Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Mini-Review Article

In Situ Photo Responsive Biodegradable Nanoparticle Forming Intrauterine Implant for Drug Delivery to Treat Ovarian Diseases: A Rationale-based Review

Author(s): Leander Corrie*, Nagavendra Kommineni, Jaskiran Kaur, Ankit Awasthi, Raghunandan Gundaram and Latha Kukati

Volume 17, Issue 4, 2024

Published on: 29 November, 2023

Page: [313 - 319] Pages: 7

DOI: 10.2174/0118744710258313231105072931

Price: $65

Abstract

Ovarian disease constitutes various types of endocrine disorders, such as polycystic ovarian syndrome (PCOS), ovarian cancer, premature ovarian failure, ovarian endometriosis, and ovarian cysts. The prevalence of ovarian-related diseases is highly vulnerable in the world. The utility of various drug delivery systems for ovarian diseases has resulted in varied success. Moreover, most of them lead to severe adverse effects and are incapable of ameliorating the signs and symptoms of the condition. Intrauterine devices (IUDs) have positioned themselves as a mechanism to deliver the drug for various ovarian-related diseases. Thereby avoiding various stability-related issues arising due to various physiological barriers of the female reproductive tract. However, the use of intrauterine devices for drug delivery to the ovaries has not been fully explored. This is attributed to the fact that they cause cysts in the ovaries and skepticism among patients and physicians. Photo-sensitive devices are an appealing approach for managing disorders affecting the ovaries. Photo-sensitive in situ forming intrauterine implants (IUIs) have several advantages, including simplicity in application, reduced invasiveness, as well as improved site-specific drug release control. Polymeric nanoparticles (PNPs) loaded with a drug may be a suitable choice to provide sustained release, alter the pharmacokinetics, and reduce the dose and dosing frequency. The current manuscript hypothesizes the utility of a PNP-loaded biodegradable photo-responsive intrauterine implantable device as an alternate novel strategy for ameliorating ovarian-related diseases.

Keywords: Ovary, intrauterine device, light sensitive, implants, biodegradable, targeted action.

Next »
Graphical Abstract
[1]
Simon, L.E.; Kumar, T.R.; Duncan, F.E. In vitro ovarian follicle growth: A comprehensive analysis of key protocol variables. Biol. Reprod., 2020, 103(3), 455-470.
[http://dx.doi.org/10.1093/biolre/ioaa073] [PMID: 32406908]
[2]
Krajnik, K.; Mietkiewska, K.; Skowronska, A.; Kordowitzki, P.; Skowronski, M.T. Oogenesis in women: From molecular regulatory pathways and maternal age to stem cells. Int. J. Mol. Sci., 2023, 24(7), 6837.
[http://dx.doi.org/10.3390/ijms24076837] [PMID: 37047809]
[3]
Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: Epidemiology and risk factors. Int. J. Womens Health, 2019, 11, 287-299.
[http://dx.doi.org/10.2147/IJWH.S197604] [PMID: 31118829]
[4]
Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int. J. Mol. Sci., 2021, 22(19), 10554.
[http://dx.doi.org/10.3390/ijms221910554] [PMID: 34638893]
[5]
Toosy, S.; Sodi, R.; Pappachan, J.M. Lean polycystic ovary syndrome (PCOS): An evidence-based practical approach. J. Diabetes Metab. Disord., 2018, 17(2), 277-285.
[http://dx.doi.org/10.1007/s40200-018-0371-5] [PMID: 30918863]
[6]
Qiao, J.; Feng, H.L. Extra- and intra-ovarian factors in polycystic ovary syndrome: Impact on oocyte maturation and embryo developmental competence. Hum. Reprod. Update, 2011, 17(1), 17-33.
[http://dx.doi.org/10.1093/humupd/dmq032] [PMID: 20639519]
[7]
Corrie, L.; Singh, S.K.; Gulati, M.; Awasthi, A.; Khursheed, R.; Kaur, J.; Vishwas, S. Improvement in polycystic ovarian syndrome using pharmacological and non-pharmacological approaches: Current perspectives and principles. Curr. Womens Health Rev., 2023, 19(1), e290322202754.
[http://dx.doi.org/10.2174/1573404818666220329123334]
[8]
Gleicher, N.; Barad, D.H. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reprod. Biol. Endocrinol., 2011, 9(1), 67.
[http://dx.doi.org/10.1186/1477-7827-9-67] [PMID: 21586137]
[9]
Fischerova, D.; Zikan, M.; Dundr, P.; Cibula, D. Diagnosis, treatment, and follow-up of borderline ovarian tumors. Oncologist, 2012, 17(12), 1515-1533.
[http://dx.doi.org/10.1634/theoncologist.2012-0139] [PMID: 23024155]
[10]
Lim, S.S.; Hutchison, S.K.; Van Ryswyk, E.; Norman, R.J.; Teede, H.J.; Moran, L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Libr., 2019, 2019(3), CD007506.
[http://dx.doi.org/10.1002/14651858.CD007506.pub4] [PMID: 30921477]
[11]
De Leo, V.; Musacchio, M.C.; Cappelli, V.; Massaro, M.G.; Morgante, G.; Petraglia, F. Genetic, hormonal and metabolic aspects of PCOS: An update. Reprod. Biol. Endocrinol., 2016, 14(1), 38.
[http://dx.doi.org/10.1186/s12958-016-0173-x] [PMID: 27423183]
[12]
Badawy, A.; Elnashar, A. Treatment options for polycystic ovary syndrome. Int. J. Womens Health, 2011, 3, 25-35.
[http://dx.doi.org/10.2147/IJWH.S11304] [PMID: 21339935]
[13]
Bliss Kaneshiro, B.; Aeby, T. Long-term safety, efficacy, and patient acceptability of the intrauterine Copper T-380A contraceptive device. Int. J. Womens Health, 2010, 2, 211-220.
[http://dx.doi.org/10.2147/IJWH.S6914] [PMID: 21072313]
[14]
Lloyd-Parry, O.; Downing, C.; Aleisaei, E.; Jones, C.; Coward, K. Nanomedicine applications in women’s health: State of the art. Int. J. Nanomedicine, 2018, 13, 1963-1983.
[http://dx.doi.org/10.2147/IJN.S97572] [PMID: 29636611]
[15]
Corrie, L.; Gulati, M.; Vishwas, S.; Kapoor, B.; Singh, S.K.; Awasthi, A.; Khursheed, R. Combination therapy of curcumin and fecal microbiota transplant: Potential treatment of polycystic ovarian syndrome. Med. Hypotheses, 2021, 154, 110644.
[http://dx.doi.org/10.1016/j.mehy.2021.110644] [PMID: 34332209]
[16]
Gemzell-Danielsson, K.; Kubba, A.; Caetano, C.; Faustmann, T.; Lukkari-Lax, E.; Heikinheimo, O. Thirty years of mirena: A story of innovation and change in women’s healthcare. Acta Obstet. Gynecol. Scand., 2021, 100(4), 614-618.
[http://dx.doi.org/10.1111/aogs.14110] [PMID: 33544887]
[17]
Patel, S.K.; Valicherla, G.R.; Micklo, A.C.; Rohan, L.C. Drug delivery strategies for management of women’s health issues in the upper genital tract. Adv. Drug Deliv. Rev., 2021, 177, 113955.
[http://dx.doi.org/10.1016/j.addr.2021.113955] [PMID: 34481034]
[18]
Langlade, C.; Gouverneur, A.; Bosco-Lévy, P.; Gouraud, A.; Pérault-Pochat, M.C.; Béné, J.; Miremont-Salamé, G.; Pariente, A. Adverse events reported for Mirena levonorgestrel‐releasing intrauterine device in France and impact of media coverage. Br. J. Clin. Pharmacol., 2019, 85(9), 2126-2133.
[http://dx.doi.org/10.1111/bcp.14027] [PMID: 31218710]
[19]
Nelson, A.L.; Massoudi, N. New developments in intrauterine device use: Focus on the US. Open Access J. Contracept., 2016, 7, 127-141.
[http://dx.doi.org/10.2147/OAJC.S85755] [PMID: 29386944]
[20]
Jimmy, B.; Jose, J. Patient medication adherence: Measures in daily practice. Oman Med. J., 2011, 26(3), 155-159.
[http://dx.doi.org/10.5001/omj.2011.38] [PMID: 22043406]
[21]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.G.M.; Murty, U.S. Ajazuddin; Alexander, A. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J. Control. Release, 2020, 327, 235-265.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.044] [PMID: 32739524]
[22]
Kim, H.M.; Woo, S.J. Ocular drug delivery to the retina: Current innovations and future perspectives. Pharmaceutics, 2021, 13(1), 108.
[http://dx.doi.org/10.3390/pharmaceutics13010108] [PMID: 33467779]
[23]
Corrie, L.; Awasthi, A.; Kaur, J.; Vishwas, S.; Gulati, M.; Kaur, I.P. Interplay of gut microbiota in polycystic ovarian syndrome : Role of gut microbiota, mechanistic pathways and potential treatment strategies. Pharmaceuticals, 2023, 16(2), 197.
[24]
Heidari-Khoei, H.; Esfandiari, F.; Hajari, M.A.; Ghorbaninejad, Z.; Piryaei, A.; Baharvand, H. Organoid technology in female reproductive biomedicine. Reprod. Biol. Endocrinol., 2020, 18(1), 64.
[http://dx.doi.org/10.1186/s12958-020-00621-z] [PMID: 32552764]
[25]
Simon, A.; Laufer, N. Assessment and treatment of repeated implantation failure (RIF). J. Assist. Reprod. Genet., 2012, 29(11), 1227-1239.
[http://dx.doi.org/10.1007/s10815-012-9861-4] [PMID: 22976427]
[26]
Allahbadia, G.N. Intrauterine insemination: Fundamentals revisited. J. Obstet. Gynaecol. India, 2017, 67(6), 385-392.
[http://dx.doi.org/10.1007/s13224-017-1060-x] [PMID: 29162950]
[27]
Shishkova, N.; Kuznetsova, O.; Berezov, T. Photodynamic therapy for gynecological diseases and breast cancer. Cancer Biol. Med., 2012, 9(1), 9-17.
[http://dx.doi.org/10.3969/j.issn.2095-3941.2012.01.002] [PMID: 23691448]
[28]
Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 2127-2139.
[http://dx.doi.org/10.1098/rstb.2008.0289] [PMID: 19528060]
[29]
Huu, V.A.N.; Luo, J.; Zhu, J.; Zhu, J.; Patel, S.; Boone, A.; Mahmoud, E.; McFearin, C.; Olejniczak, J.; de Gracia Lux, C.; Lux, J.; Fomina, N.; Huynh, M.; Zhang, K.; Almutairi, A. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J. Control. Release, 2015, 200, 71-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.001] [PMID: 25571784]
[30]
Wang, X.; Li, X.; Dai, X.; Zhang, X.; Zhang, J.; Xu, T.; Lan, Q. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf. B Biointerfaces, 2018, 171, 291-299.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.042] [PMID: 30048904]
[31]
Raffel, N.; Dittrich, R.; Bäuerle, T.; Seyler, L.; Fattahi, A.; Hoffmann, I.; Leal-Egaña, A.; Beckmann, M.W.; Boccaccini, A.R.; Liverani, L. Novel approach for the assessment of ovarian follicles infiltration in polymeric electrospun patterned scaffolds. PLoS One, 2019, 14(4), e0215985.
[http://dx.doi.org/10.1371/journal.pone.0215985] [PMID: 31034489]
[32]
Klabukov, I.; Balyasin, M.; Krasilnikova, O.; Tenchurin, T.; Titov, A.; Krasheninnikov, M.; Mudryak, D.; Sulina, Y.; Shepelev, A.; Chvalun, S.; Dyuzheva, T.; Yakimova, A.; Sosin, D.; Lyundup, A.; Baranovskii, D.; Shegay, P.; Kaprin, A. Angiogenic modification of microfibrous polycaprolactone by pcmv-vegf165 plasmid promotes local vascular growth after implantation in rats. Int. J. Mol. Sci., 2023, 24(2), 1399.
[http://dx.doi.org/10.3390/ijms24021399] [PMID: 36674913]
[33]
Yan, E.; Fan, Y.; Sun, Z.; Gao, J.; Hao, X.; Pei, S.; Wang, C.; Sun, L.; Zhang, D. Biocompatible core–shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mater. Sci. Eng. C, 2014, 41, 217-223.
[http://dx.doi.org/10.1016/j.msec.2014.04.053] [PMID: 24907754]
[34]
Liu, Y.; Chen, X.; Liu, Y.; Gao, Y.; Liu, P. Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers, 2022, 14(3), 469.
[http://dx.doi.org/10.3390/polym14030469] [PMID: 35160459]
[35]
Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev., 2015, 92, 39-52.
[http://dx.doi.org/10.1016/j.addr.2015.02.001] [PMID: 25683694]
[36]
Woolfson, A.D. Intravaginal drug delivery technologies. In: Modified-release drug delivery technology; CRC Press, 2002; pp. 783-798.
[37]
Alexander, N.J.; Baker, E.; Kaptein, M.; Karck, U.; Miller, L.; Zampaglione, E. Why consider vaginal drug administration? Fertil. Steril., 2004, 82(1), 1-12.
[http://dx.doi.org/10.1016/j.fertnstert.2004.01.025] [PMID: 15236978]
[38]
Ensign, L.M.; Hoen, T.E.; Maisel, K.; Cone, R.A.; Hanes, J.S. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake. Biomaterials, 2013, 34(28), 6922-6929.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.039] [PMID: 23769419]
[39]
Fathalla, M.F. Current challenges in assisted reproduction. Middle East Fertil. Soc. J., 2003, 8, 117-121.
[40]
Pandey, M.; Choudhury, H.; Abdul-Aziz, A.; Bhattamisra, S.K.; Gorain, B.; Carine, T.; Wee Toong, T.; Yi, N.J.; Win Yi, L. Promising drug delivery approaches to treat microbial infections in the vagina: A recent update. Polymers, 2020, 13(1), 26.
[http://dx.doi.org/10.3390/polym13010026] [PMID: 33374756]
[41]
Corrie, L; Kaur, J; Awasthi, A; Vishwas, S; Gulati, M; Saini, S Multivariate data analysis and central composite design-oriented optimization of solid carriers for formulation of curcumin-loaded solid SNEDDS : Dissolution and bioavailability assessment. Pharmaceutics, 2022, 14(11), 2395.
[42]
Van Tomme, S.R.; Storm, G.; Hennink, W.E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm., 2008, 355(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.057] [PMID: 18343058]
[43]
He, C.; Kim, S.W.; Lee, D.S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release, 2008, 127(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.005] [PMID: 18321604]
[44]
Sagiri, S.S.; Behera, B.; Rafanan, R.R.; Bhattacharya, C.; Pal, K.; Banerjee, I.; Rousseau, D. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater., 2014, 12(1), 47-72.
[http://dx.doi.org/10.1080/1539445X.2012.756016]
[45]
Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., 2019, 23(1), 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[46]
Leyva-Gómez, G.; Piñón-Segundo, E.; Mendoza-Muñoz, N.; Zambrano-Zaragoza, M.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Approaches in polymeric nanoparticles for vaginal drug delivery: A review of the state of the art. Int. J. Mol. Sci., 2018, 19(6), 1549.
[http://dx.doi.org/10.3390/ijms19061549] [PMID: 29882846]
[47]
Pandey, M.; Choudhury, H. binti Abd Aziz, A.; Bhattamisra, S.K.; Gorain, B.; Su, J.S.T.; Tan, C.L.; Chin, W.Y.; Yip, K.Y. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers, 2021, 13(8), 1340.
[http://dx.doi.org/10.3390/polym13081340] [PMID: 33923900]
[48]
Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release, 2018, 271, 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.019] [PMID: 29269143]
[49]
Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J. Pharmaceut. Sci., 2019, 14(1), 1-15.
[http://dx.doi.org/10.1016/j.ajps.2018.04.008] [PMID: 32104434]
[50]
Juzeniene, A.; Moan, J. Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol, 2012, 4(2), 109-117.
[http://dx.doi.org/10.4161/derm.20013] [PMID: 22928066]
[51]
FDA. FDA approves new imaging drug to help identify ovarian cancer lesions. 2022. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-imaging-drug-help-identify-ovarian-cancer-lesions
[52]
Tomal, W.; Ortyl, J. Water-soluble photoinitiators in biomedical applications. Polymers, 2020, 12(5), 1073.
[http://dx.doi.org/10.3390/polym12051073] [PMID: 32392892]
[53]
Bisht, R. PLGA nanoparticle-loaded light-responsive insitu forming injectable implants for effective drug delivery to the back of the eye., 2017.
[54]
Zhao, J.; Zhang, L.; Qi, Y.; Liao, K.; Wang, Z.; Wen, M.; Zhou, D. NiR laser responsive nanoparticles for ovarian cancer targeted combination therapy with dual-modal imaging guidance. Int. J. Nanomedicine, 2021, 16, 4351-4369.
[http://dx.doi.org/10.2147/IJN.S299376] [PMID: 34234430]
[55]
Zhang, Q.; Kuang, G.; He, S.; Lu, H.; Cheng, Y.; Zhou, D.; Huang, Y. Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett., 2020, 20(5), 3039-3049.
[http://dx.doi.org/10.1021/acs.nanolett.9b04981] [PMID: 32250633]
[56]
Bisht, R.; Jaiswal, J.K.; Rupenthal, I.D. Nanoparticle-loaded biodegradable light-responsive in situ forming injectable implants for effective peptide delivery to the posterior segment of the eye. Med. Hypotheses, 2017, 103, 5-9.
[http://dx.doi.org/10.1016/j.mehy.2017.03.033] [PMID: 28571808]
[57]
Zhou, D.; Ito, Y. Visible light-curable polymers for biomedical applications. Sci. China Chem., 2014, 57(4), 510-521.
[http://dx.doi.org/10.1007/s11426-014-5069-z]
[58]
Zeng, B.; Cai, Z.; Lalevée, J.; Yang, Q.; Lai, H.; Xiao, P.; Liu, J.; Xing, F. Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells. Toxicol. In vitro, 2021, 72, 105103.
[http://dx.doi.org/10.1016/j.tiv.2021.105103] [PMID: 33516932]
[59]
Alves, E.D.; Bonfá, A.L.O.; Pigatto, G.R.; Anselmo-Franci, J.A.; Achcar, J.A.; Parizotto, N.A.; Montrezor, L.H. Photobiomodulation can improve ovarian activity in polycystic ovary syndrome-induced rats. J. Photochem. Photobiol. B, 2019, 194, 6-13.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.03.006] [PMID: 30897401]
[60]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[61]
Unlü, C.; Yildirim, G. Ovarian cystectomy in endometriomas: Combined approach. J. Turk. Ger. Gynecol. Assoc., 2014, 15(3), 177-189.
[http://dx.doi.org/10.5152/jtgga.2014.1111] [PMID: 25317047]
[62]
Oubiña, G.; Pascuali, N.; Scotti, L.; Di Pietro, M.; La Spina, F.A.; Buffone, M.G.; Higuera, J.; Abramovich, D.; Parborell, F. Low level laser therapy (LLLT) modulates ovarian function in mature female mice. Prog. Biophys. Mol. Biol., 2019, 145, 10-18.
[http://dx.doi.org/10.1016/j.pbiomolbio.2018.11.010] [PMID: 30500339]
[63]
Barth, C.W.; Gibbs, S.L. Fluorescence image-guided surgery - A perspective on contrast agent development. Proc. SPIE Int. Soc. Opt. Eng., 2020, 11222.
[http://dx.doi.org/10.1117/12.2545292]
[64]
Sosnik, A.; Gotelli, G.; Abraham, G.A. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: How new and how powerful. Prog. Polym. Sci., 2011, 36(8), 1050-1078.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.12.001]
[65]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy