Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

The Role of Polar Optical Modes in Wide Bandgap Semiconductor Quantum Structures

Author(s): V.N. Stavrou*, I.G. Tsoulos and N.E. Mastorakis

Volume 21, Issue 1, 2025

Published on: 04 December, 2023

Page: [18 - 23] Pages: 6

DOI: 10.2174/0115734137269114231121072631

Price: $65

Abstract

In this paper, the interface polariton (IP), the confined (CF) modes in nanostructures made with wide bandgap semiconductors, as well as their contributions to the carrier scattering mechanism have been investigated. An asymmetric quantum well (AQW) made with ZnSe/CdSe/ZnS has been studied. More specifically, the dielectric continuum (DC) model has been employed to describe both the IP and the CF modes. Additionally, the Fermi golden rule has been used to estimate the electron transition rate within the asymmetric structure. Our numerical results show that the scattering rate for an electron which is localized at the bottom of the first subband above the well and drops within the quantum well, is characterized by regular peaks with an almost linear increase as the size of the QW increases. The emerge peaks are related to two different physical characteristics of the AQW system. These peaks are related to electron resonances and the threshold phonon emission (both CF and IP) called phonon resonances. The scattering rate of an electron which is localized at the bottom of the second subband above the well and makes transitions to all possible states within the quantum well gives only rise to phonon resonances. The research highlights the importance of the CF and IP modes on transition rates and their dependence on both the size of the quantum well and the asymmetry of the barrier materials.

PACS: 68.65.Fg, 74.25.Kc, 63.22.−m, 63.22.+m

Keywords: Capture, LO phonons, asymmetric quantum wells, wide bandgap semiconductors, electron and phonons resonances, barrier materials, scattering mechanism, dielectric continuum.

[1]
(a) Gargoubi, H.; Guillet, T.; Jaziri, S.; Balti, J.; Guizal, B. Polariton condensation threshold investigation through the numerical resolution of the generalized Gross-Pitaevskii equation. Phys. Rev. E, 2016, 94(4), 043310.
[http://dx.doi.org/10.1103/PhysRevE.94.043310];
(b) Tikhonova, O.V.; Voronina, E.N. Transfer of correlations from photons to electron excitations and currents induced in semiconductor quantum wells by non-classical twisted light. J. Phys: Condens. Matter., 2022, 34, 065302.;
(c) Alekseev, P.S.; Kipa, M.S.; Perel, V.I.; Yassievich, I. Cascade theory of electron capture in quantum wells. J. Exp. Theor. Phys., 2008, 106, 806-818.;
(d) Iorsh, I V; Kibis, O V Optically induced Kondo effect in semiconductor quantum wells. J Phys Condens Matter., 2021, 33(49)
[http://dx.doi.org/10.1088/1361-648X/ac28c2]
[2]
Tsai, C.L.; Wu, W.C. Effects of asymmetric quantum wells on the structural and optical properties of InGaN-Based light-emitting diodes. Materials, 2014, 7(5), 3758-3771.
[http://dx.doi.org/10.3390/ma7053758] [PMID: 28788647]
[3]
Liu, Z.; Wang, J.; Yu, H.; Zhou, X.; Chen, W.; Li, Z.; Wang, W.; Ding, Y.; Pan, J. Asymmetric quantum well broadband thyristor laser. J. Semicond., 2017, 38(11), 114006.
[http://dx.doi.org/10.1088/1674-4926/38/11/114006]
[4]
Zhang, C.; Min, C.; Zhao, B. Optical absorption coefficients in asymmetric quantum well. Phys. Lett. A, 2019, 383(34), 125983.
[http://dx.doi.org/10.1016/j.physleta.2019.125983]
[5]
Guliyev, B.; Kerimli, G.; Bashirov, N. Fermi energy and electron thermopower in quantum films of an asymmetric profile. Zhongguo Wuli Xuekan, 2019, 59, 110-116.
[http://dx.doi.org/10.1016/j.cjph.2019.02.021]
[6]
Zhang, L. Dispersions of quasi-confined optical phonon modes and their electron–phonon interactions in an asymmetric wurtzite AlxGa1−xN/GaN/AlyGa1−yN quantum well. Superlattices Microstructures, 2006, 40, 144-154. Li, Z; Jun-Jie, S Vibration spectra of quasi-confined optical phonon modes in an asymmetric wurtzite AlxGa1−xN/GaN/AlyGa1−yN Quantum Well. Commum. Theor. Phys., 2007, 47, 349.
[7]
Tian, S.C.; Wan, R.G.; Wang, L.J.; Shu, S.L.; Lu, H.Y.; Zhang, X.; Tong, C.Z.; Xiao, M.; Wang, L.J. Parity-time symmetry in coherent asymmetric double quantum wells. Sci. Rep., 2019, 9(1), 2607.
[http://dx.doi.org/10.1038/s41598-019-39085-6] [PMID: 30796302]
[8]
Majchrowski, K.; Paśko, W.; Tralle, I. Photo-galvanic effect in asymmetric quantum wells. J. Phys. Conf. Ser., 2010, 213, 012033.
[http://dx.doi.org/10.1088/1742-6596/213/1/012033]
[9]
Gorbatsevich, A. A.; Kapaev, V. V.; Yu, V. Asymmetric nanostructures in a magnetic field. JETP Lett., 1993, 57, 580-585.
[10]
Rosencher, E.; Bois, P. Model system for optical nonlinearities: Asymmetric quantum wells. Phys. Rev. B Condens. Matter, 1991, 44(20), 11315-11327.
[http://dx.doi.org/10.1103/PhysRevB.44.11315] [PMID: 9999255]
[11]
Arulmozhi, R.; Peter, A.J.; Lee, C.W. Optical absorption in a CdS/CdSe/CdS asymmetric quantum well. Chem. Phys. Lett., 2020, 742, 137129.
[http://dx.doi.org/10.1016/j.cplett.2020.137129]
[12]
Yang, L.; Li, Y.; Wang, Y.; Xu, S.; Hao, Y. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes. J. Appl. Phys., 2016, 119(16), 164501.
[http://dx.doi.org/10.1063/1.4948331]
[13]
Dmitri, V.; Mekis, I.; Gotzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core−shell−shell nanocrystals. J. Phys. Chem. B, 2004, 108, 18826-18831.
[14]
Lu, Y.F.; Cao, X.A. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells. Appl. Phys. Lett., 2014, 105(20), 203101.
[http://dx.doi.org/10.1063/1.4902109]
[15]
Eldridge, P.S.; Leyland, W.J.H.; Lagoudakis, P.G.; Harley, R.T.; Phillips, R.T.; Winkler, R.; Henini, M.; Taylor, D. Rashba spin-splitting of electrons in asymmetric quantum wells. Phys. Rev. B Condens. Matter Mater. Phys., 2010, 82(4), 045317.
[http://dx.doi.org/10.1103/PhysRevB.82.045317]
[16]
Ge, J.P.; Xu, S.; Zhuang, J.; Wang, X.; Peng, Q.; Li, Y.D. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures. Inorg. Chem., 2006, 45(13), 4922-4927.
[http://dx.doi.org/10.1021/ic051598k] [PMID: 16780313]
[17]
Čapek, R.K.; Lambert, K.; Dorfs, D.; Smet, P.F.; Poelman, D.; Eychmüller, A.; Hens, Z. Synthesis of extremely small cdse and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach. Chem. Mater., 2009, 21(8), 1743-1749.
[http://dx.doi.org/10.1021/cm900248b]
[18]
Jain, M. II-VI Semiconductor Compounds; World Scientific Publishing, 1993.
[19]
Aggarwal, V.; Ramesh, C.; Tyagi, P.; Gautam, S.; Sharma, A.; Husale, S.; Kumar, M.S.; Kushvaha, S.S. Controlled epitaxial growth of GaN nanostructures on sapphire (11–20) using laser molecular beam epitaxy for photodetector applications. Mater. Sci. Semicond. Process., 2021, 125, 105631.
[http://dx.doi.org/10.1016/j.mssp.2020.105631]
[20]
(a) Taghizadeh, A.; Leffers, U.; Pedersen, T.G.; Thygesen, K.S. A library of ab initio Raman spectra for automated identification of 2D materials. Nat. Commun., 2020, 11(1), 3011.
[http://dx.doi.org/10.1038/s41467-020-16529-6];
(b) Wagner, V.; Geurts, J. Raman and modulation spectroscopy at II-VI semiconductor interfaces. Phys. Status Solidi, A Appl. Res., 2001, 184(1), 29-39.
[http://dx.doi.org/10.1002/1521-396X(200103)184:1<29::AID-PSSA29>3.0.CO;2-L];
(c) Watt, M.; Smart, A.P.; Foad, M.A.; Wilkinson, C.D.W.; Arnot, H.E.G.; Torres, C.M.S. Raman scattering of III-V and II-VI semiconductor microstructures. In: Light Scattering in Semiconductor Structures and Superlattices; , 1991; pp. 247-255.
[http://dx.doi.org/10.1007/978-1-4899-3695-0_17];
(d) Eunsoon, O.; Parks, C.; Miotkowski, I.; Sciacca, M.D.; Mayur, A.J.; Ramdas, A.K. Optical properties of Mg-based II-VI ternaries and quaternaries: Cd1 − x Mgx Te and Cd1 − x − y Mgx MnyTe. Phys. Rev. B Condens. Matter, 1993, 48, 15040.
[http://dx.doi.org/10.1103/PhysRevB.48.15040] [PMID: 10008035]
[21]
(a) Carles, R.; Mlayah, A.; Landa, G.; Kusnetsov, O.A.; Orlov, L.K.; Vdovin, V.I.; Milvidskii, M.G.; Aronzon, B.A. Raman scattering in Ge-Ge1-xSix superlattice. Superlattices Microstruct., 1993, 13(1), 109-114.
[http://dx.doi.org/10.1006/spmi.1993.1022];
(b) Tang, H.; Zhu, B.; Huang, K. Raman scattering in a superlattice under an electric field. Phys. Rev. B Condens. Matter, 1990, 42(5), 3082-3086.
[http://dx.doi.org/10.1103/PhysRevB.42.3082] [PMID: 9995804];
(c) Ren, S.F.; Chang, Y.C.; Chu, H. Theory of nonresonant Raman scattering of GaAs/AlAs superlattices. Phys. Rev. B Condens. Matter, 1993, 47(3), 1489-1499.
[http://dx.doi.org/10.1103/PhysRevB.47.1489] [PMID: 10006164]
[22]
(a) Łepkowski, S.P.; Majewski, J.A.; Jurczak, G. Nonlinear elasticity in III-N compounds: Ab initio calculations. Phys. Rev. B Condens. Matter Mater. Phys., 2005, 72(24), 245201.
[http://dx.doi.org/10.1103/PhysRevB.72.245201];
(b) Amanda, J.; Hyeon-Deuk, K.; Prezhdo, O.V. Time-domain ab initio modeling of excitation dynamics in quantum dots. Coord. Chem. Rev., 2014, 263–264, 161-181.
[23]
(a) Zega, T.J.; Hanbicki, A.T.; Erwin, S.C.; Žutić, I.; Kioseoglou, G.; Li, C.H.; Jonker, B.T.; Stroud, R.M. Determination of interface atomic structure and its impact on spin transport using Z -Contrast microscopy and density-functional theory. Phys. Rev. Lett., 2006, 96(19), 196101.
[http://dx.doi.org/10.1103/PhysRevLett.96.196101];
(b) Deb, J.; Paul, D.; Sarkar, U. Density functional theory investigation of nonlinear optical properties of T-Graphene quantum dots. J. Phys. Chem. A, 2020, 124(7), 1312-1320.
[http://dx.doi.org/10.1021/acs.jpca.9b10241] [PMID: 31978308]
[24]
(a) Suris, R.A.; Lavallard, P. Calculated defect states in semiconductor superlattices within a tight-binding model. Phys. Rev. B Condens. Matter, 1994, 50(12), 8875-8877.
[http://dx.doi.org/10.1103/PhysRevB.50.8875] [PMID: 9974915];
(b) Jaskólski, W.; Zieliński, M.; Bryant, G.W.; Aizpurua, J. Strain effects on the electronic structure of strongly coupled self-assembled InAs ⁄ GaAs quantum dots: Tight-binding approach. Phys. Rev. B Condens. Matter Mater. Phys., 2006, 74(19), 195339.
[http://dx.doi.org/10.1103/PhysRevB.74.195339]
[25]
(a) Rastelli, A.; Stufler, S.; Schliwa, A.; Songmuang, R.; Manzano, C.; Costantini, G.; Kern, K.; Zrenner, A.; Bimberg, D.; Schmidt, O.G. Hierarchical self-assembly of GaAs/AlGaAs quantum dots. Phys. Rev. Lett., 2004, 92(16), 166104.
[http://dx.doi.org/10.1103/PhysRevLett.92.166104] [PMID: 15169246];
(b) Gladysiewicz, M.; Kudrawiec, R.; Wartak, M.S. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates. J. Appl. Phys., 2015, 118(5), 055702.
[http://dx.doi.org/10.1063/1.4927922]
[26]
(a) Radu, A.; Duque, C.A. Neural network approaches for solving Schrödinger equation in arbitrary quantum wells. Sci. Rep., 2022, 12, 2535.;
(b) Altaisky, M.V.; Zolnikova, N.N.; Kaputkina, N.E.; Krylov, V.A.; Lozovik, Y.E.; Dattani, N.S. Towards a feasible implementation of quantum neural networks using quantum dots. Appl. Phys. Lett., 2016, 108, 103108.
[27]
(a) Vilhelmsen, L.B.; Hammer, B. A genetic algorithm for first principles global structure optimization of supported nano structures. J. Chem. Phys., 2014, 141(4), 044711.
[http://dx.doi.org/10.1063/1.4886337] [PMID: 25084941];
(b) Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput., 2016, 274, 292-305.;
(c) Venkatraman, S.; Yen, G.G. A generic framework for constrained optimization using genetic algorithms. IEEE Trans. Evol. Comput., 2005, 9, 424-435.
[28]
Williamson, A.J.; Grossman, J.C.; Hood, R.Q.; Puzder, A.; Galli, G. Quantum Monte Carlo calculations of nanostructure optical gaps: Application to silicon quantum dots. Phys. Rev. Lett., 2002, 89(19), 196803.
[http://dx.doi.org/10.1103/PhysRevLett.89.196803]
[29]
Fuchs, R.; Kliewer, K.L. Optical modes of vibration in an ionic crystal slab. Phys. Rev., 1965, 140(6A), A2076-A2088.
[http://dx.doi.org/10.1103/PhysRev.140.A2076]
[30]
Kliewer, K.L.; Fuchs, R. Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region. Phys. Rev., 1966, 144(2), 495-503.
[http://dx.doi.org/10.1103/PhysRev.144.495]
[31]
Mori, N.; Ando, T. Electron – optical-phonon interaction in single and double heterostructures. Phys. Rev. B Condens. Matter, 1989, 40(9), 6175-6188.
[http://dx.doi.org/10.1103/PhysRevB.40.6175] [PMID: 9992686]
[32]
Stavrou, V.N.; Babiker, M.; Bennett, C.R. Influences of asymmetric quantum wells on electron-phonon interactions. J. Phys. Condens. Matter, 2001, 13(30), 6489-6498.
[http://dx.doi.org/10.1088/0953-8984/13/30/304]
[33]
Ridley, B.K. Electrons and Phonons in Semiconductor (Cambridge University Press, 1996). In: Quantum processes in semiconductors; Ridley, B.K., Ed.; Clarendon Press: Oxford, 1996.
[34]
Mahan, G.D. Many-Particle Physics (Plenum Press, New York, 1990). In: Polarons in Ionic Crystals and Polar Semiconductors; Mahan, G.D.; Devreese, J.T., Eds.; North-Holland, Amsterdam, 1990.
[35]
(a) Ridley, B.K. Space-charge-mediated capture of electrons and holes in a quantum well. Phys. Rev. B Condens. Matter, 1994, 50(3), 1717-1724.
[http://dx.doi.org/10.1103/PhysRevB.50.1717] [PMID: 9976361];
(b) Constantinou, N.C.; Ridley, B.K. Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire. Phys. Rev. B Condens. Matter, 1990, 41(15), 10622-10626.
[http://dx.doi.org/10.1103/PhysRevB.41.10622] [PMID: 9993470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy