Generic placeholder image

Current Probiotics

Editor-in-Chief

ISSN (Print): 2666-6499
ISSN (Online): 2666-6502

Mini-Review Article

Tuberculosis-related Mood Disorders: Probiotics as a Next-Generation Strategy

Author(s): Ankit Bhardwaj* and Rachna Gupta

Volume 1, 2024

Published on: 08 December, 2023

Article ID: e081223224300 Pages: 8

DOI: 10.2174/0126666499221169231123062539

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Tuberculosis-related mood disorders are well-known but least researched. As frequent comorbidity of tuberculosis (TB), depression is linked to poor adherence to treatment for a number of illnesses. The exact causal mechanism and pathways behind TB disease and associated mental illnesses are unclear. The disease's severity and duration impact the occurrence of depression, and MDR-TB enhances this risk. To summarise the information on the association between depression and unfavourable outcomes of TB treatment, we carried out a narrative review.

Objective: The objective of this study is to provide an overview of probiotics as a cutting-edge treatment for mood disorders linked to tuberculosis.

Methods: A systematic stepwise online database research was done for systematic reviews, original studies, and review papers published on probiotics and mental disorders associated with tuberculosis in PubMed/MEDLINE, Google Scholar, and Web of Science. The reference lists for these articles were also used as sources for the bibliography.

Results: The gut microbiota and the brain are connected by neuroendocrine-immune pathways. The diversity and abundance of microbiota Proteobacteria, Actinobacteria Bacteroides, and Firmicutes are reduced in tuberculosis patients. Through the stimulation of different immunological responses or visceral sensory pathways, these changes in the gut microbiome may be a contributing factor in emotional instability and mood disorders. Probiotics also lessen the stress response caused by cortisol, in addition to releasing neurotransmitters, including GABA, serotonin, noradrenaline, acetylcholine, and dopamine, in various brain regions. Probiotics are the most prevalent in the sensory brain network of the brain, which controls the brain's core processing of emotions and sensations. In addition, they produce short-chain fatty acids (SCAFs) from the bacterial fermentation of fibre in the colon, such as butyrate, which inhibits histone deacetylase, binds to G protein-coupled receptors, and serves as an energy metabolite. Butyrate plays a significant role in maintaining brain health by having antimanic and antidepressant effects. Several clinical research on patients with MDD has revealed that probiotics have favourable effects on depressive symptoms.

Conclusion: The central dopamine system, inflammation, the BDNF system, and the gut-brain axis are all recognised to play crucial roles in the pathogenesis of MDD. Commercial probiotics that generate butyrate-producing SCFAs and those resistant to metabolic disorders (such as Bacteroidetes) may be beneficial for tuberculosis-related MDD during and after treatment. In this situation, using bacteria that produce SCFA could be a cutting-edge method of treating clinical MDD.

Keywords: Tuberculosis, mood disorders, gut microbiome, but-brain axis, probiotics, HIV/AIDs.

[1]
Dasa TT, Roba AA, Weldegebreal F, et al. Prevalence and associated factors of depression among tuberculosis patients in Eastern Ethiopia. BMC Psychiatry 2019; 19(1): 82.
[http://dx.doi.org/10.1186/s12888-019-2042-6] [PMID: 30823918]
[2]
Koyanagi A, Vancampfort D, Carvalho AF, et al. Depression comorbid with tuberculosis and its impact on health status: Cross-sectional analysis of community-based data from 48 low- and middle-income countries. BMC Med 2017; 15(1): 209.
[http://dx.doi.org/10.1186/s12916-017-0975-5] [PMID: 29179720]
[3]
Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK. Central nervous system tuberculosis: Pathogenesis and clinical aspects. Clin Microbiol Rev 2008; 21(2): 243-61.
[http://dx.doi.org/10.1128/CMR.00042-07] [PMID: 18400795]
[4]
Ruiz-Grosso P, Rodrigo C, de la Flor A, Alvaro S, Ugarte-Gil C. Association between tuberculosis and depression on negative outcomes of tuberculosis treatment: A systematic review and meta-analysis. PLoS One 2020; 15(1): e0227472.
[5]
Sweetland AC, Kritski A, Oquendo MA, et al. Addressing the tuberculosis-depression syndemic to end the tuberculosis epidemic. Int J Tuberc Lung Dis 2017; 21(8): 852-61.
[6]
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1): 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[7]
Hu Y, Feng Y, Wu J, et al. The gut microbiome signatures discriminate healthy from pulmonary tuberculosis patients. Front Cell Infect Microbiol 2019; 9: 90.
[http://dx.doi.org/10.3389/fcimb.2019.00090] [PMID: 31001490]
[8]
Weiran L, Yu Z, Qiong L, Zhiling W, Chaomin W. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr 2019; 19(1): 445.
[9]
Winglee K, Eloe-Fadrosh E, Gupta S, Guo H, Fraser C, Bishai W. Aerosol mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota. PLoS ONE 2014; 9(5): e97048.
[http://dx.doi.org/10.1371/journal.pone.0097048]
[10]
Wipperman MF, Fitzgerald DW, Antoine M, Juste J, Taur Y, Namasivayam S. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep 2017; 7(1): 10767.
[http://dx.doi.org/10.1038/s41598-017-10346-6]
[11]
Wilkinson R, Lai R, Namasivayam S, Dumas A, Corral D, Colom A. The host microbiota contributes to early protection against lung colonization by mycobacterium tuberculosis. Front Immunol 2018; 9: 2656.
[12]
Perry S, de Jong BC. Infection with helicobacter pylori is associated with protection against tuberculosis. PLoS One 2010; 5(1): e8804.
[13]
Namasivayam S, Kauffman KD, McCulloch JA, et al. Correlation between disease severity and the intestinal microbiome in mycobacterium tuberculosis-infected rhesus macaques. MBio 2019; 10(3): e01018-19.
[http://dx.doi.org/10.1128/mBio.01018-19] [PMID: 31164469]
[14]
Kamila R, Robert FB, Andrea B. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: An individual patient data meta-analysis. Thorax 2019; 74(3): 291-7.
[http://dx.doi.org/10.1136/thoraxjnl-2017-211120]
[15]
Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect 2019; 78(4): 317-22.
[http://dx.doi.org/10.1016/j.jinf.2018.08.006] [PMID: 30107196]
[16]
Luo M, Liu Y, Wu P, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol 2017; 8: 822.
[http://dx.doi.org/10.3389/fphys.2017.00822] [PMID: 29204120]
[17]
Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders. Ann Med 2020; 52(8): 423-43.
[http://dx.doi.org/10.1080/07853890.2020.1808239] [PMID: 32772900]
[18]
Filatova EV, Shadrina MI, Slominsky PA. Major depression: One brain, one disease, one set of intertwined processes. Cells 2021; 10(6)
[19]
Mori G, Morrison M, Blumenthal A. Microbiome-immune interactions in tuberculosis. PLoS Pathog 2021; 17(4): e1009377.
[http://dx.doi.org/10.1371/journal.ppat.1009377] [PMID: 33857251]
[20]
Huang SF, Yang YY, Chou KT, Fung CP, Wang FD, Su WJ. Systemic proinflammation after Mycobacterium tuberculosis infection was correlated to the gut microbiome in HIV‐uninfected humans. Eur J Clin Invest 2019; 49(5): e13068.
[http://dx.doi.org/10.1111/eci.13068] [PMID: 30620398]
[21]
Krishna P, Jain A, Bisen PS. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis 2016; 35(7): 1205-10.
[http://dx.doi.org/10.1007/s10096-016-2654-4] [PMID: 27142586]
[22]
Cadena AM, Ma Y, Ding T, et al. Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome 2018; 6(1): 180.
[http://dx.doi.org/10.1186/s40168-018-0560-y] [PMID: 30301469]
[23]
Gárate I, Garcia-Bueno B, Madrigal JLM, et al. Stress-induced neuroinflammation: Role of the Toll-like receptor-4 pathway. Biol Psychiatry 2013; 73(1): 32-43.
[http://dx.doi.org/10.1016/j.biopsych.2012.07.005] [PMID: 22906518]
[24]
Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci 2008; 105(44): 17151-6.
[http://dx.doi.org/10.1073/pnas.0806682105] [PMID: 18955701]
[25]
Donato KA, Gareau MG, Wang YJJ, Sherman PM. Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 2010; 156(11): 3288-97.
[http://dx.doi.org/10.1099/mic.0.040139-0] [PMID: 20656777]
[26]
Zareie M, Johnson-Henry K, Jury J, et al. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 2006; 55(11): 1553-60.
[http://dx.doi.org/10.1136/gut.2005.080739] [PMID: 16638791]
[27]
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[28]
Gudmundsson P, Skoog I, Waern M, et al. The relationship between cerebrospinal fluid biomarkers and depression in elderly women. Am J Geriatr Psychiatry 2007; 15(10): 832-8.
[http://dx.doi.org/10.1097/JGP.0b013e3180547091] [PMID: 17911361]
[29]
Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner HG. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: Identification of subgroups with immune responses and blood–CSF barrier dysfunction. J Psychiatr Res 2010; 44(5): 321-30.
[http://dx.doi.org/10.1016/j.jpsychires.2009.08.008] [PMID: 19796773]
[30]
Hattori K, Ota M, Sasayama D, et al. Increased cerebrospinal fluid fibrinogen in major depressive disorder. Sci Rep 2015; 5(1): 11412.
[http://dx.doi.org/10.1038/srep11412] [PMID: 26081315]
[31]
Lyte M. The role of microbial endocrinology in infectious disease. J Endocrinol 1993; 137(3): 343-5.
[http://dx.doi.org/10.1677/joe.0.1370343] [PMID: 8371072]
[32]
Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014; 146(6): 1500-12.
[http://dx.doi.org/10.1053/j.gastro.2014.02.037] [PMID: 24583088]
[33]
Santos J, Saperas E, Nogueiras C, et al. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 1998; 114(4): 640-8.
[http://dx.doi.org/10.1016/S0016-5085(98)70577-3] [PMID: 9516384]
[34]
Stephens RL, Tache Y. Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats. Am J Physiol 1989; 256(2 Pt 1): G377-83.
[PMID: 2493198]
[35]
Yang H, Stephens RL, Taché Y. TRH analogue microinjected into specific medullary nuclei stimulates gastric serotonin secretion in rats. Am J Physiol 1992; 262(2 Pt 1): G216-22.
[PMID: 1539656]
[36]
Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: A bacterial adrenergic receptor. Proc Natl Acad Sci 2006; 103(27): 10420-5.
[http://dx.doi.org/10.1073/pnas.0604343103] [PMID: 16803956]
[37]
Lyte M. The role of catecholamines in Gram-negative sepsis. Med Hypotheses 1992; 37(4): 255-8.
[http://dx.doi.org/10.1016/0306-9877(92)90197-K] [PMID: 1625603]
[38]
Alverdy J, Holbrook C, Rocha F, et al. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: Evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 2000; 232(4): 480-9.
[http://dx.doi.org/10.1097/00000658-200010000-00003] [PMID: 10998646]
[39]
Hughes DT, Sperandio V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6(2): 111-20.
[http://dx.doi.org/10.1038/nrmicro1836] [PMID: 18197168]
[40]
Cogan TA, Thomas AO, Rees LEN, et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 2007; 56(8): 1060-5.
[http://dx.doi.org/10.1136/gut.2006.114926] [PMID: 17185353]
[41]
Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: Catecholamines and mucosa–bacteria interactions. Cell Tissue Res 2011; 343(1): 23-32.
[http://dx.doi.org/10.1007/s00441-010-1050-0] [PMID: 20941511]
[42]
Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics History. J Clin Gastroenterol 2016; 50(S2): S116-9.
[http://dx.doi.org/10.1097/MCG.0000000000000697] [PMID: 27741152]
[43]
McFarland LV. From yaks to yogurt: The history, development, and current use of probiotics. Clin Infect Dis 2015; 60(S2): S85-90.
[http://dx.doi.org/10.1093/cid/civ054] [PMID: 25922406]
[44]
Zucko J, Starcevic A, Diminic J, Oros D, Mortazavian AM, Putnik P. Probiotic – friend or foe? Curr Opin Food Sci 2020; 32: 45-9.
[http://dx.doi.org/10.1016/j.cofs.2020.01.007]
[45]
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: Conceptualization from a new approach. Curr Opin Food Sci 2020; 32: 103-23.
[http://dx.doi.org/10.1016/j.cofs.2020.03.009]
[46]
Dinan TG, Stanton C, Cryan JF. Psychobiotics: A novel class of psychotropic. Biol Psychiatry 2013; 74(10): 720-6.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.001] [PMID: 23759244]
[47]
Lopez M, Li N, Kataria J, Russell M, Neu J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J Nutr 2008; 138(11): 2264-8.
[http://dx.doi.org/10.3945/jn.108.093658] [PMID: 18936229]
[48]
Ostad SN, Salarian AA, Ghahramani MH, Fazeli MR, Samadi N, Jamalifar H. Live and heat-inactivated lactobacilli from feces inhibit Salmonella typhi and Escherichia coli adherence to caco-2 cells. Folia Microbiol 2009; 54(2): 157-60.
[http://dx.doi.org/10.1007/s12223-009-0024-7] [PMID: 19418255]
[49]
Sun J, Wang F, Hong G, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 2016; 618: 159-66.
[http://dx.doi.org/10.1016/j.neulet.2016.03.003] [PMID: 26957230]
[50]
Halloran K, Underwood MA. Probiotic mechanisms of action. Early Hum Dev 2019; 135: 58-65.
[http://dx.doi.org/10.1016/j.earlhumdev.2019.05.010] [PMID: 31174927]
[51]
Principi N, Cozzali R, Farinelli E, Brusaferro A, Esposito S. Gut dysbiosis and irribowel syndrome: The potential role of probiotics. J Infect 2018; 76(2): 111-20.
[http://dx.doi.org/10.1016/j.jinf.2017.12.013] [PMID: 29291933]
[52]
Rogers GB, Keating DJ, Young RL, Wong M-L, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21(6): 738-48.
[http://dx.doi.org/10.1038/mp.2016.50] [PMID: 27090305]
[53]
de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017; 152(1): 1-12.
[http://dx.doi.org/10.1111/imm.12765] [PMID: 28556916]
[54]
Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J 2012; 279(8): 1356-65.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08485.x] [PMID: 22248144]
[55]
Guillemin GJ, Brew BJ. Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 2002; 7(4): 199-206.
[http://dx.doi.org/10.1179/135100002125000550] [PMID: 12396664]
[56]
Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012; 37(1): 137-62.
[http://dx.doi.org/10.1038/npp.2011.205] [PMID: 21918508]
[57]
Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y, Nagai K. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 2005; 389(2): 109-14.
[http://dx.doi.org/10.1016/j.neulet.2005.07.036] [PMID: 16118039]
[58]
Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 2001; 281(4): G907-15.
[http://dx.doi.org/10.1152/ajpgi.2001.281.4.G907] [PMID: 11557510]
[59]
Boesmans L, Valles-Colomer M, Wang J, et al. Butyrate producers as potential next-generation probiotics: safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. mSystems 2018; 3(6): e00094-18.
[http://dx.doi.org/10.1128/mSystems.00094-18] [PMID: 30417112]
[60]
Paulose JK, Wright JM, Patel AG, Cassone VM. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One 2016; 11(1): e0146643.
[http://dx.doi.org/10.1371/journal.pone.0146643] [PMID: 26751389]
[61]
Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014; 159(3): 514-29.
[http://dx.doi.org/10.1016/j.cell.2014.09.048] [PMID: 25417104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy