Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Combining Mendelian Randomization Analysis and 3D-QSAR to Investigate the Effectiveness of a New Series of Hydroxyquinolines in Osteoarthritis

Author(s): Zheng Lian, Kunpeng Su, Hui Lu, Changpeng Qu and Xuexiao Ma*

Volume 31, Issue 27, 2024

Published on: 27 November, 2023

Page: [4392 - 4405] Pages: 14

DOI: 10.2174/0109298673287134231121050158

Price: $65

Abstract

Background: Osteoarthritis (OA) represents a persistent degenerative joint ailment. As OA advances, profound joint pain coupled with diminished joint function inflicts substantial physical distress and psychological strain on patients. Presently, pharmacological solutions for arthritis remain limited, primarily encompassing analgesics and joint replacement surgical procedures. Hence, non-operative strategies to mitigate osteoarthritis progression have captured significant attention in orthopedic research.

Objective: This study aims to discern a definitive causal linkage between ADAMTS-4/5 and osteoarthritis through Mendelian randomization analysis.

Moreover, it seeks to anticipate the therapeutic efficacy of a suite of emergent hydroxyquinolines for osteoarthritis using the Quantitative Structure-Activity Relationship (QSAR) methodology.

Methods: Within this study, genetic variants specific to knee osteoarthritis were procured as exposure variables from a genome-wide association study (GWAS). Genetic variant data for ADAMTS-4/5 served as the endpoint to evaluate the causal nexus employing univariate Mendelian randomization. This analysis underpins the hypothesis that ADAMTS-4/5 presents a promising therapeutic target for osteoarthritis management. The suppressive properties of novel hydroxyquinolines against ADAMTS-4/5 were subsequently examined through conformational analyses, underscoring the potential of these compounds as therapeutic candidates for osteoarthritis.

Results: IVW outcomes from the Mendelian randomization revealed a significant association of KOA (OR: 1.1675, 95% CI: 1.0003-1.3627, P = 0.0495) with ADAMTS-5. However, KOA (OR: 1.0801, 95% CI: 0.9256-1.2604, P = 0.3278) displayed no evident connection with ADAMTS-4. Notably, the instrumental variables manifested neither heterogeneity nor horizontal pleiotropy. In this research endeavor, 16 pharmacological models were formulated via the CoMSIA method within 3D conformational relationship evaluations. A synergistic interplay of hydrophobic, spatial, and hydrogen-bonded receptor domains emerged as the most predictively potent. The cross-validation coefficient q2 for the optimum model stood at 0.716, with a principal component score of 5, a regression coefficient r2 of 0.971, a standard estimation error of 0.351, and an f-value of 156.951. Such metrics intimate the commendable predictive prowess of our devised CoMSIA models.

Conclusion: The research unearthed a robust causal interrelation between ADAMTS-5 and osteoarthritis via Mendelian randomization. Furthermore, a credible drug model targeting ADAMTS-5 was constructed. Collectively, these findings illuminate a path forward in the pursuit of target-specific drugs for osteoarthritis management in subsequent investigations.

Keywords: Osteoarthritis, 3D-QSAR, mendelian randomization, causal inference, genetic variation, ADAMTS- 4/5.

« Previous
[1]
Sinusas, K. Osteoarthritis: Diagnosis and treatment. Am. Fam. Physician, 2012, 85(1), 49-56.
[PMID: 22230308]
[2]
Altman, R; Hackel, J; Niazi, F Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: A systematic review. Seminars in arthritis and rheumatism, 2018, 48(2), 168-175.
[3]
Cilek, M.Z.; de Vega, S.; Shiozawa, J.; Yoshinaga, C.; Miyamae, Y.; Chijiiwa, M.; Mochizuki, S.; Ito, M.; Kaneko, H.; Kaneko, K.; Ishijima, M.; Okada, Y. Synergistic upregulation of ADAMTS4 (aggrecanase-1) by cytokines and its suppression in knee osteoarthritic synovial fibroblasts. Lab. Invest., 2022, 102(1), 102-111.
[http://dx.doi.org/10.1038/s41374-021-00685-4] [PMID: 34718343]
[4]
Malemud, C.J. Inhibition of MMPs and ADAM/ADAMTS. Biochem. Pharmacol., 2019, 165, 33-40.
[http://dx.doi.org/10.1016/j.bcp.2019.02.033] [PMID: 30826330]
[5]
Santamaria, S. ADAMTS-5: A difficult teenager turning 20. Int. J. Exp. Pathol., 2020, 101(1-2), 4-20.
[http://dx.doi.org/10.1111/iep.12344] [PMID: 32219922]
[6]
Wang, J.; Wang, X.; Ding, X.; Huang, T.; Song, D.; Tao, H. EZH2 is associated with cartilage degeneration in osteoarthritis by promoting SDC1 expression via histone methylation of the microRNA-138 promoter. Lab. Invest., 2021, 101(5), 600-611.
[http://dx.doi.org/10.1038/s41374-021-00532-6] [PMID: 33692439]
[7]
Ong, M.H.L.; Wong, H.K.; Tengku-Muhammad, T.S.; Choo, Q.C.; Chew, C.H. Pro-atherogenic proteoglycanase ADAMTS-1 is down-regulated by lauric acid through PI3K and JNK signaling pathways in THP-1 derived macrophages. Mol. Biol. Rep., 2019, 46(3), 2631-2641.
[http://dx.doi.org/10.1007/s11033-019-04661-6] [PMID: 30989556]
[8]
Gilbert, A.M.; Bursavich, M.G.; Lombardi, S.; Georgiadis, K.E.; Reifenberg, E.; Flannery, C.R.; Morris, E.A. N-((8-Hydroxy-5-substituted-quinolin-7-yl) (phenyl) methyl)-2-phenyloxy/amino-acetamide inhibitors of ADAMTS-5 (Aggrecanase-2). Bioorg. Med. Chem. Lett., 2008, 18(24), 6454-6457.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.065] [PMID: 18974001]
[9]
Marshall, G.R. Computer-aided drug design. Annu. Rev. Pharmacol. Toxicol., 1987, 27(1), 193-213.
[http://dx.doi.org/10.1146/annurev.pa.27.040187.001205] [PMID: 3555315]
[10]
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[11]
Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian randomization. JAMA, 2017, 318(19), 1925-1926.
[http://dx.doi.org/10.1001/jama.2017.17219] [PMID: 29164242]
[12]
Suhre, K.; Arnold, M.; Bhagwat, A.M.; Cotton, R.J.; Engelke, R.; Raffler, J.; Sarwath, H.; Thareja, G.; Wahl, A.; DeLisle, R.K.; Gold, L.; Pezer, M.; Lauc, G.; El-Din Selim, M.A.; Mook-Kanamori, D.O.; Al-Dous, E.K.; Mohamoud, Y.A.; Malek, J.; Strauch, K.; Grallert, H.; Peters, A.; Kastenmüller, G.; Gieger, C.; Graumann, J. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun., 2017, 8(1), 14357.
[http://dx.doi.org/10.1038/ncomms14357] [PMID: 28240269]
[13]
Bowden, J.; Del Greco M, F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med., 2017, 36(11), 1783-1802.
[http://dx.doi.org/10.1002/sim.7221] [PMID: 28114746]
[14]
Burgess, S.; Thompson, S.G. Interpreting findings from mendelian randomization using the MR-Egger method. Eur. J. Epidemiol., 2017, 32(5), 377-389.
[http://dx.doi.org/10.1007/s10654-017-0255-x] [PMID: 28527048]
[15]
Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology, 2017, 28(1), 30-42.
[http://dx.doi.org/10.1097/EDE.0000000000000559] [PMID: 27749700]
[16]
Hemani, G.; Tilling, K.; Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet., 2017, 13(11), e1007081.
[http://dx.doi.org/10.1371/journal.pgen.1007081] [PMID: 29149188]
[17]
Yu, Z.; Li, X.; Ge, C.; Si, H.; Cui, L.; Gao, H.; Duan, Y.; Zhai, H. 3D-QSAR modeling and molecular docking study on Mer kinase inhibitors of pyridine-substituted pyrimidines. Mol. Divers., 2015, 19(1), 135-147.
[http://dx.doi.org/10.1007/s11030-014-9556-0] [PMID: 25355276]
[18]
Li, X.; Ye, L.; Wang, X.; Wang, X.; Liu, H.; Qian, X.; Zhu, Y.; Yu, H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls. Sci. Total Environ., 2012, 441, 230-238.
[http://dx.doi.org/10.1016/j.scitotenv.2012.08.072] [PMID: 23137989]
[19]
Klebe, G. Comparative molecular similarity indices analysis: CoMSIA[M]//3D QSAR in drug design: Recent advances. In: Dordrecht; Springer Netherlands, 1998; pp. 87-104.
[20]
Lian, Z; Si, H; Xia, H Structure-activity relationship study and design of novel 1, 8-naphthimide derivatives as potential DNA-targeting chemotherapeutic agents for osteosarcoma. Med. Chem., 2023, 19(9), 906-914.
[21]
Lian, Z.; Sang, C.; Li, N.; Zhai, H.; Bai, W. 3D,2D-QSAR study and docking of novel quinazolines as potential target drugs for osteosarcoma. Front. Pharmacol., 2023, 14, 1124895.
[http://dx.doi.org/10.3389/fphar.2023.1124895] [PMID: 36895941]
[22]
Höskuldsson, A. PLS regression methods. J. Chemometr., 1988, 2(3), 211-228.
[http://dx.doi.org/10.1002/cem.1180020306]
[23]
Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules, 2009, 14(5), 1660-1701.
[http://dx.doi.org/10.3390/molecules14051660] [PMID: 19471190]
[24]
Wieland, H.A.; Michaelis, M.; Kirschbaum, B.J.; Rudolphi, K.A. Osteoarthritis - an untreatable disease? Nat. Rev. Drug Discov., 2005, 4(4), 331-344.
[http://dx.doi.org/10.1038/nrd1693] [PMID: 15803196]
[25]
Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med., 2021, 384(1), 51-59.
[http://dx.doi.org/10.1056/NEJMcp1903768] [PMID: 33406330]
[26]
Quicke, J.G.; Conaghan, P.G.; Corp, N.; Peat, G. Osteoarthritis year in review 2021: Epidemiology & therapy. Osteoarthritis Cartilage, 2022, 30(2), 196-206.
[http://dx.doi.org/10.1016/j.joca.2021.10.003] [PMID: 34695571]
[27]
Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol., 2022, 18(5), 258-275.
[http://dx.doi.org/10.1038/s41584-022-00749-9] [PMID: 35165404]
[28]
de Lange-Brokaar, B.J.E.; Ioan-Facsinay, A.; van Osch, G.J.V.M.; Zuurmond, A.M.; Schoones, J.; Toes, R.E.M.; Huizinga, T.W.J.; Kloppenburg, M. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthritis Cartilage, 2012, 20(12), 1484-1499.
[http://dx.doi.org/10.1016/j.joca.2012.08.027] [PMID: 22960092]
[29]
Martel-Pelletier, J.; Boileau, C.; Pelletier, J.P.; Roughley, P.J. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol., 2008, 22(2), 351-384.
[http://dx.doi.org/10.1016/j.berh.2008.02.001] [PMID: 18455690]
[30]
Jiang, L.; Lin, J.; Zhao, S.; Wu, J.; Jin, Y.; Yu, L.; Wu, N.; Wu, Z.; Wang, Y.; Lin, M. ADAMTS5 in osteoarthritis: Biological functions, regulatory network, and potential targeting therapies. Front. Mol. Biosci., 2021, 8, 703110.
[http://dx.doi.org/10.3389/fmolb.2021.703110] [PMID: 34434966]
[31]
Plaas, A.; Osborn, B.; Yoshihara, Y.; Bai, Y.; Bloom, T.; Nelson, F.; Mikecz, K.; Sandy, J.D. Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5–hyaluronan complexes in articular cartilages. Osteoarthritis Cartilage, 2007, 15(7), 719-734.
[http://dx.doi.org/10.1016/j.joca.2006.12.008] [PMID: 17360199]
[32]
Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J. Cell. Biochem., 2011, 112(12), 3507-3514.
[http://dx.doi.org/10.1002/jcb.23298] [PMID: 21815191]
[33]
Rogerson, F.M.; Chung, Y.M.; Deutscher, M.E.; Last, K.; Fosang, A.J. Cytokine-induced increases in ADAMTS-4 messenger RNA expression do not lead to increased aggrecanase activity in ADAMTS-5–deficient mice. Arthritis Rheum., 2010, 62(11), 3365-3373.
[http://dx.doi.org/10.1002/art.27661] [PMID: 20662062]
[34]
Moncada-Pazos, A.; Obaya, A.J.; Viloria, C.G.; López-Otín, C.; Cal, S. The nutraceutical flavonoid luteolin inhibits ADAMTS-4 and ADAMTS-5 aggrecanase activities. J. Mol. Med. (Berl.), 2011, 89(6), 611-619.
[http://dx.doi.org/10.1007/s00109-011-0741-7] [PMID: 21365186]
[35]
Wainwright, S.D.; Bondeson, J.; Hughes, C.E. An alternative spliced transcript of ADAMTS4 is present in human synovium from OA patients. Matrix Biol., 2006, 25(5), 317-320.
[http://dx.doi.org/10.1016/j.matbio.2006.03.006] [PMID: 16723216]
[36]
Furtwängler, T.; Chan, S.C.W.; Bahrenberg, G.; Richards, P.J.; Gantenbein-Ritter, B. Assessment of the matrix degenerative effects of MMP-3, ADAMTS-4, and HTRA1, injected into a bovine intervertebral disc organ culture model. Spine, 2013, 38(22), E1377-E1387.
[http://dx.doi.org/10.1097/BRS.0b013e31829ffde8] [PMID: 23778376]
[37]
Savić-Gajić, I.M.; Savić, I.M. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opin. Drug Discov., 2020, 15(3), 383-390.
[http://dx.doi.org/10.1080/17460441.2020.1702964] [PMID: 31829757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy