Review Article

草药纳米凝胶的靶向递送策略:进展与应用

卷 24, 期 16, 2023

发表于: 10 November, 2023

页: [1260 - 1270] 页: 11

弟呕挨: 10.2174/0113894501275800231103063853

价格: $65

摘要

本综述的目的是深入研究草药纳米凝胶作为治疗各种慢性和急性疾病的有前途的药物递送方法。草药纳米凝胶是一种新型的、有发展前景的给药技术,具有独特的优势,具有更好的治疗效果。本文综述了草药纳米凝胶的综合分析,特别强调了它们在常规剂型、聚合物选择标准、药物释放机制和应用方面的评价。对比研究表明,草药纳米凝胶与常规剂型相比具有不同的益处。在改善生物利用度的口服给药和胃肠道靶向给药、皮肤病的局部给药以及针对癌症、炎症性疾病和感染的部位特异性治疗的靶向给药策略等领域,它们在经皮给药以实现全身吸收方面显示出令人鼓舞的结果。草药纳米凝胶为改善药物传递和治疗效果提供了一个有前途的平台。了解药物释放机制有助于进一步控制和持续提供草药治疗。对其中一些专利进行了讨论和比较分析,展示了它们比传统剂型的优势,聚合物选择标准确保了高效和优化配方的设计。基于草药的纳米凝胶已经成为改善药物管理的一种潜在方法。它们提供了几个优点,如更好的稳定性、靶向递送和治疗成分的控制释放。草药纳米凝胶是一种很有前途的治疗方法,能够对抗各种疾病,如癌症,伤口愈合,并提高患者的依从性。

关键词: 纳米凝胶,聚合物,草药,扩散,生物成像,靶向药物输送。

图形摘要
[1]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[2]
Liu C. Overview on development of ASEAN traditional and herbal medicines. Chin Herb Med 2021; 13(4): 441-50.
[http://dx.doi.org/10.1016/j.chmed.2021.09.002] [PMID: 36119367]
[3]
Soni K, Mujtaba A, Akhter MH, Zafar A, Kohli K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J Microencapsul 2020; 37(2): 91-108.
[http://dx.doi.org/10.1080/02652048.2019.1701114] [PMID: 31810417]
[4]
Namdari M, Eatemadi A, Soleimaninejad M, Hammed AT. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed Pharmacother 2017; 87: 321-31.
[http://dx.doi.org/10.1016/j.biopha.2016.12.099] [PMID: 28064105]
[5]
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle–hydrogel superstructures for biomedical applications. J Control Release 2020; 324: 505-21.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.041] [PMID: 32464152]
[6]
Ojha S, Yadav S, Ajeet Aggarwal B, Gupta SK, Mishra S. Considering the conception of nanotechnology integrated on herbal formulation for the management of cancer. Lett Drug Des Discov 2022; 20(10): 1437-57.
[7]
Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in nano-enabled platforms for the treatment of depression. Polymers 2021; 13(9): 1431.
[http://dx.doi.org/10.3390/polym13091431] [PMID: 33946703]
[8]
Reddy HV R, Bhattacharyya S. in vitro evaluation of mucoadhesive in situ nanogel of celecoxib for buccal delivery. Ann Pharm Fr 2021; 79(4): 418-30.
[http://dx.doi.org/10.1016/j.pharma.2021.01.006] [PMID: 33515589]
[9]
Vijaya Rani KR, Rajan S, Bhupathyraaj M, et al. The effect of polymers on drug release kinetics in nanoemulsion In Situ gel formulation. Polymers 2022; 14(3): 427.
[http://dx.doi.org/10.3390/polym14030427] [PMID: 35160417]
[10]
Ali A, Ali A, Rahman MA, Warsi MH, Yusuf M, Alam P. Development of nanogel loaded with lidocaine for wound-healing: Illustration of improved drug deposition and skin safety analysis. Gels 2022; 8(8): 466.
[http://dx.doi.org/10.3390/gels8080466] [PMID: 35892725]
[11]
Karg M, Pich A, Hellweg T, et al. Nanogels and microgels: From model colloids to applications, recent developments, and future trends. Langmuir 2019; 35(19): 6231-55.
[http://dx.doi.org/10.1021/acs.langmuir.8b04304] [PMID: 30998365]
[12]
Khan A, Parvez N, Joshi SK, Singh AP. Herbal based nanogel formulation for skin disease -optimization and evaluation parameters. J Pharm Negat Results 2023; 14: 2877-95.
[13]
Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 2020; 12(3): 290.
[http://dx.doi.org/10.3390/pharmaceutics12030290] [PMID: 32210184]
[14]
Sharma A, Garg T, Aman A, et al. Nanogel : An advanced drug delivery tool: Current and future. Artif Cells Nanomed Biotechnol 2016; 44(1): 165-77.
[http://dx.doi.org/10.3109/21691401.2014.930745] [PMID: 25053442]
[15]
Rajput R, Narkhede J, Naik JB. Nanogels as nanocarriers for drug delivery: A review. ADMET DMPK 2020; 8(1): 1-15.
[http://dx.doi.org/10.5599/admet.724] [PMID: 35299773]
[16]
O’Donnell KP, Williams RO. Nanoparticulate systems for oral drug delivery to the colon. Int J Nanotechnol 2011; 8(1-2): 4-20.
[http://dx.doi.org/10.1504/IJNT.2011.037167]
[17]
Huynh U, Wu P, Qiu J, et al. Targeted drug delivery using a plug-to-direct antibody–nanogel conjugate. Biomacromolecules 2023; 24(2): 849-57.
[http://dx.doi.org/10.1021/acs.biomac.2c01269] [PMID: 36639133]
[18]
Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules 2019; 24(3): 603.
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[19]
Salari N, Faraji F, Torghabeh FM, et al. Polymer-based drug delivery systems for anticancer drugs: A systematic review. Cancer Treat Res Commun 2022; 32: 100605.
[http://dx.doi.org/10.1016/j.ctarc.2022.100605] [PMID: 35816909]
[20]
Aminabhavi TM, Soppimath KS, Mallikarjuna NN. Polymers in drug delivery: Polymeric drug delivery systems. Polym News 2004; 29(3): 83-6.
[http://dx.doi.org/10.1080/00323910490980787]
[21]
Mauri E, Giannitelli SM, Trombetta M, Rainer A. Synthesis of nanogels: Current trends and future outlook. Gels 2021; 7(2): 36.
[http://dx.doi.org/10.3390/gels7020036] [PMID: 33805279]
[22]
Srivastava M, Kohli K, Ali M. Formulation development of novel in situ nanoemulgel (NEG) of ketoprofen for the treatment of periodontitis. Drug Deliv 2016; 23(1): 154-66.
[http://dx.doi.org/10.3109/10717544.2014.907842] [PMID: 24786482]
[23]
Sultana F, Maniruj J, Imran-Ul- H, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci 2013; 3(8) (Suppl.).
[24]
Palkar V, Thakar D, Kuksenok O. Nanogel degradation at soft interfaces and in bulk: Tracking shape changes and interfacial spreading. Macromolecules 2023; 56(4): 1289-302.
[http://dx.doi.org/10.1021/acs.macromol.2c02470]
[25]
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328: 171-91.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.033] [PMID: 32866591]
[26]
Dorwal D. Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci 2012; 4 (3): 67-74.
[27]
Jha A, Rama A, Ladani B, Verma N, Kannan S, Naha A. Temperature and pH-responsive nanogels as intelligent drug delivery systems: A comprehensive review. J Appl Pharm Sci 2021; 11(12): 001-16.
[28]
Puoci F, Curcio M. PH- and temperature-responsive hydrogels in drug delivery. Smart Materials for Drug Delivery. Royal Society of chemistry 2013; pp. 153-79.
[29]
Rezanejade Bardajee G, Ghavami S, Hosseini SS. A review on pH and temperature responsive gels in drug delivery. J Chem Rev 2020; 2(2): 80-9.
[http://dx.doi.org/10.33945/SAMI/JCR.2020.2.1]
[30]
Beauté L, McClenaghan N, Lecommandoux S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv Drug Deliv Rev 2019; 138: 148-66.
[http://dx.doi.org/10.1016/j.addr.2018.12.010] [PMID: 30553952]
[31]
Raemdonck K, Naeye B, Høgset A, Demeester J, De Smedt SC. Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. J Control Release 2010; 145(3): 281-8.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.012] [PMID: 20403396]
[32]
Oliveira S, Fretz MM, Høgset A, Storm G, Schiffelers RM. Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochim Biophys Acta Biomembr 2007; 1768(5): 1211-7.
[http://dx.doi.org/10.1016/j.bbamem.2007.01.013] [PMID: 17343820]
[33]
Dalir Abdolahinia E, Barati G, Ranjbar-Navazi Z, et al. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 2022; 68: 103109.
[http://dx.doi.org/10.1016/j.jddst.2022.103109]
[34]
Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(4): 509-33.
[http://dx.doi.org/10.1002/wnan.1328] [PMID: 25581024]
[35]
Wen C, Zhang Z, Liu G, et al. Structure, rheology and gastrointestinal release kinetics of new-type curcumin-based nanofibers nanohydrogel assisted prepared with subcritical water at different treatment times. Food Hydrocoll 2023; 145: 109156.
[http://dx.doi.org/10.1016/j.foodhyd.2023.109156]
[36]
Noor A, Jamil S, Sadeq TW, Mohammed Ameen MS, Kohli K. Development and evaluation of nanoformulations containing timur oil and rosemary oil for treatment of topical fungal infections. Gels 2023; 9(7): 516.
[http://dx.doi.org/10.3390/gels9070516] [PMID: 37504395]
[37]
Chaudhary H, Kohli K, Kumar V. A novel nano-carrier transdermal gel against inflammation. Int J Pharm 2014; 465(1-2): 175-86.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.023] [PMID: 24548719]
[38]
Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ. Nanomaterials in wound healing and infection control. Antibiotics 2021; 10(5): 473.
[http://dx.doi.org/10.3390/antibiotics10050473] [PMID: 33919072]
[39]
Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials 2019; 12(13): 2176.
[http://dx.doi.org/10.3390/ma12132176] [PMID: 31284587]
[40]
Yadav A, Narayan Tiwari N, Prakash Srivastava S, Mani Tripathi S, Mishra S. Bioactive compound containing hepatoprotective activity. Curr Bioact Compd 2023; 19.
[41]
Kang MG, Lee MY, Cha JM, et al. Nanogels derived from fish gelatin: Application to drug delivery system. Mar Drugs 2019; 17(4): 246.
[http://dx.doi.org/10.3390/md17040246] [PMID: 31027308]
[42]
Shen CL, Liu HR, Lou Q, et al. Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics 2022; 12(6): 2860-93.
[http://dx.doi.org/10.7150/thno.70721] [PMID: 35401835]
[43]
Ghomi M, Zare EN, Alidadi H, et al. A multifunctional bioresponsive and fluorescent active nanogel composite for breast cancer therapy and bioimaging. Adv Compos Hybrid Mater 2023; 6(1): 51.
[http://dx.doi.org/10.1007/s42114-022-00613-0]
[44]
Younis MR, He G, Lin J, Huang P. Recent advances on graphene quantum dots for bioimaging applications. Front Chem 2020; 8: 424.
[http://dx.doi.org/10.3389/fchem.2020.00424] [PMID: 32582629]
[45]
Chan M, Almutairi A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. Mater Horiz 2016; 3(1): 21-40.
[http://dx.doi.org/10.1039/C5MH00161G] [PMID: 27398218]
[46]
Soni S, Babbar A, Sharma R, Maitra A. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 2006; 14(2): 87-95.
[http://dx.doi.org/10.1080/10611860600635608] [PMID: 16608735]
[47]
Nune SK, Gunda P, Thallapally PK, Lin YY, Laird Forrest M, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 2009; 6(11): 1175-94.
[http://dx.doi.org/10.1517/17425240903229031] [PMID: 19743894]
[48]
Zhang Y, Zou Z, Liu S, Miao S, Liu H. Nanogels as novel nanocarrier systems for efficient delivery of CNS therapeutics. Front Bioeng Biotechnol 2022; 10: 954470.
[http://dx.doi.org/10.3389/fbioe.2022.954470] [PMID: 35928954]
[49]
Liu Z, Zhou D, Yan X, et al. Gold nanoparticle-incorporated chitosan nanogels as a theranostic nanoplatform for CT imaging and tumour chemotherapy. Int J Nanomedicine 2022; 17: 4757-72.
[http://dx.doi.org/10.2147/IJN.S375999] [PMID: 36238536]
[50]
Bajracharya R, Song JG, Back SY, Han HK. Recent advancements in non-invasive formulations for protein drug delivery. Comput Struct Biotechnol J 2019; 17: 1290-308.
[http://dx.doi.org/10.1016/j.csbj.2019.09.004] [PMID: 31921395]
[51]
Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Design, formulation and optimization of valsartan transdermal gel containing iso-eucalyptol as novel permeation enhancer: Preclinical assessment of pharmacokinetics in Wistar albino rats. Expert Opin Drug Deliv 2014; 11(8): 1149-62.
[http://dx.doi.org/10.1517/17425247.2014.914027] [PMID: 24830648]
[52]
Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol 2022; 13: 874510.
[http://dx.doi.org/10.3389/fphar.2022.874510] [PMID: 36160424]
[53]
Hapuarachchige S, Artemov D. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine. Front Oncol 2020; 10: 1131.
[http://dx.doi.org/10.3389/fonc.2020.01131] [PMID: 32793481]
[54]
Vijayan VM, Shenoy SJ, Victor SP, Muthu J. Stimulus responsive nanogel with innate near IR fluorescent capability for drug delivery and bioimaging. Colloids Surf B Biointerfaces 2016; 146: 84-96.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.059] [PMID: 27262258]
[55]
Yang Z, Chen L, McClements DJ, et al. Stimulus-responsive hydrogels in food science: A review. Food Hydrocoll 2022; 124: 107218.
[http://dx.doi.org/10.1016/j.foodhyd.2021.107218]
[56]
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-responsive polymeric nanoplatforms for cancer therapy. Front Bioeng Biotechnol 2021; 9: 707319.
[http://dx.doi.org/10.3389/fbioe.2021.707319] [PMID: 34249894]
[57]
Oishi M, Nagasaki Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 2010; 5(3): 451-68.
[http://dx.doi.org/10.2217/nnm.10.18] [PMID: 20394537]
[58]
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 2015; 9(5): 4686-97.
[http://dx.doi.org/10.1021/acsnano.5b01433] [PMID: 25938172]
[59]
Miura R, Sawada S, Mukai S, Sasaki Y, Akiyoshi K. Synergistic anti-tumor efficacy by combination therapy of a self-assembled nanogel vaccine with an immune checkpoint anti-PD-1 antibody. RSC Adv 2020; 10(14): 8074-9.
[http://dx.doi.org/10.1039/C9RA10066K] [PMID: 35497849]
[60]
Ghasemian M, Owlia S, Owlia MB. Review of anti-inflammatory herbal medicines. Adv Pharmacol Sci 2016; 2016
[http://dx.doi.org/10.1155/2016/9130979]
[61]
Sultana A, Zare M, Thomas V, Kumar TSS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med Drug Discov. Elsevier 2022; p. 15.
[62]
Zhao T, Hu X, Ma R, et al. Photovoltaic polymer photosensitizer-doped nano-therapeutic reagent for in vivo enhanced bioimaging guided photodynamic therapy. Chem Eng J 2022; 441: 135983.
[http://dx.doi.org/10.1016/j.cej.2022.135983]
[63]
Hashemi F, Mohajeri N, Radnia F, Zarghami N. Design of an efficient fluorescent nanoplatform carrier for hydrophobic drugs along with green carbon dot: Possible application in cancer image-guided drug therapy. Photodiagnosis Photodyn Ther 2022; 37.
[64]
Juenet M, Varna M, Chauvierre C, Letourneur D. Nanotheranostics in cardiovascular diseases. Nanotheran Personal Med 2016; 223-65.
[http://dx.doi.org/10.1142/9789814713535_0009]
[65]
Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 2012; 64(13): 1394-416.
[http://dx.doi.org/10.1016/j.addr.2012.06.006] [PMID: 22728642]
[66]
Sharma S. Nanotheranostics in evidence based personalized medicine. Curr Drug Targets 2014; 15(10): 915-30.
[http://dx.doi.org/10.2174/1389450115666140826123552] [PMID: 25174340]
[67]
Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci 2015; 112(47): 14452-9.
[http://dx.doi.org/10.1073/pnas.1508520112] [PMID: 26598661]
[68]
Nii T, Katayama Y. Biomaterial-assisted regenerative medicine. Int J Mol Sci 2021; 22(16): 8657.
[http://dx.doi.org/10.3390/ijms22168657] [PMID: 34445363]
[69]
Grimaudo MA, Concheiro A, Alvarez-Lorenzo C. Nanogels for regenerative medicine. J Control Release 2019; 313: 148-60.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.015] [PMID: 31629040]
[70]
Alam A, Foudah AI, Salkini MA, Raish M, Sawale J. Herbal fennel essential oil nanogel: Formulation, characterization and antibacterial activity against Staphylococcus aureus. Gels 2022; 8(11): 736.
[http://dx.doi.org/10.3390/gels8110736] [PMID: 36421558]
[71]
Sakthiganapathi M, Yoganandam GP, Gopal V. Formulation, characterization, and evaluation of wound healing potency of a novel Mattan tailam nanogel based on a famous traditional siddha formula. Avicenna J Med Biotechnol 2023; 15(1): 38-47.
[PMID: 36789120]
[72]
Ranjbar R, Zarenezhad E, Abdollahi A, et al. Nanoemulsion and nanogel containing cuminum cyminum L essential oil: Antioxidant, anticancer, antibacterial, and antilarval properties. J Trop Med 2023; 2023
[73]
Singh S. Formulation development and investigations on therapeutic potential of nanogel from beta vulgaris L. extract in testosterone-induced alopecia. Biomed Res Int 2023; 2023
[74]
Sumantri IB, Ismayadi , Mustanti LF. The potency of wound healing of nanogel-containing mikania micrantha leaves extract in hyperglycemic rats. Pharm Nanotechnol 2021; 9(5): 339-46.
[http://dx.doi.org/10.2174/2211738509666211209164105] [PMID: 34886791]
[75]
Ashrafi B, Rashidipour M, Marzban A, et al. Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr Polym 2019; 212: 142-9.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.018] [PMID: 30832841]
[76]
Poltekkes Kemenkes Semarang Y. Potential nano gel extract of avocute fruit (persea americana mill) as alternative in prevention of inflammation in white rats white rats post-extraction wounds. J Res Soc Sci Econ Manag 2022; 2(02): 246-59.
[77]
Orza AI. Novel anti-wrinkle and anti-aging nano formulations and method of preparation using novel nano co-delivery system. US20170157005A1, 2017.
[78]
etal J. Polymers and the preparation of nanogel drug cocktails. Rev Control Release 2013; 65(2): 271-84.
[79]
A Chinese medicinal composition with antibacterial, antiinflammatory, hemostatic and analgesic effects, and its preparation method. CN111000891A, 2019.
[80]
Magnetic nanoparticle and preparation method thereof. 2014.
[81]
Micro-nano gel fiber with high-efficiency water absorption and protein adsorption and mattress. 2020.
[82]
Compositions and methods to antibacterial nanogel and hydrolytically stable antibacterial nanogel for dental compositions. 2019.
[83]
Mosquito-repellent interior wall coating added with Chinese herbal medicine extract and preparation method thereof. 2020.
[84]
Traditional Chinese medicine compound hydrogel for treating skin wound healing and preparation method and application thereof. 2019.
[85]
Rahdar A, Sayyadi K, Sayyadi J, Yaghobi Z. Nano-gels: A versatile nano -carrier platform for drug delivery systems: A review. Nanomedicine Res J 2019; 4(1): 1-9.
[86]
Anibogwu R, Jesus KD, Pradhan S, Pashikanti S, Mateen S, Sharma K. Extraction, isolation and characterization of bioactive compounds from artemisia and their biological significance: A review. Molecules 2021; 26(22): 6995.
[http://dx.doi.org/10.3390/molecules26226995] [PMID: 34834086]
[87]
Sheikh T, Abrar M, Danish A, Chaos S, Bagwan R, Kulkarni A. Nanogel : A versatile nano-scopic platform for oral drug delivery. World J Pharm Pharm Sci 2018; 7(9): 685-93.
[88]
Sasidharan S, Chen Y, Saravanan D, et al. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 2007; 1902(1)
[http://dx.doi.org/10.4314/ajtcam.v8i1.60483] [PMID: 22238476]
[89]
Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009; 5(4): 707-15.
[http://dx.doi.org/10.1039/B811923F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy