park, S.Y. Fluorescent liquid-crystal gels with electrically switchable photoluminescence. Adv. Funct. Mater., 2006, 16(14), 1799-1804.
[http://dx.doi.org/10.1002/adfm.200500868]
[78]
Suzuki, Y.; Mizoshita, N.; Hanabusa, K.; Kato, T. Homeotropically oriented nematic physical gels for electrooptical materials. J. Mater. Chem., 2003, 13(12), 2870-2874.
[http://dx.doi.org/10.1039/b308098f]
[79]
Zhou, J.; Han, P.; Liu, M.; Zhou, H.; Zhang, Y.; Jiang, J.; Liu, P.; Wei, Y.; Song, Y.; Yao, X. Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed., 2017, 56(35), 10462-10466.
[http://dx.doi.org/10.1002/anie.201705462] [PMID: 28677259]
[80]
Vidyasagar, A.; Handore, K.; Sureshan, K.M.; Sureshan, K.M.; George, D.M.V. Soft optical devices from self-healing gels formed by oil and sugar-based organogelators. Angew. Chem. Int. Ed., 2011, 50(35), 8021-8024.
[http://dx.doi.org/10.1002/anie.201103584] [PMID: 21755583]
[81]
Weingarten, A.S.; Kazantsev, R.V.; Palmer, L.C.; McClendon, M.; Koltonow, A.R.; Samuel, A.P.S.; Kiebala, D.J.; Wasielewski, M.R.; Stupp, S.I. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem., 2014, 6(11), 964-970.
[http://dx.doi.org/10.1038/nchem.2075] [PMID: 25343600]
[82]
Yokoya, M.; Kimura, S.; Yamanaka, M. Urea derivatives as functional molecules: Supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chemistry, 2021, 27(18), 5601-5614.
[http://dx.doi.org/10.1002/chem.202004367] [PMID: 33184975]
[83]
Yamanaka, M. Urea derivatives as low-molecular-weight gelators. J. Incl. Phenom. Macrocycl. Chem., 2013, 77(1-4), 33-48.
[http://dx.doi.org/10.1007/s10847-013-0299-9]
[84]
Petrov, S.A.; Machulkin, A.E.; Petrov, R.A.; Tavtorkin, A.N.; Bondarenko, G.N.; Legkov, S.A.; Nifant’ev, I.E.; Dolzhikova, V.D.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. Synthesis and organogelating behaviour of urea- and Fmoc-containing diphenylalanine based hexaamide. J. Mol. Struct., 2021, 1234, 130127.
[http://dx.doi.org/10.1016/j.molstruc.2021.130127]
[85]
Park, J.H.; Kim, M.H.; Seo, M.L.; Lee, J.H.; Jung, J.H. In situ supramolecular gel formed by cyclohexane diamine with aldehyde derivative. Polymers , 2022, 14(3), 400.
[http://dx.doi.org/10.3390/polym14030400] [PMID: 35160389]
[86]
Dawn, A.; Pajoubpong, J.; Mesmer, A.; Mirzamani, M.; He, L.; Kumari, H. Manipulating assemblies in metallosupramolecular gels, driven by isomeric ligands, metal coordination, and adaptive binary gelator systems. Langmuir, 2022, 38(5), 1705-1715.
[http://dx.doi.org/10.1021/acs.langmuir.1c02738] [PMID: 35078313]
[87]
Maki, T.; Yoshisaki, R.; Akama, S.; Yamanaka, M. Enzyme responsive properties of amphiphilic urea supramolecular hydrogels. Polym. J., 2020, 52(8), 931-938.
[http://dx.doi.org/10.1038/s41428-020-0333-x]
[88]
ODonnell,A.D.;Gavriel,A.G.;Christie,W.;Chippindale,A.M.;German,I.M.;Hayes,W.;Conformational control of bis-urea self-assembled supramolecular pH switchable low-molecular-weight hydrogelators. ARKIVOC, 2021, 2021(6), 222-241.
[http://dx.doi.org/10.24820/ark.5550190.p011.581]
[89]
Martínez-Mejía, G.; Bermeo-Solórzano, B.A.; González, S.; del Río, J.M.; Corea, M.; Jiménez-Juárez, R. New carbamates and ureas: Comparative ability to gel organic solvents. Gels, 2022, 8(7), 440.
[http://dx.doi.org/10.3390/gels8070440] [PMID: 35877525]
[90]
Sahub, C.; Andrews, J.L.; Smith, J.P.; Mohamad Arif, M.A.; Tomapatanaget, B.; Steed, J.W. Enhancement of sensitivity for dichlorvos detection by a low-weight gelator based on bolaamphiphile amino acid derivatives decorated with a hybrid graphene quantum dot/enzyme/hydrogel. Mater. Chem. Front., 2021, 5(18), 6850-6859.
[http://dx.doi.org/10.1039/D1QM00296A]
[91]
Jones, C.D.; Steed, J.W. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem. Soc. Rev., 2016, 45(23), 6546-6596.
[http://dx.doi.org/10.1039/C6CS00435K] [PMID: 27711667]
[92]
Picci, G.; Mulvee, M.T.; Caltagirone, C.; Lippolis, V.; Frontera, A.; Gomila, R.M.; Steed, J.W. Anion-responsive fluorescent supramolecular gels. Molecules, 2022, 27(4), 1257.
[http://dx.doi.org/10.3390/molecules27041257] [PMID: 35209044]
[93]
Ghosh, D.; Bjornsson, R.; Damodaran, K.K. Role of N–oxide moieties in tuning supramolecular gel-state properties. Gels, 2020, 6(4), 41.
[http://dx.doi.org/10.3390/gels6040041] [PMID: 33233596]
[94]
Sudhakaran Jayabhavan, S.; Ghosh, D.; Damodaran, K.K. Making and breaking of gels: Stimuli-responsive properties of bis(pyridyl-n-oxide urea) gelators. Molecules, 2021, 26(21), 6420.
[http://dx.doi.org/10.3390/molecules26216420] [PMID: 34770831]
[95]
Kimura, S.; Haraya, N.; Komiyama, T.; Yokoya, M.; Yamanaka, M.; Donnell, A.D.O.; Gavriel, A.G.; Christie, W.; Chippindale, A.M.; German, I.M.; Sahub, C.; Andrews, J.L.; Smith, J.P.; Arif, M.A.M.; Tomapatanaget, B.; Steed, J.W.; Abygail, F.; Genio, F.; Paderes, M.C.; Gelators, P-N.U.; Ghosh, D.; Makeiff, D.A.; Cho, J.Y.; Godbert, N.; Smith, B.; Azyat, K.; Wagner, A.; Kulka, M.; Carlini, R.; Petrov, S.A.; Machulkin, A.E.; Petrov, R.A.; Tavtorkin, A.N.; Bondarenko, G.N.; Legk, S.A.; Nifant, I.E.; Dolzhikova, V.D.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. Formation of pH-responsive supramolecular hydrogels in basic buffers: Self-assembly of amphiphilic tris-urea. Chem. Pharm. Bull. , 2021, 69(11), 1131-1135.
[http://dx.doi.org/10.1248/cpb.c21-00539] [PMID: 34719596]
[96]
Tómasson, D.A.; Ghosh, D.; Kurup, M.R.P.; Mulvee, M.T.; Damodaran, K.K. Evaluating the role of a urea-like motif in enhancing the thermal and mechanical strength of supramolecular gels. CrystEngComm, 2021, 23(3), 617-628.
[http://dx.doi.org/10.1039/D0CE01194K]
[97]
Patel, A.M.; Ray, D.; Aswal, V.K.; Ballabh, A. Probing the supramolecular assembly in solid, solution and gel phase in uriede based thiazole derivatives and its potential application as iodide ion sensor. J. Mol. Liq., 2022, 362, 119763.
[http://dx.doi.org/10.1016/j.molliq.2022.119763]
[98]
Martinez, R.M.; Rosado, C.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Main features and applications of organogels in cosmetics. Int. J. Cosmet. Sci., 2019, 41(2), 109-117.
[http://dx.doi.org/10.1111/ics.12519] [PMID: 30994939]
[99]
Esposito, C.L.; Kirilov, P. Preparation, characterization and evaluation of organogel-based lipstick formulations: Application in cosmetics. Gels, 2021, 7(3), 97.
[http://dx.doi.org/10.3390/gels7030097] [PMID: 34287321]
[100]
Genio, F.A.F.; Paderes, M.C. Functional supramolecular gels comprised of bis-urea compounds and cosmetic solvents. ChemSelect., 2021, 6(31), 7906-7911.
[http://dx.doi.org/10.1002/slct.202102367]
[101]
Valls, A.; Castillo, A.; Porcar, R.; Hietala, S.; Altava, B.; García-Verdugo, E.; Luis, S.V. Urea-based low-molecular-weight pseudopeptidic organogelators for the encapsulation and slow release of (R)-. Limonene. J. Agric. Food Chem., 2020, 68(26), 7051-7061.
[http://dx.doi.org/10.1021/acs.jafc.0c01184] [PMID: 32511911]
[102]
Bhardwaj, V.; Shaiwale, M.; Lakhani, B.; Ballabh, A. A series of memantine based salts with various aromatic and aliphatic carboxylic acids: Crystallographic analysis, Hirshfeld surfaces and dissolution study. J. Mol. Struct., 2020, 1206, 127672.
[http://dx.doi.org/10.1016/j.molstruc.2019.127672]
[103]
Patel, A.M.; Ray, D.; Aswal, V.K.; Ballabh, A. Probing the mechanism of gelation and anion sensing capability of a thiazole based amide gelator: A case study. Colloids Surf. A Physicochem. Eng. Asp., 2020, 607, 125430.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125430]
[104]
Makeiff, D.A.; Cho, J.Y.; Godbert, N.; Smith, B.; Azyat, K.; Wagner, A.; Kulka, M.; Carlini, R.; Liao, L.; Jia, X.; Lou, H.; Zhong, J.; Liu, H.; Ding, S.; Chen, C.; Hong, S.; Luo, X.; Zapién-Castillo, S.; Montes-Patiño, J.J.; Pérez-Sánchez, J.F.; Lozano-Navarro, J.I.; Melo-Banda, J.A.; Mésini, P.J.; Díaz-Zavala, N.P.; Gao, A.; Han, Q.; Wang, Q.; Cao, X.; Chang, X.; Zhou, Y.; Ma, X.; Liu, J.; Feng, C.; Tómasson, D.A.; Ghosh, D.; Kurup, M.R.P.; Mulvee, M.T.; Damodaran, K.K.; Wang, J.T.W.; Rodrigo, A.C.; Patterson, A.K.; Hawkins, K.; Aly, M.M.S.; Sun, J.; Al Jamal, K.T.; Smith, D.K.; Yang, Z.; Wu, G.; Gan, C.; Cai, G.; Zhang, J.; Ji, H.; Bietsch, J.; Olson, M.; Wang, G.; Kuosmanen, R.T.; Truong, K.; Rissanen, K.T.; Sievänen, E.I.; Bordignon, D.; Lonetti, B.; Coudret, C.; Roblin, P.; Joseph, P.; Malaquin, L.; Chalard, A.; Fitremann, J. Effect of aromatic core on the supramolecular chirality of L-phenylalanine derived assemblies. Colloids Surf. A Physicochem. Eng. Asp., 2021, 339, 1-9.
[http://dx.doi.org/10.1002/advs.202101058]
[105]
Kumar, S.; Bera, S.; Nandi, S.K.; Haldar, D. The effect of amide bond orientation and symmetry on the self-assembly and gelation of discotic tripeptides. Soft Matter, 2021, 17(1), 113-119.
[http://dx.doi.org/10.1039/D0SM01804J] [PMID: 33155010]
[106]
Kuosmanen, R.T.; Truong, K.N.; Rissanen, K.T.; Sievänen, E.I. The effect of the side chain on gelation properties of bile acid alkyl amides. ChemistryOpen, 2021, 10(11), 1150-1157.
[http://dx.doi.org/10.1002/open.202100245] [PMID: 34806846]
[107]
Delbecq, F.; Adenier, G.; Ogue, Y.; Kawai, T. Gelation properties of various long chain amidoamines: Prediction of solvent gelation via machine learning using Hansen solubility parameters. J. Mol. Liq., 2020, 303, 112587.
[http://dx.doi.org/10.1016/j.molliq.2020.112587]
[108]
Chen, S.; Fan, Y.; Song, J.; Xue, B. The remarkable role of hydrogen bond, halogen, and solvent effect on self-healing supramolecular gel. Mater. Today Chem., 2022, 23, 100719.
[http://dx.doi.org/10.1016/j.mtchem.2021.100719]
[109]
Zapién-Castillo, S.; Montes-Patiño, J.J.; Pérez-Sánchez, J.F.; Lozano-Navarro, J.I.; Melo-Banda, J.A.; Mésini, P.J.; Díaz-Zavala, N.P. Recovery of fuels using the supramolecular gelation ability of a hydroxybenzoic acid bisamide derivative. Water Air Soil Pollut., 2021, 232(2), 39.
[http://dx.doi.org/10.1007/s11270-021-04991-x]
[110]
Xu, C.; Wang, L.; Xia, Y.; Li, D.; Yin, B.; Hou, R. A novel tetrathiafulvalene based liquid crystalline organogelator: Synthesis, self-assembly properties and potential utilization. New J. Chem., 2022, 46(47), 22663-22671.
[http://dx.doi.org/10.1039/D2NJ04062J]
[111]
Iguarbe, V.; Romero, P.; Barberá, J.; Elduque, A.; Giménez, R. Dual liquid crystalline/gel behavior with aie effect promoted by self-assembly of pyrazole dendrons. J. Mol. Liq., 2022, 365, 120109.
[http://dx.doi.org/10.1016/j.molliq.2022.120109]
[112]
Liu, S.; Lin, Y.T.; Bhat, B.; Pahari, S.; Kuan, K.Y.; De, A.; Kwon, J.S.I.; Akbulut, M.E.S. Dynamic, hollow nanotubular networks with superadjustable pH-responsive and temperature resistant rheological characteristics. Chem. Eng. J., 2023, 452, 139364.
[http://dx.doi.org/10.1016/j.cej.2022.139364]
[113]
Zhang, J.; Zhang, M.; Dong, Y.; Gu, W.; Liu, T.; Xing, X.; Song, J. Molecular design, supramolecular assembly, and excellent dye adsorption capacity of natural rigid dehydroabietic acid-tailored amide organogelators. Lamgmuir., 2022, 38, 8918-8927.
[http://dx.doi.org/10.1021/acs.langmuir.2c01068]
[114]
Makeiff, D.A.; Cho, J.Y.; Smith, B.; Carlini, R.; Godbert, N. Self-assembly of alkylamido isophthalic acids toward the design of a supergelator: Phase-selective gelation and dye adsorption. Gels, 2022, 8(5), 285.
[http://dx.doi.org/10.3390/gels8050285] [PMID: 35621583]
[115]
Wang, J.T.W.; Rodrigo, A.C.; Patterson, A.K.; Hawkins, K.; Aly, M.M.S.; Sun, J.; Al Jamal, K.T.; Smith, D.K. Enhanced delivery of neuroactive drugs via nasal delivery with a self-healing supramolecular gel. Adv. Sci., 2021, 8(14), 2101058.
[http://dx.doi.org/10.1002/advs.202101058] [PMID: 34029010]
[116]
Bietsch, J.; Olson, M.; Wang, G. Fine-tuning of molecular structures to generate carbohydrate based super gelators and their applications for drug delivery and dye absorption. Gels, 2021, 7(3), 134.
[http://dx.doi.org/10.3390/gels7030134] [PMID: 34563020]
[117]
Liao, L.; Jia, X.; Lou, H.; Zhong, J.; Liu, H.; Ding, S.; Chen, C.; Hong, S.; Luo, X. Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Advances, 2021, 11(19), 11519-11528.
[http://dx.doi.org/10.1039/D1RA00647A] [PMID: 35423629]
[118]
Makeiff, D.A.; Cho, J.Y.; Godbert, N.; Smith, B.; Azyat, K.; Wagner, A.; Kulka, M.; Carlini, R. Supramolecular gels from alkylated benzimidazolone derivatives. J. Mol. Liq., 2021, 339, 116723.
[http://dx.doi.org/10.1016/j.molliq.2021.116723]
[119]
Bordignon, D.; Lonetti, B.; Coudret, C.; Roblin, P.; Joseph, P.; Malaquin, L.; Chalard, A.; Fitremann, J. Wet spinning of a library of carbohydrate low molecular weight gels. J. Colloid Interface Sci., 2021, 603, 333-343.
[http://dx.doi.org/10.1016/j.jcis.2021.06.058] [PMID: 34197983]
[120]
Mondal, S.; Dastidar, P. Designing metallogelators derived from NSAID-based Zn(II) coordination complexes for drug-delivery applications. Chem. Asian J., 2020, 15(21), 3558-3567.
[http://dx.doi.org/10.1002/asia.202000815] [PMID: 32955791]
[121]
Manna, U.; Roy, R.; Datta, H.K.; Dastidar, P. Supramolecular gels from bis-amides of L-phenylalanine: synthesis, structure and material applications. Chem. Asian J., 2022, 17(19), e202200660.
[http://dx.doi.org/10.1002/asia.202200660] [PMID: 35912912]
[122]
Misra, S.; Singh, P.; Das, A.; Brandão, P.; Sahoo, P.; Sepay, N.; Bhattacharjee, G.; Datta, P.; Mahapatra, A.K.; Satpati, B.; Nanda, J. Supramolecular assemblies of a 1,8-naphthalimide conjugate and its aggregation-induced emission property. Mater. Adv., 2020, 1(9), 3532-3538.
[http://dx.doi.org/10.1039/D0MA00584C]
[123]
Zhang, B.; Yu, X.; Li, J.; Wei, K.; Gao, L.; Hu, J. Four-armed biobased glycyrrhizic acid-tailored AIE fluorescent gelator. J. Mol. Struct., 2022, 1258, 132684.
[http://dx.doi.org/10.1016/j.molstruc.2022.132684]
[124]
Alegre-Requena, J.V.; Grijalvo, S.; Sampedro, D.; Mayr, J.; Saldías, C.; Marrero-Tellado, J.J.; Eritja, R.; Herrera, R.P.; Díaz, D.D. Sulfonamide as amide isostere for fine-tuning the gelation properties of physical gels. RSC Advances, 2020, 10(19), 11481-11492.
[http://dx.doi.org/10.1039/D0RA00943A] [PMID: 35495355]
[125]
Gregorić, T.; Makarević, J.; Štefanić, Z.; Žinić, M.; Frkanec, L. Gamma radiation- and ultraviolet-induced polymerization of bis(amino acid)fumaramide gel assemblies. Polymers , 2022, 14(1), 214.
[http://dx.doi.org/10.3390/polym14010214] [PMID: 35012236]
[126]
Gao, A.; Han, Q.; Wang, Q.; Cao, X.; Chang, X.; Zhou, Y. Triphenylamine derivative-based supramolecular self-assembly system for selective sensing methanol via hydrogen bonding. Dyes Pigments, 2021, 195, 109689.
[http://dx.doi.org/10.1016/j.dyepig.2021.109689]
[127]
Ma, L.; Wang, L.; Bai, Y.; Xia, Y.; Li, D.; Yin, B.; Hou, R. Synthesis and properties of supramolecular gels based on tetrathiafulvalene and cyanobiphenyl units. Soft Mater., 2021, 19(2), 243-253.
[http://dx.doi.org/10.1080/1539445X.2020.1821380]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy