Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Strategies to Minimize Access Site-related Complications in Patients Undergoing Transfemoral Artery Procedures with Large-bore Devices

Author(s): Sabato Sorrentino*, Assunta Di Costanzo, Nadia Salerno, Alessandro Caracciolo, Federica Bruno, Alessandra Panarello, Antonio Bellantoni, Annalisa Mongiardo and Ciro Indolfi

Volume 22, Issue 2, 2024

Published on: 08 December, 2023

Page: [79 - 87] Pages: 9

DOI: 10.2174/0115701611233184231206100222

Price: $65

conference banner
Abstract

Large bore accesses refer to accesses with a diameter of 10 French or greater and are necessary for various medical devices, including those used in transcatheter aortic valve replacement, endovascular aneurysm repair stent-grafts, and percutaneous mechanical support devices. Notably, the utilization of these devices via femoral access is steadily increasing due to advancements in technology and implantation techniques, which are expanding the pool of patients suitable for percutaneous procedures. However, procedures involving large bore devices carry a high risk of bleeding and vascular complications (VCs), impacting both morbidity and long-term mortality.

In this review article, we will first discuss the incidence, determinants, and prognostic impact of VCs in patients undergoing large bore access procedures. Subsequently, we will explore the strategies developed in recent years to minimize VCs, including techniques for optimizing vascular puncture through femoral cannulation, such as the use of echo-guided access cannulation and fluoroscopic guidance. Additionally, we will evaluate existing vascular closure devices designed for large bore devices. Finally, we will consider new pharmacological strategies aimed at reducing the risk of periprocedural access-related bleeding.

Keywords: Large bore access procedures, vascular complications, femoral access, artery procedures, morbidity, long-term mortality.

Graphical Abstract
[1]
Hengstenberg C, Chandrasekhar J, Sartori S, et al. Impact of pre-existing or new-onset atrial fibrillation on 30-day clinical outcomes following transcatheter aortic valve replacement: Results from the BRAVO 3 randomized trial. Catheter Cardiovasc Interv 2017; 90(6): 1027-37.
[http://dx.doi.org/10.1002/ccd.27155] [PMID: 28493641]
[2]
Guedeney P, Chieffo A, Snyder C, et al. Impact of baseline atrial fibrillation on outcomes among women who underwent contemporary transcatheter aortic valve implantation (from the Win-TAVI Registry). Am J Cardiol 2018; 122(11): 1909-16.
[http://dx.doi.org/10.1016/j.amjcard.2018.08.036] [PMID: 30318417]
[3]
Sorrentino S, Giustino G, Moalem K, Indolfi C, Mehran R, Dangas GD. Antithrombotic treatment after transcatheter heart valves implant. Semin Thromb Hemost 2018; 44(1): 38-45.
[http://dx.doi.org/10.1055/s-0037-1607457]
[4]
Polimeni A, Sorrentino S, De Rosa S, et al. Transcatheter versus surgical aortic valve replacement in low-risk patients for the treatment of severe aortic stenosis. J Clin Med 2020; 9(2): 439.
[http://dx.doi.org/10.3390/jcm9020439] [PMID: 32041189]
[5]
Cheney AE, McCabe JM. Alternative percutaneous access for large bore devices. Circ Cardiovasc Interv 2019; 12(6): e007707.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.118.007707]
[6]
Piccolo R, Pilgrim T, Franzone A, et al. Frequency, timing, and impact of access-site and non-access-site bleeding on mortality among patients undergoing transcatheter aortic valve replacement. JACC Cardiovasc Interv 2017; 10(14): 1436-46.
[http://dx.doi.org/10.1016/j.jcin.2017.04.034] [PMID: 28728657]
[7]
Carroll JD, Mack MJ, Vemulapalli S, et al. STS-ACC TVT registry of transcatheter aortic valve replacement. J Am Coll Cardiol 2020; 76(21): 2492-516.
[http://dx.doi.org/10.1016/j.jacc.2020.09.595] [PMID: 33213729]
[8]
Le May M, Wells G, So D, et al. Safety and efficacy of femoral access vs. radial access in ST-segment elevation myocardial infarction. JAMA Cardiol 2020; 5(2): 126-34.
[http://dx.doi.org/10.1001/jamacardio.2019.4852] [PMID: 31895439]
[9]
Ortiz D, Jahangir A, Singh M, Allaqaband S, Bajwa TK, Mewissen MW. Access site complications after peripheral vascular interventions. Circ Cardiovasc Interv 2014; 7(6): 821-8.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001306]
[10]
Hayıroğlu Mİ , Çınar T , Bıçakçı B , et al. Predictors of femoral hematoma in patients undergoing elective coronary procedure: A trigonometric evaluation. Int J Cardiovasc Imaging 2018; 34(8): 1177-84.
[http://dx.doi.org/10.1007/s10554-018-1339-8] [PMID: 29550904]
[11]
Linke A, Chandrasekhar J, Sartori S, et al. Effect of valve design and anticoagulation strategy on 30-day clinical outcomes in transcatheter aortic valve replacement: Results from the BRAVO 3 randomized trial. Catheter Cardiovasc Interv 2017; 90(6): 1016-26.
[http://dx.doi.org/10.1002/ccd.27154] [PMID: 28498562]
[12]
Auffret V, Ridard C, Salerno N, Sorrentino S. Unmet needs in TAVR: Conduction disturbances and management of coronary artery disease. J Clin Med 2022; 11(21): 6256.
[http://dx.doi.org/10.3390/jcm11216256] [PMID: 36362484]
[13]
Crimi G, De Marzo V, De Marco F, et al. Acute kidney injury after transcatheter aortic valve replacement mediates the effect of chronic kidney disease. J Am Heart Assoc 2022; 11(19): e024589.
[http://dx.doi.org/10.1161/JAHA.121.024589] [PMID: 36172945]
[14]
Auffret V, Lefevre T, Van Belle E, et al. Temporal trends in transcatheter aortic valve replacement in France. J Am Coll Cardiol 2017; 70(1): 42-55.
[http://dx.doi.org/10.1016/j.jacc.2017.04.053] [PMID: 28662806]
[15]
Costa G, D’Errigo P, Rosato S, et al. One-year outcomes and trends over two eras of transcatheter aortic valve implantation in real-world practice. J Clin Med 2022; 11(5): 1164.
[http://dx.doi.org/10.3390/jcm11051164] [PMID: 35268255]
[16]
Généreux P, Webb JG, Svensson LG, et al. Vascular complications after transcatheter aortic valve replacement: Insights from the PARTNER (Placement of AoRTic TraNscathetER Valve) trial. J Am Coll Cardiol 2012; 60(12): 1043-52.
[http://dx.doi.org/10.1016/j.jacc.2012.07.003] [PMID: 22883632]
[17]
Rahhab Z, Ramdat Misier K, El Faquir N, et al. Vascular complications after transfemoral transcatheter aortic valve implantation: A systematic review and meta-analysis. Struct Heart 2020; 4(1): 62-71.
[http://dx.doi.org/10.1080/24748706.2019.1694730]
[18]
Avvedimento M, Nuche J, Farjat-Pasos JI, Rodés-Cabau J. Bleeding events after transcatheter aortic valve replacement. J Am Coll Cardiol 2023; 81(7): 684-702.
[http://dx.doi.org/10.1016/j.jacc.2022.11.050] [PMID: 36792284]
[19]
Sorrentino S, Sartori S, Baber U, et al. Bleeding risk, dual antiplatelet therapy cessation, and adverse events after percutaneous coronary intervention: The PARIS registry. Circ Cardiovasc Interv 2020; 13(4): e008226.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.119.008226] [PMID: 32216472]
[20]
Sorrentino S, Baber U, Claessen B, et al. Determinants of significant out-of-hospital bleeding in patients undergoing percutaneous coronary intervention. Thromb Haemost 2018; 118(11): 1997-2005.
[http://dx.doi.org/10.1055/s-0038-1673687] [PMID: 30312975]
[21]
Avvedimento M, Real C, Nuche J, et al. Incidence, predictors, and prognostic impact of bleeding events after TAVR according to VARC-3 criteria. JACC Cardiovasc Interv 2023; 16(18): 2262-74.
[http://dx.doi.org/10.1016/j.jcin.2023.07.005] [PMID: 37676226]
[22]
Dwivedi K, Regi JM, Cleveland TJ, et al. Long-term evaluation of percutaneous groin access for EVAR. Cardiovasc Intervent Radiol 2019; 42(1): 28-33.
[http://dx.doi.org/10.1007/s00270-018-2072-3] [PMID: 30288590]
[23]
Vatakencherry G, Molloy C, Sheth N, Liao M, Lam CK. Percutaneous access planning, techniques and considerations for endovascular aortic repair (EVAR). Cardiovasc Diagn Ther 2018; 8(S1): S184-S18S190.
[24]
Chaikof EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA. The society for vascular surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 2018; 67(1): 2-77.e2.
[25]
Nelson PR, Kracjer Z, Kansal N, et al. A multicenter, randomized, controlled trial of totally percutaneous access versus open femoral exposure for endovascular aortic aneurysm repair (the PEVAR trial). J Vasc Surg 2014; 59(5): 1181-93.
[http://dx.doi.org/10.1016/j.jvs.2013.10.101] [PMID: 24440678]
[26]
Dosluoglu HH, Cherr GS, Harris LM, Dryjski ML. Total percutaneous endovascular repair of abdominal aortic aneurysms using Perclose ProGlide closure devices. J Endovasc Ther 2007; 14(2): 184-8.
[http://dx.doi.org/10.1177/152660280701400210] [PMID: 17484534]
[27]
O’Donnell TFX, Deery SE, Boitano LT, et al. The long-term implications of access complications during endovascular aneurysm repair. J Vasc Surg 2021; 73(4): 1253-60.
[http://dx.doi.org/10.1016/j.jvs.2020.08.033] [PMID: 32889076]
[28]
Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care. J Am Coll Cardiol 2015; 65(19): e7-e26.
[http://dx.doi.org/10.1016/j.jacc.2015.03.036] [PMID: 25861963]
[29]
Lemor A, Dabbagh MF, Cohen D, et al. Rates and impact of vascular complications in mechanical circulatory support. Catheter Cardiovasc Interv 2022; 99(5): 1702-11.
[http://dx.doi.org/10.1002/ccd.30150] [PMID: 35266287]
[30]
Cheng R, Hachamovitch R, Kittleson M, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1,866 adult patients. Ann Thorac Surg 2014; 97(2): 610-6.
[http://dx.doi.org/10.1016/j.athoracsur.2013.09.008] [PMID: 24210621]
[31]
Thiele H, Jobs A, Ouweneel DM, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: A systematic review and collaborative meta-analysis of randomized trials. Eur Heart J 2017; 38(47): 3523-31.
[http://dx.doi.org/10.1093/eurheartj/ehx363] [PMID: 29020341]
[32]
Sef D, Kabir T, Lees NJ, Stock U. Valvular complications following the Impella device implantation. J Card Surg 2021; 36(3): 1062-6.
[http://dx.doi.org/10.1111/jocs.15303] [PMID: 33410194]
[33]
Ancona MB, Montorfano M, Masiero G, et al. Device-related complications after Impella mechanical circulatory support implantation: An IMP-IT observational multicentre registry substudy. Eur Heart J Acute Cardiovasc Care 2021; 10(9): 999-1006.
[http://dx.doi.org/10.1093/ehjacc/zuab051] [PMID: 34389852]
[34]
Sandoval Y, Burke MN, Lobo AS, et al. Contemporary arterial access in the cardiac catheterization laboratory. JACC Cardiovasc Interv 2017; 10(22): 2233-41.
[http://dx.doi.org/10.1016/j.jcin.2017.08.058] [PMID: 29169493]
[35]
Sorrentino S, Nguyen P, Salerno N, et al. Standard versus ultrasound-guided cannulation of the femoral artery in patients undergoing invasive procedures: A meta-analysis of randomized controlled trials. J Clin Med 2020; 9(3): 677.
[http://dx.doi.org/10.3390/jcm9030677] [PMID: 32138283]
[36]
Seto AH, Abu-Fadel MS, Sparling JM, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovasc Interv 2010; 3(7): 751-8.
[http://dx.doi.org/10.1016/j.jcin.2010.04.015] [PMID: 20650437]
[37]
Nguyen P, Makris A, Hennessy A, Jayanti S, Wang A, Park K. Standard versus ultrasound-guided radial and femoral access in coronary angiography and intervention (SURF): A randomised controlled trial. EuroIntervention 2019; 15: e522-30.
[38]
Jolly SS, AlRashidi S, d’Entremont MA, et al. Routine ultrasonography guidance for femoral vascular access for cardiac procedures. JAMA Cardiol 2022; 7(11): 1110-8.
[http://dx.doi.org/10.1001/jamacardio.2022.3399] [PMID: 36116089]
[39]
Kotronias RA, Bray JJH, Rajasundaram S, et al. Ultrasound- versus fluoroscopy-guided strategy for transfemoral transcatheter aortic valve replacement access: A systematic review and meta-analysis. Circ Cardiovasc Interv 2021; 14(10): e010742.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.121.010742] [PMID: 34538068]
[40]
Meijers TA, Nap A, Aminian A, et al. ULTrasound-guided TRAnsfemoral puncture in COmplex Large bORe PCI: Study protocol of the UltraCOLOR trial. BMJ Open 2022; 12(12): e065693.
[http://dx.doi.org/10.1136/bmjopen-2022-065693] [PMID: 36456007]
[41]
Xenogiannis I, Varlamos C, Keeble TR, Kalogeropoulos AS, Karamasis GV. Ultrasound-guided femoral vascular access for percutaneous coronary and structural interventions. Diagnostics 2023; 13(12): 2028.
[http://dx.doi.org/10.3390/diagnostics13122028]
[42]
Sergie Z, Lefèvre T, Van Belle E, et al. Current periprocedural anticoagulation in transcatheter aortic valve replacement: Could bivalirudin be an option? Rationale and design of the BRAVO 2/3 studies. J Thromb Thrombolysis 2013; 35(4): 483-93.
[http://dx.doi.org/10.1007/s11239-013-0890-3] [PMID: 23553245]
[43]
Guedeney P, Sorrentino S, Mesnier J, et al. Single versus dual antiplatelet therapy following TAVR. JACC Cardiovasc Interv 2021; 14(2): 234-6.
[http://dx.doi.org/10.1016/j.jcin.2020.10.016] [PMID: 33478644]
[44]
Guedeney P, Roule V, Mesnier J, et al. Antithrombotic therapy and cardiovascular outcomes after transcatheter aortic valve implantation in patients without indications for chronic oral anticoagulation: A systematic review and network meta-analysis of randomized controlled trials. Eur Heart J Cardiovasc Pharmacother 2023; 9(3): 251-61.
[http://dx.doi.org/10.1093/ehjcvp/pvad003] [PMID: 36640149]
[45]
Holmes DR Jr, Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol 2012; 59(13): 1200-54.
[http://dx.doi.org/10.1016/j.jacc.2012.01.001] [PMID: 22300974]
[46]
Al-Kassou B, Kandt J, Lohde L, et al. Safety and efficacy of protamine administration for prevention of bleeding complications in patients undergoing TAVR. JACC Cardiovasc Interv 2020; 13(12): 1471-80.
[http://dx.doi.org/10.1016/j.jcin.2020.03.041] [PMID: 32553337]
[47]
Al-Kassou B, Veulemans V, Shamekhi J, Maier O, Piayda K, Zeus T. Optimal protamine-to-heparin dosing ratio for the prevention of bleeding complications in patients undergoing TAVR—A multicenter experience. Clin Cardiol 2023; 46(1): 67-75.
[http://dx.doi.org/10.1002/clc.23936] [PMID: 36259730]
[48]
Zbroński K , Grodecki K , Gozdowska R , et al. Use of protamine sulfate during transfemoral transcatheter aortic valve implantation - a preliminary assessment of administration rate and impact on complications. Postepy Kardiol Interwencyjnej 2020; 16(3): 306-14.
[http://dx.doi.org/10.5114/aic.2020.99266] [PMID: 33597996]
[49]
Mohammed M, Nona P, Abou Asala E, Chiang M, Lemor A, O’Neill B. Preclosure of large bore venous access sites in patients undergoing transcatheter mitral replacement and repair. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv 2022; 100(1): 163-8.
[http://dx.doi.org/10.1002/ccd.30229]
[50]
Noori VJ, Eldrup-Jørgensen J. A systematic review of vascular closure devices for femoral artery puncture sites. J Vasc Surg 2018; 68(3): 887-99.
[http://dx.doi.org/10.1016/j.jvs.2018.05.019] [PMID: 30146036]
[51]
Power D, Schäfer U, Guedeney P, et al. Impact of percutaneous closure device type on vascular and bleeding complications after TAVR: A post hoc analysis from the BRAVO-3 randomized trial. Catheter Cardiovasc Interv 2019; 93(7): 1374-81.
[http://dx.doi.org/10.1002/ccd.28295] [PMID: 31116908]
[52]
Maniotis C, Andreou C, Karalis I, Koutouzi G, Agelaki M, Koutouzis M. A systematic review on the safety of Prostar XL versus ProGlide after TAVR and EVAR. Cardiovasc Revasc Med 2017; 18(2): 145-50.
[http://dx.doi.org/10.1016/j.carrev.2016.11.004] [PMID: 27887905]
[53]
Berti S, Bedogni F, Giordano A, et al. Efficacy and safety of proglide versus prostar XL vascular closure devices in transcatheter aortic valve replacement: The RISPEVA registry. J Am Heart Assoc 2020; 9(21): e018042.
[http://dx.doi.org/10.1161/JAHA.120.018042] [PMID: 33103545]
[54]
Lennart van G , Joost D, Greg W. MANTA, a novel plug-based vascular closure device for large bore arteriotomies: Technical report. EuroIntervention 2016; 12(7): 896-900.
[55]
van Wiechen MP, Tchétché D, Ooms JF, et al. Suture- or plug-based large-bore arteriotomy closure. JACC Cardiovasc Interv 2021; 14(2): 149-57.
[http://dx.doi.org/10.1016/j.jcin.2020.09.052] [PMID: 33358648]
[56]
Abdel-Wahab M, Hartung P, Dumpies O, et al. Comparison of a pure plug-based versus a primary suture-based vascular closure device strategy for transfemoral transcatheter aortic valve replacement: The CHOICE-CLOSURE randomized clinical trial. Circulation 2022; 145(3): 170-83.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.057856] [PMID: 34738828]
[57]
Montalto C, Munafò AR, Arzuffi L, Soriano F, Mangieri A, Nava S. Large-bore arterial access closure after transcatheter aortic valve replacement: A systematic review and network meta-analysis Eur Heart J Open 2022; 2(4): oeac043.
[http://dx.doi.org/10.1093/ehjopen/oeac043]
[58]
Costa G, Valvo R, Picci A, Criscione E, Reddavid C, Motta S. An upfront combined strategy for endovascular haemostasis in transfemoral transcatheter aortic valve implantation. EuroIntervention 2021; 17: 728-35.
[59]
Miyashita H, Moriyama N, Dahlbacka S, Vähäsilta T, Vainikka T, Jalanko M. Ultrasound-guided versus conventional manta vascular closure device deployment after transcatheter aortic valve implantation. Am J Cardiol 2022; 180: 116-23.
[http://dx.doi.org/10.1016/j.amjcard.2022.06.046]
[60]
Hayıroğlu Mİ Altay S. The Role of Artificial Intelligence in Coronary Artery Disease and Atrial Fibrillation. Balkan Med J 2023; 40(3): 151-2.
[http://dx.doi.org/10.4274/balkanmedj.galenos.2023.06042023] [PMID: 37025078]
[61]
Suh SH, Kim HH, Choi YH, Lee JS. Computational fluid dynamic modeling of femoral artery pseudoaneurysm. J Mech Sci Technol 2012; 26(12): 3865-72.
[http://dx.doi.org/10.1007/s12206-012-1012-4]
[62]
Kim HH, Kim KW, Lee C, Choi YH, Kim MU, Baba Y. Percutaneous thrombin injection based on computational fluid dynamics of femoral artery pseudoaneurysms. Korean J Radiol 2021; 22(11): 1834-40.
[http://dx.doi.org/10.3348/kjr.2020.1340] [PMID: 34402241]
[63]
Feaugas T, Newman G, Calzuola ST, Domingues A, Arditi W, Porrini C. Design of artificial vascular devices: Hemodynamic evaluation of shear-induced thrombogenicity. Front Mech Eng 2023; 9.
[64]
Sakariassen KS, Orning L, Turitto VT. The impact of blood shear rate on arterial thrombus formation Future Sci OA 2015; 1(4): fso.15.28..
[http://dx.doi.org/10.4155/fso.15.28] [PMID: 28031903]
[65]
Denardo SJ, Denardo BC, Carpinone PL, et al. Validated model of platelet slip at stenosis and device surfaces. Platelets 2020; 31(3): 373-82.
[http://dx.doi.org/10.1080/09537104.2019.1636021] [PMID: 31311384]
[66]
Chiastra C, Mazzi V, Lodi Rizzini M, et al. Coronary artery stenting affects wall shear stress topological skeleton. J Biomech Eng 2022; 144(6): 061002.
[http://dx.doi.org/10.1115/1.4053503] [PMID: 35015058]
[67]
Sorrentino S, De Rosa S, Ambrosio G, et al. The duration of balloon inflation affects the luminal diameter of coronary segments after bioresorbable vascular scaffolds deployment. BMC Cardiovasc Disord 2015; 15(1): 169.
[http://dx.doi.org/10.1186/s12872-015-0163-5] [PMID: 26654975]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy