Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

高水平Adropin促进胰腺导管腺癌的进展

卷 24, 期 6, 2024

发表于: 21 November, 2023

页: [629 - 641] 页: 13

弟呕挨: 10.2174/0115680096267203231024093601

价格: $65

Open Access Journals Promotions 2
摘要

背景与目的:初步实验发现Adropin在胰导管腺癌(pancreatic ductal adencarcinoma, PDA)中表达异常高。本研究探讨了Adropin在PDA进展中的作用。 方法:从医院生物库获取20例PDA患者石蜡包埋标本,采用免疫组化方法检测Adropin的表达。用重组adropin或敲低adropin处理PDA细胞株。评估细胞行为,检测磷酸化血管内皮生长因子受体(p-VEGFR2)及其他相关蛋白的表达。建立PDA细胞源异种移植物(CDX),观察Adropin或敲低Adropin对肿瘤生长的影响。 结果:与癌旁组织相比,PDA癌组织中Adropin蛋白表达升高,且与患者体内碳水化合物抗原19-9水平呈正相关。Adropin显著促进PDA细胞的增殖和迁移,上调p-VEGFR2、Ki67、cyclin D1和基质金属蛋白2 (matrix metalloprotein 2, MMP2)的表达。在敲低Adropin表达或阻断VEGFR2后,Adropin的上述作用明显逆转。补充Adropin可显著促进PDA CDX的肿瘤生长;上调p-VEGFR2、Ki67、cyclin D1、MMP2的表达;促进肿瘤组织微环境血管生成。然而,用Adropin敲低细胞接种CDX产生相反的结果。 结论:Adropin在PDA中过表达,通过持续激活VEGFR2信号,促进肿瘤微环境中癌细胞增殖和血管生成,从而为肿瘤进展创造条件。因此,针对Adropin可能是一种有效的反PDA策略。

关键词: 胰腺导管腺癌,Adropin, VEGFR2,血管生成,细胞来源的异种移植物,癌旁组织。

图形摘要
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Torphy, R.J.; Fujiwara, Y.; Schulick, R.D. Pancreatic cancer treatment: Better, but a long way to go. Surg. Today, 2020, 50(10), 1117-1125.
[http://dx.doi.org/10.1007/s00595-020-02028-0] [PMID: 32474642]
[3]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[4]
Roth, M.T.; Cardin, D.B.; Berlin, J.D. Recent advances in the treatment of pancreatic cancer. F1000 Res., 2020, 9, 131.
[http://dx.doi.org/10.12688/f1000research.21981.1] [PMID: 32148767]
[5]
Sun, M.; Ye, H.; Shi, Q.; Xie, J.; Yu, X.; Ling, H.; You, S.; He, Z.; Qin, B.; Sun, J. Both-in-one hybrid bacteria suppress the tumor metastasis and relapse via tandem-amplifying reactive oxygen species-immunity responses. Adv. Healthc. Mater., 2021, 10(21), 2100950.
[http://dx.doi.org/10.1002/adhm.202100950] [PMID: 34541825]
[6]
Zhao, J.; Ye, H.; Lu, Q.; Wang, K.; Chen, X.; Song, J.; Wang, H.; Lu, Y.; Cheng, M.; He, Z.; Zhai, Y.; Zhang, H.; Sun, J. Inhibition of post-surgery tumour recurrence via a sprayable chemo-immunotherapy gel releasing PD-L1 antibody and platelet-derived small EVs. J. Nanobiotechnology, 2022, 20(1), 62.
[http://dx.doi.org/10.1186/s12951-022-01270-7] [PMID: 35109878]
[7]
Jiang, S.; Fagman, J.B.; Ma, Y.; Liu, J.; Vihav, C.; Engstrom, C.; Liu, B.; Chen, C. A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging, 2022, 14(18), 7635-7649.
[http://dx.doi.org/10.18632/aging.204310] [PMID: 36173644]
[8]
Weiss, F.; Lauffenburger, D.; Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer, 2022, 22(3), 157-173.
[http://dx.doi.org/10.1038/s41568-021-00427-0] [PMID: 35013601]
[9]
Cervantes-Villagrana, R.D.; Albores-García, D.; Cervantes-Villagrana, A.R.; García-Acevez, S.J. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct. Target. Ther., 2020, 5(1), 99.
[http://dx.doi.org/10.1038/s41392-020-0205-z] [PMID: 32555170]
[10]
Banh, R.S.; Biancur, D.E.; Yamamoto, K.; Sohn, A.S.W.; Walters, B.; Kuljanin, M.; Gikandi, A.; Wang, H.; Mancias, J.D.; Schneider, R.J.; Pacold, M.E.; Kimmelman, A.C. Neurons release serine to support mRNA translation in pancreatic cancer. Cell, 2020, 183(5), 1202-1218.e25.
[http://dx.doi.org/10.1016/j.cell.2020.10.016] [PMID: 33142117]
[11]
Rao, A.; Herr, D.R. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1318-1327.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.001] [PMID: 28476646]
[12]
Tuna, B.G.; Atalay, P.B.; Altunbek, M.; Kalkan, B.M.; Dogan, S. Effects of chronic and intermittent calorie restriction on adropin levels in breast cancer. Nutr. Cancer, 2017, 69(7), 1003-1010.
[http://dx.doi.org/10.1080/01635581.2017.1359314] [PMID: 28922017]
[13]
Nergiz, S.; Altinkaya, S.O.; Kurt Ömürlü, İ.; Yuksel, H.; Küçük, M.; Demircan Sezer, S. Circulating adropin levels in patients with endometrium cancer. Gynecol. Endocrinol., 2015, 31(9), 730-735.
[http://dx.doi.org/10.3109/09513590.2015.1065480] [PMID: 26172926]
[14]
Ali, I.I.; D’Souza, C.; Singh, J.; Adeghate, E. Adropin’s role in energy homeostasis and metabolic disorders. Int. J. Mol. Sci., 2022, 23(15), 8318.
[http://dx.doi.org/10.3390/ijms23158318] [PMID: 35955453]
[15]
He, K.; Wu, L.; Ding, Q.; Haider, F.; Yu, H.; Wang, H.; Xiang, G. Apatinib promotes apoptosis of pancreatic cancer cells through downregulation of hypoxia-inducible factor-1α and increased levels of reactive oxygen species. Oxid. Med. Cell. Longev., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/5152072] [PMID: 30863481]
[16]
Hu, J.; Zheng, Z.; Lei, J.; Cao, Y.; Li, Q.; Zheng, Z.; Chen, C. Targeting the EZH2-PPAR axis Is a potential therapeutic pathway for pancreatic cancer. PPAR Res., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/5589342] [PMID: 34335707]
[17]
Alzoughool, F.; Al-Zghoul, M.B. Optimal therapeutic adropin dose intervention in mice and rat animal models: A systematic review. Vet. World, 2021, 14(6), 1426-1429.
[http://dx.doi.org/10.14202/vetworld.2021.1426-1429] [PMID: 34316188]
[18]
Stelcer, E.; Milecka, P.; Komarowska, H.; Jopek, K.; Tyczewska, M.; Szyszka, M.; Lesniczak, M.; Suchorska, W.; Bekova, K.; Szczepaniak, B.; Ruchala, M.; Karczewski, M.; Wierzbicki, T.; Szaflarski, W.; Malendowicz, L.K.; Rucinski, M. Adropin stimulates proliferation and inhibits adrenocortical steroidogenesis in the human adrenal carcinoma (HAC15) cell line. Front. Endocrinol., 2020, 11, 561370.
[http://dx.doi.org/10.3389/fendo.2020.561370] [PMID: 33133015]
[19]
Li, L.; Xie, W.; Zheng, X.L.; Yin, W.D.; Tang, C.K. A novel peptide adropin in cardiovascular diseases. Clin. Chim. Acta, 2016, 453, 107-113.
[http://dx.doi.org/10.1016/j.cca.2015.12.010] [PMID: 26683354]
[20]
Cross, M.J.; Dixelius, J.; Matsumoto, T.; Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci., 2003, 28(9), 488-494.
[http://dx.doi.org/10.1016/S0968-0004(03)00193-2] [PMID: 13678960]
[21]
Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? in control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[22]
Büchler, P.; Reber, H.A.; Büchler, M.W.; Friess, H.; Hines, O.J. VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg., 2002, 236(6), 738-749.
[23]
Schmitz-Winnenthal, F.H.; Hohmann, N.; Schmidt, T.; Podola, L.; Friedrich, T.; Lubenau, H.; Springer, M.; Wieckowski, S.; Breiner, K.M.; Mikus, G.; Büchler, M.W.; Keller, A.V.; Koc, R.; Springfeld, C.; Knebel, P.; Bucur, M.; Grenacher, L.; Haefeli, W.E.; Beckhove, P. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. OncoImmunology, 2018, 7(4), e1303584.
[http://dx.doi.org/10.1080/2162402X.2017.1303584] [PMID: 29632710]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy