Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy

Author(s): Vijeta Prakash and Reema Gabrani*

Volume 22, Issue 3, 2024

Published on: 10 November, 2023

Page: [336 - 347] Pages: 12

DOI: 10.2174/0118715257262003231031171910

Price: $65

conference banner
Abstract

Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) protein and functional O6- methylguanine DNA methyltransferase (MGMT) repair enzyme. Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.

Keywords: Cell invasion, chemotherapy, drug resistance, GBM, migration, synergy, temozolomide, tyrosine kinase receptor.

Graphical Abstract
[1]
Grech, N.; Dalli, T.; Mizzi, S.; Meilak, L.; Calleja, N.; Zrinzo, A. Rising incidence of glioblastoma multiforme in a well-defined population. Cureus, 2020, 12(5), e8195.
[http://dx.doi.org/10.7759/cureus.8195] [PMID: 32572354]
[2]
Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin. J. Cancer, 2014, 33(2), 115-122.
[http://dx.doi.org/10.5732/cjc.012.10236]
[3]
Hauptman, J. From the bench to the bedside: Sleeping when you′re awake, lasers and the blood-brain barrier, neurons with a taste for lactate, and more…. Surg. Neurol. Int., 2011, 2(1), 100.
[http://dx.doi.org/10.4103/2152-7806.83024] [PMID: 21811706]
[4]
Aiken, R. Molecular neuro-oncology and the challenge of the blood-brain barrier. Semin. Oncol., 2014, 41(4), 438-445.
[http://dx.doi.org/10.1053/j.seminoncol.2014.06.005] [PMID: 25173137]
[5]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[6]
Lin, S.R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol., 2020, 177(6), 1409-1423.
[http://dx.doi.org/10.1111/bph.14816] [PMID: 31368509]
[7]
Twaij, Baan Munim; Hasan, Md Nazmul Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int. J. Plant Biol., 2022, 13(1), 4-14.
[http://dx.doi.org/10.3390/ijpb13010003]
[8]
Efferth, Thomas; Oesch, Franz Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. In: Seminars in Cancer Biology; Academic Press, 2021; 68, pp. 143-163.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.010]
[9]
Ahmad, I.; Fakhri, S.; Khan, H.; Jeandet, P.; Aschner, M.; Yu, Z.L. Targeting cell cycle by β-carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chem. Biol. Interact., 2020, 330, 109229.
[http://dx.doi.org/10.1016/j.cbi.2020.109229] [PMID: 32835667]
[10]
Khan, A.Q.; Rashid, K.; AlAmodi, A.A.; Agha, M.V.; Akhtar, S.; Hakeem, I.; Raza, S.S.; Uddin, S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed. Pharmacother., 2021, 143, 112142.
[http://dx.doi.org/10.1016/j.biopha.2021.112142] [PMID: 34536761]
[11]
(a) Zhai, K.; Siddiqui, M.; Abdellatif, B.; Liskova, A.; Kubatka, P.; Büsselberg, D. Natural compounds in glioblastoma therapy: Preclinical insights, mechanistic pathways, and outlook. Cancers., 2021, 13(10), 2317.;
(b) Farhadi, C.; Milani, E. Comparative study on the effect of heat treatment and sonication on the quality of barberry (Berberis Vulgaris). Juice. J. Food Process. Preserv., 2017, 41, e12956.
[12]
Singh, J.; Kakkar, P. Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J. Ethnopharmacol., 2009, 123(1), 22-26.
[http://dx.doi.org/10.1016/j.jep.2009.02.038] [PMID: 19429334]
[13]
Zeng, Q.; Deng, H.; Li, Y.; Fan, T.; Liu, Y.; Tang, S.; Wei, W.; Liu, X.; Guo, X.; Jiang, J.; Wang, Y.; Song, D. Berberine directly targets the NEK7 protein to block the NEK7–NLRP3 interaction and exert anti-inflammatory activity. J. Med. Chem., 2021, 64(1), 768-781.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01743] [PMID: 33440945]
[14]
Agnarelli, Alessandro; Natali, Marco; Garcia-Gil, Mercedes; Pesi, Rossana; Tozzi, Maria Grazia; Ippolito, Chiara; Bernardini, Nunzia Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Sci. Reports, 2018, 8(1), 10599.
[http://dx.doi.org/10.1038/s41598-018-28952-3]
[15]
Jin, Y.; Zhang, J.; Pan, Y.; Shen, W. Berberine suppressed the progression of human glioma cells by inhibiting the TGF-β1/SMAD2/3 signaling pathway. Integr. Cancer Ther., 2022, 21.
[http://dx.doi.org/10.1177/15347354221130303] [PMID: 36255058]
[16]
Sun, Yuxue; Huang, Haiyan; Zhan, Zhixin; Gao, Haijun; Zhang, Chaochao; Lai, Jiacheng; Cao, Junguo; Li, Chaoyue; Chen, Yong Liu, Ziqiang Berberine inhibits glioma cell migration and invasion by suppressing tgf-β1/col11a1 pathway and enhances chemosensitivity. Res. Square, 2021, 2021, 1107663.
[http://dx.doi.org/10.21203/rs.3.rs-1107663/v1]
[17]
Qu, H.; Song, X.; Song, Z.; Jiang, X.; Gao, X.; Bai, L.; Wu, J.; Na, L.; Yao, Z. Berberine reduces temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma. Cancer Cell Int., 2020, 20(1), 592.
[http://dx.doi.org/10.1186/s12935-020-01693-y] [PMID: 33298057]
[18]
Wang, J.; Qi, Q.; Feng, Z.; Zhang, X.; Huang, B.; Chen, A.; Prestegarden, L.; Li, X.; Wang, J. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget, 2016, 7(41), 66944-66958.
[http://dx.doi.org/10.18632/oncotarget.11396] [PMID: 27557493]
[19]
Gómez-Virgilio, Laura; Maria-del-Carmen, Silva-Lucero; Diego-Salvador, Flores-Morelos; Jazmin, Gallardo-Nieto; Gustavo, Lopez-Toledo; Arminda-Mercedes, Abarca-Fernandez; Ana-Elvira, Zacapala-Gómez et al. "Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators." Cells, 2022, 11(15), 2262.
[20]
Kumar, Ankit; Singh, Umesh Kumar Chaudhary, Anurag Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem., 2015, 12(7), 1535-1542.
[http://dx.doi.org/10.4155/fmc.15.88]
[21]
Wang, S.; An, J.; Dong, W.; Wang, X.; Sheng, J.; Jia, Y.; He, Y.; Ma, X.; Wang, J.; Yu, D.; Jia, X.; Wang, B.; Yu, W.; Liu, K.; Zhao, Y.; Wu, Y.; Zhu, W.; Pan, Y. Glucose-coated berberine nanodrug for glioma therapy through mitochondrial pathway. Int. J. Nanomedicine, 2020, 15, 7951-7965.
[http://dx.doi.org/10.2147/IJN.S213079] [PMID: 33116511]
[22]
Grogan, P.T.; Sleder, K.D.; Samadi, A.K.; Zhang, H.; Timmermann, B.N.; Cohen, M.S. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest. New Drugs, 2013, 31(3), 545-557.
[http://dx.doi.org/10.1007/s10637-012-9888-5] [PMID: 23129310]
[23]
Tang, Q.; Ren, L.; Liu, J.; Li, W.; Zheng, X.; Wang, J.; Du, G. Withaferin A triggers G2/M arrest and intrinsic apoptosis in glioblastoma cells via ATF4‐ATF3‐CHOP axis. Cell Prolif., 2020, 53(1), e12706.
[http://dx.doi.org/10.1111/cpr.12706] [PMID: 31642559]
[24]
Grogan, P.T.; Sarkaria, J.N.; Timmermann, B.N.; Cohen, M.S. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest. New Drugs, 2014, 32(4), 604-617.
[http://dx.doi.org/10.1007/s10637-014-0084-7] [PMID: 24718901]
[25]
Li, Y.Y.; Di, R.; Baibado, J.T.; Cheng, Y.S.; Huang, Y.Q.; Sun, H.; Cheung, H.Y. Identification of kukoamines as the novel markers for quality assessment of Lycii Cortex. Food Res. Int., 2014, 55, 373-380.
[http://dx.doi.org/10.1016/j.foodres.2013.11.008]
[26]
Li, Y.Y.; Hu, S.; Huang, Y.Q.; Han, Y.; Cheung, H.Y. Preventing H2O2-induced toxicity in primary cerebellar granule neurons via activating the PI3-K/Akt/GSK3β pathway by kukoamine from Lycii Cortex. J. Funct. Foods, 2015, 17, 709-721.
[http://dx.doi.org/10.1016/j.jff.2015.06.029]
[27]
Wang, Q.; Li, H.; Sun, Z.; Dong, L.; Gao, L.; Liu, C.; Wang, X. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation. Sci. Rep., 2016, 6(1), 36543.
[http://dx.doi.org/10.1038/srep36543] [PMID: 27824118]
[28]
Ruan, X; Cui, WX; Yang, L; Li, ZH; Liu, B; Wang, Q Extraction of total alkaloids, peimine and peiminine from the flower of Fritillaria thunbergii Miq using supercritical carbon dioxide. J CO2 Util., 2017, 18, 283-293.
[29]
Zhao, B; Shen, C; Zheng, Z; Wang, X; Zhao, W; Chen, X; Peng, F; Xue, L; Shu, M; Hou, X; Wang, K Peiminine inhibits glioblastoma in vitro and in vivo through cell cycle arrest and autophagic flux blocking. Cellphys biochem., 2018, 51(4), 1566-1583.
[http://dx.doi.org/10.1159/000495646]
[30]
Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr., 2018, 6(8), 2473-2490.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[31]
Gehm, B.D.; McAndrews, J.M.; Chien, P.Y.; Jameson, J.L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci., 1997, 94(25), 14138-14143.
[http://dx.doi.org/10.1073/pnas.94.25.14138] [PMID: 9391166]
[32]
Zhang, Y.; Zhang, Z.; Mousavi, M.; Moliani, A.; Bahman, Y.; Bagheri, H. Resveratrol inhibits glioblastoma cells and chemoresistance progression through blockade P-glycoprotein and targeting AKT/PTEN signaling pathway. Chem. Biol. Interact., 2023, 376, 110409.
[http://dx.doi.org/10.1016/j.cbi.2023.110409] [PMID: 36804490]
[33]
Song, Y.; Chen, Y.; Li, Y.; Lyu, X.; Cui, J.; Cheng, Y.; Zheng, T.; Zhao, L.; Zhao, G. Resveratrol suppresses epithelial-mesenchymal transition in GBM by regulating Smad-dependent signaling. BioMed Res. Int., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/1321973] [PMID: 31119150]
[34]
Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; Giovannoni, R.; Bentivegna, A. Resveratrol impairs glioma stem cells proliferation and motility by modulating the wnt signaling pathway. PLoS One, 2017, 12(1), e0169854.
[http://dx.doi.org/10.1371/journal.pone.0169854] [PMID: 28081224]
[35]
Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J. Neurosurg., 2017, 126(5), 1448-1460.
[http://dx.doi.org/10.3171/2016.1.JNS152077] [PMID: 27419830]
[36]
Öztürk, Y.; Günaydın, C.; Yalçın, F.; Nazıroğlu, M.; Braidy, N. Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/4619865] [PMID: 30984336]
[37]
Jhaveri, A; Deshpande, P; Pattni, B; Torchilin, V Transferrintargeted, resveratrol-loaded liposomes for the treatment of glioblastoma. Release, 2018.
[38]
Granja, A.; Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res. Int., 2017, 2017, 1-15.
[http://dx.doi.org/10.1155/2017/5813793] [PMID: 28791306]
[39]
Udroiu, I.; Marinaccio, J.; Sgura, A. Epigallocatechin‐3‐gallate induces telomere shortening and clastogenic damage in glioblastoma cells. Environ. Mol. Mutagen., 2019, 60(8), 683-692.
[http://dx.doi.org/10.1002/em.22295] [PMID: 31026358]
[40]
Xie, C.R.; You, C.G.; Zhang, N.; Sheng, H.S.; Zheng, X.S. Epigallocatechin gallate preferentially inhibits O6-methylguanine DNA-methyltransferase expression in glioblastoma cells rather than in nontumor glial cells. Nutr. Cancer, 2018, 70(8), 1339-1347.
[http://dx.doi.org/10.1080/01635581.2018.1539189] [PMID: 30558449]
[41]
Kuduvalli, S.S.; Daisy, P.S.; Vaithy, A.; Purushothaman, M.; Ramachandran Muralidharan, A.; Agiesh, K.B.; Mezger, M.; Antony, J.S.; Subramani, M.; Dubashi, B.; Biswas, I.; Guruprasad, K.P.; Anitha, T.S. A combination of metformin and epigallocatechin gallate potentiates glioma chemotherapy in vivo. Front. Pharmacol., 2023, 14, 1096614.
[http://dx.doi.org/10.3389/fphar.2023.1096614] [PMID: 37025487]
[42]
Guo, Hengjuan; Ding, Hui; Tang, Xin; Liang, Maoli; Li, Shuo; Zhang, Jing Cao, Jie Quercetin induces pro‐apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thoracic Cancer., 2021, 12(9), 1415-1422.
[http://dx.doi.org/10.1111/1759-7714.13925]
[43]
Huang, Kuo-Yen; Wang, Tong-Hong; Chen, Chin-Chuan; Leu, Yann-Lii; Li, Hsin-Jung; Jhong, Cai-Ling Chen, Chi-Yuan Growth suppression in lung cancer cells harboring EGFR-C797S mutation by quercetin. Biomolecules, 2021, 11(9), 1271.
[http://dx.doi.org/10.3390/biom11091271]
[44]
Bhatiya, Meenu; Pathak, Surajit; Jothimani, Ganesan; Duttaroy, Asim K.; Banerjee, Antara A comprehensive study on the anti-cancer effects of quercetin and its epigenetic modifications in arresting progression of colon cancer cell proliferation. Arch. Immunolog. Therap. Experimen., 2023, 1(6), 71.
[http://dx.doi.org/10.1007/s00005-023-00669-w]
[45]
García-Gutiérrez, N.; Luna-Bárcenas, G.; Herrera-Hernández, G.; Campos-Vega, R.; Lozano-Herrera, S.J.; Sánchez-Tusié, A.A.; García-Solis, P.; Vergara-Castañeda, H.A. Quercetin and its fermented extract as a potential inhibitor of bisphenol a-exposed ht-29 colon cancer cells’ viability. Int. J. Mol. Sci., 2023, 24(6), 5604.
[http://dx.doi.org/10.3390/ijms24065604] [PMID: 36982678]
[46]
Kasiri, N.; Rahmati, M.; Ahmadi, L.; Eskandari, N.; Motedayyen, H. Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology, 2020, 28(1), 39-62.
[http://dx.doi.org/10.1007/s10787-019-00660-y] [PMID: 31754939]
[47]
Chekuri, Sudhakar; Vyshnava, Satyanarayana Swamy; Somisetti, Swarupa Lakshmi; Sai, Bindu Karamthote Cheniya; Gandu, Chakradhar; Anupalli, Roja Rani Isolation and anticancer activity of quercetin from Acalypha indica L. against breast cancer cell lines MCF-7 and MDA-MB-231. 3 Biotech, 2023, 13(8), 289-.
[http://dx.doi.org/10.1007/s13205-023-03705-w]
[48]
Sundaram, Kedhari; Madhumitha, Ritu Raina; Afroze, Nazia; Bajbouj, Khuloud; Hamad, Mawieh; Haque, Shafiul; Hussain, Arif Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosc. Rep., 2019, 30(8), BSR20190720.
[http://dx.doi.org/10.1042/BSR20190720]
[49]
Lin, T.H.; Hsu, W.H.; Tsai, P.H.; Huang, Y.T.; Lin, C.W.; Chen, K.C.; Tsai, I.H.; Kandaswami, C.C.; Huang, C.J.; Chang, G.D.; Lee, M.T.; Cheng, C.H. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial–mesenchymal transition signaling. Food Funct., 2017, 8(4), 1558-1568.
[http://dx.doi.org/10.1039/C6FO00551A] [PMID: 28277581]
[50]
Liu, Y.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38.
[http://dx.doi.org/10.1016/j.biopha.2017.05.044] [PMID: 28528183]
[51]
Tsiailanis, A.D.; Renziehausen, A.; Kiriakidi, S.; Vrettos, E.I.; Markopoulos, G.S.; Sayyad, N.; Hirmiz, B.; Aguilar, M.I.; Del Borgo, M.P.; Kolettas, E.; Widdop, R.E.; Mavromoustakos, T.; Crook, T.; Syed, N.; Tzakos, A.G. Enhancement of glioblastoma multiforme therapy through a novel Quercetin-Losartan hybrid. Free Radic. Biol. Med., 2020, 160, 391-402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.007] [PMID: 32822744]
[52]
Taylor, M.A.; Khathayer, F.; Ray, S.K. Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy. Neurochem. Res., 2019, 44(7), 1715-1725.
[http://dx.doi.org/10.1007/s11064-019-02802-8] [PMID: 31011879]
[53]
Jang, E.; Kim, I.Y.; Kim, H.; Lee, D.M.; Seo, D.Y.; Lee, J.A.; Choi, K.S.; Kim, E. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis. Biochem. Pharmacol., 2020, 178, 114098.
[http://dx.doi.org/10.1016/j.bcp.2020.114098] [PMID: 32540484]
[54]
Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766.
[http://dx.doi.org/10.1080/10837450.2020.1740933] [PMID: 32192406]
[55]
Wang, X.; Deng, J.; Yuan, J.; Tang, X.; Wang, Y.; Chen, H.; Liu, Y.; Zhou, L. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int. J. Oncol., 2017, 51(2), 467-477.
[http://dx.doi.org/10.3892/ijo.2017.4037] [PMID: 28627598]
[56]
Lee, J.E.; Yoon, S.S.; Moon, E.Y. Curcumin-induced autophagy augments its antitumor effect against A172 human glioblastoma cells. Biomol. Ther., 2019, 27(5), 484-491.
[http://dx.doi.org/10.4062/biomolther.2019.107] [PMID: 31405268]
[57]
Wang, Z.; Liu, F.; Liao, W.; Yu, L.; Hu, Z.; Li, M.; Xia, H. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression. Arch. Biochem. Biophys., 2020, 689, 108412.
[http://dx.doi.org/10.1016/j.abb.2020.108412] [PMID: 32445778]
[58]
Bagherian, A.; Mardani, R.; Roudi, B.; Taghizadeh, M.; Banfshe, H.R.; Ghaderi, A.; Davoodvandi, A.; Shamollaghamsari, S.; Hamblin, M.R.; Mirzaei, H. Combination therapy with nanomicellar-curcumin and temozolomide for in vitro therapy of glioblastoma multiforme via Wnt signaling pathways. J. Mol. Neurosci., 2020, 70(10), 1471-1483.
[http://dx.doi.org/10.1007/s12031-020-01639-z] [PMID: 32666415]
[59]
Zhang, H.; van Os, W.L.; Tian, X.; Zu, G.; Ribovski, L.; Bron, R.; Bussmann, J.; Kros, A.; Liu, Y.; Zuhorn, I.S. Development of curcumin-loaded zein nanoparticles for transport across the blood–brain barrier and inhibition of glioblastoma cell growth. Biomater. Sci., 2021, 9(21), 7092-7103.
[http://dx.doi.org/10.1039/D0BM01536A] [PMID: 33538729]
[60]
Sahab-Negah, S.; Ariakia, F.; Jalili-Nik, M.; Afshari, A.R.; Salehi, S.; Samini, F.; Rajabzadeh, G.; Gorji, A. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: An in vitro study. Mol. Neurobiol., 2020, 57(8), 3391-3411.
[http://dx.doi.org/10.1007/s12035-020-01922-5] [PMID: 32430842]
[61]
Maiti, P.; Scott, J.; Sengupta, D.; Al-Gharaibeh, A.; Dunbar, G. Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathway in cultured glioblastoma cells. Int. J. Mol. Sci., 2019, 20(2), 399.
[http://dx.doi.org/10.3390/ijms20020399] [PMID: 30669284]
[62]
Arzani, H.; Adabi, M.; Mosafer, J.; Dorkoosh, F.; Khosravani, M.; Maleki, H.; Nekounam, H.; Kamali, M. Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res. Appl. Chem., 2019, 9(5), 4225-4231.
[63]
Wang, Y.; Ying, X.; Xu, H.; Yan, H.; Li, X.; Tang, H. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int. J. Nanomedicine, 2017, 12, 1369-1384.
[http://dx.doi.org/10.2147/IJN.S124276] [PMID: 28260885]
[64]
Maiti, P.; Plemmons, A.; Dunbar, G.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments. PLoS One, 2019, 14(12), e0225660.
[http://dx.doi.org/10.1371/journal.pone.0225660] [PMID: 31841506]
[65]
Study of Liposomal Curcumin in Combination With RT and TMZ in Patients With Newly Diagnosed High-Grade Gliomas. 2023. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05768919
[66]
Mabou, FD; Belinda, I; Yossa, N TERPENES: Structural classification and biological activities. IOSR J. Pharm. Biol. Sci., 2021, 16, 2319.
[67]
Achi, I.T.; Sarbadhikary, P.; George, B.P.; Abrahamse, H. Multi-target potential of berberine as an antineoplastic and antimetastatic agent: A special focus on lung cancer treatment. Cells, 2022, 11(21), 3433.
[http://dx.doi.org/10.3390/cells11213433] [PMID: 36359829]
[68]
Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review. Cancers, 2022, 14(5), 1100.
[http://dx.doi.org/10.3390/cancers14051100] [PMID: 35267408]
[69]
Burdock, G.A. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul. Toxicol. Pharmacol., 2022, 128, 105088.
[http://dx.doi.org/10.1016/j.yrtph.2021.105088] [PMID: 34838871]
[70]
Krylova, N.G.; Drobysh, M.S.; Semenkova, G.N.; Kulahava, T.A.; Pinchuk, S.V.; Shadyro, O.I. Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress. Mol. Cell. Biochem., 2019, 462(1-2), 195-206.
[http://dx.doi.org/10.1007/s11010-019-03622-8] [PMID: 31493190]
[71]
Pazhouhi, M.; Sariri, R.; Khazaei, M.R.; Moradi, M.T.; Khazaei, M. Synergistic effect of temozolomide and thymoquinone on human glioblastoma multiforme cell line (U87MG). J. Cancer Res. Ther., 2018, 14(5), 1023-1028.
[http://dx.doi.org/10.4103/0973-1482.187241] [PMID: 30197342]
[72]
Khazaei, M.; Pazhouhi, M. Temozolomide-mediated apoptotic death is improved by thymoquinone in U87MG cell line. Cancer Invest., 2017, 35(4), 225-236.
[http://dx.doi.org/10.1080/07357907.2017.1289383] [PMID: 28355088]
[73]
Guler, E.M.; Sisman, B.H.; Kocyigit, A.; Hatiboglu, M.A. Investigation of cellular effects of thymoquinone on glioma cell. Toxicol. Rep., 2021, 8, 162-170.
[http://dx.doi.org/10.1016/j.toxrep.2020.12.026] [PMID: 33489775]
[74]
Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-inflammatory and antimicrobial properties of Thyme oil and its main constituents. Int. J. Mol. Sci., 2023, 24(8), 6936.
[http://dx.doi.org/10.3390/ijms24086936] [PMID: 37108100]
[75]
Yazici, A.; Marinelli, L.; Cacciatore, I.; Emsen, B.; Eusepi, P.; Di Biase, G.; Di Stefano, A.; Mardinoğlu, A.; Türkez, H. Potential anticancer effect of carvacrol codrugs on human glioblastoma cells. Curr. Drug Deliv., 2021, 18(3), 350-356.
[http://dx.doi.org/10.2174/18755704MTEw8OTQw5] [PMID: 33109049]
[76]
Chen, W.L.; Turlova, E.; Sun, C.; Kim, J.S.; Huang, S.; Zhong, X.; Guan, Y.Y.; Wang, G.L.; Rutka, J.; Feng, Z.P.; Sun, H.S. Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways. Mar. Drugs, 2015, 13(4), 2505-2525.
[http://dx.doi.org/10.3390/md13042505] [PMID: 25913706]
[77]
Shahein, S.A.; Aboul-Enein, A.M.; Higazy, I.M.; Abou-Elella, F.; Lojkowski, W.; Ahmed, E.R.; Mousa, S.A.; AbouAitah, K. Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pHdependent release. Int. J. Nanomed., 2019, 5503-5526.
[78]
Liang, W.Z.; Lu, C.H. Carvacrol-induced [Ca2+]i rise and apoptosis in human glioblastoma cells. Life Sci., 2012, 90(17-18), 703-711.
[http://dx.doi.org/10.1016/j.lfs.2012.03.027] [PMID: 22480511]
[79]
Fonseca, L.M.; Bona, N.P.; Crizel, R.L.; Pedra, N.S.; Stefanello, F.M.; Lim, L.T.; Carreño, N.L.V.; Dias, A.R.G.; Zavareze, E.R. Electrospun starch nanofibers as a delivery carrier for carvacrol as anti‐glioma agent. Stärke, 2022, 74(1-2), 2100115.
[http://dx.doi.org/10.1002/star.202100115]
[80]
Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia, 2019, 134, 172-181.
[http://dx.doi.org/10.1016/j.fitote.2019.02.020] [PMID: 30825580]
[81]
Ji, C.C.; Tang, H.F.; Hu, Y.Y.; Zhang, Y.; Zheng, M.H.; Qin, H.Y.; Li, S.Z.; Wang, X.Y.; Fei, Z.; Cheng, G. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl-2 family proteins. Mol. Med. Rep., 2016, 14(1), 380-386.
[http://dx.doi.org/10.3892/mmr.2016.5287] [PMID: 27175997]
[82]
El Aziz, M.M.; Ashour, A.S.; Melad, A.G. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res., 2019, 8(1), 282-288.
[83]
Bi, L.; Liu, Y.; Yang, Q.; Zhou, X.; Li, H.; Liu, Y.; Li, J.; Lu, Y.; Tang, H. Paris saponin H inhibits the proliferation of glioma cells through the A1 and A3 adenosine receptor mediated pathway. Int. J. Mol. Med., 2021, 47(4), 30.
[http://dx.doi.org/10.3892/ijmm.2021.4863] [PMID: 33537802]
[84]
Mbaveng, A.T.; Ndontsa, B.L.; Kuete, V.; Nguekeu, Y.M.M.; Çelik, İ.; Mbouangouere, R.; Tane, P.; Efferth, T. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death. Phytomedicine, 2018, 43, 78-85.
[http://dx.doi.org/10.1016/j.phymed.2018.03.035] [PMID: 29747757]
[85]
Noté, O.P.; Jihu, D.; Antheaume, C.; Zeniou, M.; Pegnyemb, D.E.; Guillaume, D.; Chneiwess, H.; Kilhoffer, M.C.; Lobstein, A. Triterpenoid saponins from Albizia lebbeck (L.) Benth and their inhibitory effect on the survival of high grade human brain tumor cells. Carbohydr. Res., 2015, 404, 26-33.
[http://dx.doi.org/10.1016/j.carres.2014.12.004] [PMID: 25662738]
[86]
Xiong, J.; Cheng, G.; Tang, H.; Zhen, H.N.; Zhang, X. Ardipusilloside I induces apoptosis in human glioblastoma cells through a caspase-8-independent FasL/Fas-signaling pathway. Environ. Toxicol. Pharmacol., 2009, 27(2), 264-270.
[http://dx.doi.org/10.1016/j.etap.2008.11.008] [PMID: 21783950]
[87]
Lin, H.; Zhang, X.; Cheng, G.; Tang, H.F.; Zhang, W.; Zhen, H.N.; Cheng, J.X.; Liu, B.L.; Cao, W.D.; Dong, W.P.; Wang, P. Apoptosis induced by ardipusilloside III through BAD dephosphorylation and cleavage in human glioblastoma U251MG cells. Apoptosis, 2008, 13(2), 247-257.
[http://dx.doi.org/10.1007/s10495-007-0170-9] [PMID: 18181022]
[88]
Lv, L.; Zheng, L.; Dong, D.; Xu, L.; Yin, L.; Xu, Y.; Qi, Y.; Han, X.; Peng, J. Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: A potential new drug for treatment of glioblastoma multiforme. Food Chem. Toxicol., 2013, 59, 657-669.
[http://dx.doi.org/10.1016/j.fct.2013.07.012] [PMID: 23871826]
[89]
Kochan, E.; Szymańska, G.; Wielanek, M.; Wiktorowska-Owczarek, A.; Jóźwiak-Bębenista, M.; Grzegorczyk-Karolak, I. The content of triterpene saponins and phenolic compounds in American ginseng hairy root extracts and their antioxidant and cytotoxic properties. Plant Cell Tissue Organ Cult., 2019, 138(2), 353-362.
[http://dx.doi.org/10.1007/s11240-019-01633-3]
[90]
Wu, B.; Zhu, J.; Dai, X.; Ye, L.; Wang, B.; Cheng, H.; Wang, W. Raddeanin A inhibited epithelial-mesenchymal transition (EMT) and angiogenesis in glioblastoma by downregulating β-catenin expression. Int. J. Med. Sci., 2021, 18(7), 1609-1617.
[http://dx.doi.org/10.7150/ijms.52206] [PMID: 33746577]
[91]
Annabi, B.; Rojas-Sutterlin, S.; Laroche, M.; Lachambre, M.P.; Moumdjian, R.; Béliveau, R. The diet-derived sulforaphane inhibits matrix metalloproteinase-9-activated human brain microvascular endothelial cell migration and tubulogenesis. Mol. Nutr. Food Res., 2008, 52(6), 692-700.
[http://dx.doi.org/10.1002/mnfr.200700434] [PMID: 18435488]
[92]
Das, A.; Banik, N.L.; Ray, S.K. Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer, 2007, 110(5), 1083-1095.
[http://dx.doi.org/10.1002/cncr.22888] [PMID: 17647244]
[93]
Karmakar, S.; Weinberg, M.S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience, 2006, 141(3), 1265-1280.
[http://dx.doi.org/10.1016/j.neuroscience.2006.04.075] [PMID: 16765523]
[94]
Zhang, J.; Wang, G.; Mao, Q.; Li, S.; Xiong, W.; Lin, Y.; Ge, J. Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma. Oncotarget, 2016, 0(0), 5.
[http://dx.doi.org/10.18632/oncotarget.7657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy