Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Current Advances in Genetic Testing for Spinal Muscular Atrophy

Author(s): Yulin Zhou and Yu Jiang*

Volume 24, Issue 5, 2023

Published on: 10 November, 2023

Page: [273 - 286] Pages: 14

DOI: 10.2174/0113892029273388231023072050

Price: $65

Abstract

Spinal muscular atrophy (SMA) is one of the most common genetic disorders worldwide, and genetic testing plays a key role in its diagnosis and prevention. The last decade has seen a continuous flow of new methods for SMA genetic testing that, along with traditional approaches, have affected clinical practice patterns to some degree. Targeting different application scenarios and selecting the appropriate technique for genetic testing have become priorities for optimizing the clinical pathway for SMA. In this review, we summarize the latest technological innovations in genetic testing for SMA, including MassArray®, digital PCR (dPCR), next-generation sequencing (NGS), and third-generation sequencing (TGS). Implementation recommendations for rationally choosing different technical strategies in the tertiary prevention of SMA are also explored.

Keywords: Spinal muscular atrophy, genetic testing, screening and diagnosis, MassArray®, digital PCR, next-generation sequencing, long-reads sequencing.

Next »
Graphical Abstract
[1]
Mercuri, E.; Bertini, E.; Iannaccone, S.T. Childhood spinal muscular atrophy: Controversies and challenges. Lancet Neurol., 2012, 11(5), 443-452.
[http://dx.doi.org/10.1016/S1474-4422(12)70061-3] [PMID: 22516079]
[2]
Wirth, B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum. Mutat., 2000, 15(3), 228-237.
[http://dx.doi.org/10.1002/(SICI)1098-1004(200003)15:3<228:AID-HUMU3>3.0.CO;2-9] [PMID: 10679938]
[3]
Wirth, B.; Karakaya, M.; Kye, M.J.; Mendoza-Ferreira, N. Twenty-five years of spinal muscular atrophy research: From phenotype to genotype to therapy, and what comes next. Annu. Rev. Genomics Hum. Genet., 2020, 21(1), 231-261.
[http://dx.doi.org/10.1146/annurev-genom-102319-103602] [PMID: 32004094]
[4]
Wirth, B.; Brichta, L.; Schrank, B.; Lochmüller, H.; Blick, S.; Baasner, A.; Heller, R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum. Genet., 2006, 119(4), 422-428.
[http://dx.doi.org/10.1007/s00439-006-0156-7] [PMID: 16508748]
[5]
Bürglen, L.; Lefebvre, S.; Clermont, O.; Burlet, P.; Viollet, L.; Cruaud, C.; Munnich, A.; Melki, J. Structure and organization of the human survival motor neurone (SMN) gene. Genomics, 1996, 32(3), 479-482.
[http://dx.doi.org/10.1006/geno.1996.0147] [PMID: 8838816]
[6]
Scheffer, H.; Cobben, J.M.; Matthijs, G.; Wirth, B. Best practice guidelines for molecular analysis in spinal muscular atrophy. Eur. J. Hum. Genet., 2001, 9(7), 484-491.
[http://dx.doi.org/10.1038/sj.ejhg.5200667] [PMID: 11464239]
[7]
Prior, T.W.; Nagan, N.; Sugarman, E.A.; De Batish, S.; Braastad, C. Technical standards and guidelines for spinal muscular atrophy testing. Genet. Med., 2011, 13(7), 686-694.
[http://dx.doi.org/10.1097/GIM.0b013e318220d523] [PMID: 21673580]
[8]
Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; Bertini, E.; Davis, R.H.; Meyer, O.H.; Simonds, A.K.; Schroth, M.K.; Graham, R.J.; Kirschner, J.; Iannaccone, S.T.; Crawford, T.O.; Woods, S.; Qian, Y.; Sejersen, T.; Muntoni, F.; Wirth, B.; Tiziano, F.D.; Kirschner, J.; Tizzano, E.; Topaloglu, H.; Swoboda, K.; Laing, N.; Kayoko, S.; Prior, T.; Chung, W.K.; Wu, S-M.; Montes, J.; Mazzone, E.; Main, M.; Coleman, C.; Gee, R.; Glanzman, A.; Kroksmark, A-K.; Krosschell, K.; Nelson, L.; Rose, K. Stępień A.; Vuillerot, C.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; Dubousset, J.; Farrington, D.; Flynn, J.; Halanski, M.; Hasler, C.; Miladi, L.; Reilly, C.; Roye, B.; Sponseller, P.; Yazici, M.; Hurst, R.; Bertini, E.; Tarrant, S.; Barja, S.; Bertoli, S.; Crawford, T.; Foust, K.; Kyle, B.; Rodan, L.; Roper, H.; Seffrood, E.; Swoboda, K.; Szlagatys-Sidorkiewicz, A. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord., 2018, 28(2), 103-115.
[http://dx.doi.org/10.1016/j.nmd.2017.11.005] [PMID: 29290580]
[9]
Saadah, N.; Harahap, N.; Nurputra, D.; Rochmah, M.; Morikawa, S.; Nishimura, N.; Sadewa, A.; Astuti, I.; Haryana, S.; Saito, T.; Saito, K.; Nishio, H.; Rapid, A. A rapid, accurate and simple screening method for spinal muscular atrophy: High-resolution melting analysis using dried blood spots on filter paper. Clin. Lab., 2015, 61(05+06/2015), 575-580.
[http://dx.doi.org/10.7754/Clin.Lab.2014.141008] [PMID: 26118191]
[10]
Zhang, X.; Wang, B.; Zhang, L.; You, G.; Palais, R.A.; Zhou, L.; Fu, Q. Accurate diagnosis of spinal muscular atrophy and 22q11.2 deletion syndrome using limited deoxynucleotide triphosphates and high-resolution melting. BMC Genomics, 2018, 19(1), 485.
[http://dx.doi.org/10.1186/s12864-018-4833-4] [PMID: 29925309]
[11]
Er, T.K.; Kan, T.M.; Su, Y.F.; Liu, T.C.; Chang, J.G.; Hung, S.Y.; Jong, Y.J. High-resolution melting (HRM) analysis as a feasible method for detecting spinal muscular atrophy via dried blood spots. Clin. Chim. Acta, 2012, 413(21-22), 1781-1785.
[http://dx.doi.org/10.1016/j.cca.2012.06.033] [PMID: 22771969]
[12]
Wang, K.C.; Chang, C.C.; Chang, Y.F.; Wang, S.; Chiang, C.K.; Tsai, C.P. Evaluation and characterization of a high-resolution melting analysis kit for rapid carrier-screening test of spinal muscular atrophy. J. Neurogenet., 2015, 29(2-3), 113-116.
[http://dx.doi.org/10.3109/01677063.2015.1033098] [PMID: 25895942]
[13]
Xia, Z.; Zhou, Y.; Fu, D.; Wang, Z.; Ge, Y.; Ren, J.; Guo, Q. Carrier screening for spinal muscular atrophy with a simple test based on melting analysis. J. Hum. Genet., 2019, 64(5), 387-396.
[http://dx.doi.org/10.1038/s10038-019-0576-6] [PMID: 30765868]
[14]
Li, L.; Zhou, W.J.; Fang, P.; Zhong, Z.Y.; Xie, J.S.; Yan, T.Z.; Zeng, J.; Tan, X.H.; Xu, X.M. Evaluation and comparison of three assays for molecular detection of spinal muscular atrophy. Clinical Chemistry and Laboratory Medicine (CCLM)., 2017, 55(3), 358-367.
[http://dx.doi.org/10.1515/cclm-2016-0275] [PMID: 27754957]
[15]
Lin, Y.; Lin, C.H.; Yin, X.; Zhu, L.; Yang, J.; Shen, Y.; Yang, C.; Chen, X.; Hu, H.; Ma, Q.; Shi, X.; Shen, Y.; Hu, Z.; Huang, C.; Huang, X. Newborn screening for spinal muscular atrophy in China using DNA mass spectrometry. Front. Genet., 2019, 10, 1255.
[http://dx.doi.org/10.3389/fgene.2019.01255] [PMID: 31921298]
[16]
Jin, W.; Yang, Z.; Tang, X.; Wang, X.; Huang, Y.; Hui, C.; Yao, J.; Luan, J.; Tang, S.; Wu, S.; Jin, S.; Ding, C. Simultaneous quantification of SMN1 and SMN2 copy numbers by MALDI-TOF mass spectrometry for spinal muscular atrophy genetic testing. Clin. Chim. Acta, 2022, 532, 45-52.
[http://dx.doi.org/10.1016/j.cca.2022.05.017] [PMID: 35643151]
[17]
Zhong, Q.; Bhattacharya, S.; Kotsopoulos, S.; Olson, J.; Taly, V.; Griffiths, A.D.; Link, D.R.; Larson, J.W. Multiplex digital PCR: Breaking the one target per color barrier of quantitative PCR. Lab Chip, 2011, 11(13), 2167-2174.
[http://dx.doi.org/10.1039/c1lc20126c] [PMID: 21584334]
[18]
Stabley, D.L.; Harris, A.W.; Holbrook, J.; Chubbs, N.J.; Lozo, K.W.; Crawford, T.O.; Swoboda, K.J.; Funanage, V.L.; Wang, W.; Mackenzie, W.; Scavina, M.; Sol-Church, K.; Butchbach, M.E.R. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol. Genet. Genomic Med., 2015, 3(4), 248-257.
[http://dx.doi.org/10.1002/mgg3.141] [PMID: 26247043]
[19]
Zou, Y.; Xu, P.; Li, J.; Huang, S.; Gao, M.; Kang, R.; Gao, X.; Gao, Y. Application of droplet digital PCR technology for genetic testing and prenatal diagnosis of spinal muscular atrophy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2016, 33(5), 594-597.
[http://dx.doi.org/10.3760/cma.j.issn.1003-9406.2016.05.002] [PMID: 27577201]
[20]
Stabley, D.L.; Holbrook, J.; Harris, A.W.; Swoboda, K.J.; Crawford, T.O.; Sol-Church, K.; Butchbach, M.E.R. Establishing a reference dataset for the authentication of spinal muscular atrophy cell lines using STR profiling and digital PCR. Neuromuscul. Disord., 2017, 27(5), 439-446.
[http://dx.doi.org/10.1016/j.nmd.2017.02.002] [PMID: 28284873]
[21]
Vidal-Folch, N.; Gavrilov, D.; Raymond, K.; Rinaldo, P.; Tortorelli, S.; Matern, D.; Oglesbee, D. Multiplex droplet digital pcr method applicable to newborn screening, carrier status, and assessment of spinal muscular atrophy. Clin. Chem., 2018, 64(12), 1753-1761.
[http://dx.doi.org/10.1373/clinchem.2018.293712] [PMID: 30352867]
[22]
Jiang, L.; Lin, R.; Gallagher, S.; Zayac, A.; Butchbach, M.E.R.; Hung, P. Development and validation of a 4-color multiplexing spinal muscular atrophy (SMA) genotyping assay on a novel integrated digital PCR instrument. Sci. Rep., 2020, 10(1), 19892.
[http://dx.doi.org/10.1038/s41598-020-76893-7] [PMID: 33199817]
[23]
Park, S.; Lee, H.; Shin, S.; Lee, S.T.; Lee, K.A.; Choi, J.R. Analytical validation of the droplet digital PCR assay for diagnosis of spinal muscular atrophy. Clin. Chim. Acta, 2020, 510, 787-789.
[http://dx.doi.org/10.1016/j.cca.2020.09.024] [PMID: 32956702]
[24]
Wei, X.; Lv, W.; Tan, H.; Liang, D.; Wu, L. Development and validation of a haplotype‐free technique for non‐invasive prenatal diagnosis of spinal muscular atrophy. J. Clin. Lab. Anal., 2020, 34(2), e23046.
[http://dx.doi.org/10.1002/jcla.23046] [PMID: 31556165]
[25]
Stabley, D.L.; Holbrook, J.; Scavina, M.; Crawford, T.O.; Swoboda, K.J.; Robbins, K.M.; Butchbach, M.E.R. Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics, 2021, 22(1), 53-64.
[http://dx.doi.org/10.1007/s10048-020-00630-5] [PMID: 33415588]
[26]
Wang, K.C.; Fang, C.Y.; Chang, C.C.; Chiang, C.K.; Chen, Y.W. A rapid molecular diagnostic method for spinal muscular atrophy. J. Neurogenet., 2021, 35(1), 29-32.
[http://dx.doi.org/10.1080/01677063.2020.1853721] [PMID: 33332175]
[27]
Baker, M.W.; Mochal, S.T.; Dawe, S.J.; Wiberley-Bradford, A.E.; Cogley, M.F.; Zeitler, B.R.; Piro, Z.D.; Harmelink, M.M.; Kwon, J.M. Newborn screening for spinal muscular atrophy: The Wisconsin first year experience. Neuromuscul. Disord., 2022, 32(2), 135-141.
[http://dx.doi.org/10.1016/j.nmd.2021.07.398] [PMID: 35120759]
[28]
Tan, C.; Yan, Y.; Guo, N.; Wang, F.; Wang, S.; Zhu, L.; Wang, Y.; Ma, Y.; Guo, Y. Single-tube multiplex digital polymerase chain reaction assay for molecular diagnosis and prediction of severity of spinal muscular atrophy. Anal. Chem., 2022, 94(8), 3517-3525.
[http://dx.doi.org/10.1021/acs.analchem.1c04403] [PMID: 35137581]
[29]
Gao, S.; Wu, D.; Liu, S.; Shen, Y.; Zhao, Z.; Wang, Y.; Kong, X. Detection of male 2+0 and 1+0 carriers for spinal muscular atrophy by digital PCR. Clin. Genet., 2023, 104(1), 90-99.
[http://dx.doi.org/10.1111/cge.14342] [PMID: 37056034]
[30]
Larson, J.L.; Silver, A.J.; Chan, D.; Borroto, C.; Spurrier, B.; Silver, L.M. Validation of a high resolution NGS method for detecting spinal muscular atrophy carriers among phase 3 participants in the 1000 Genomes Project. BMC Med. Genet., 2015, 16(1), 100.
[http://dx.doi.org/10.1186/s12881-015-0246-2] [PMID: 26510457]
[31]
Feng, Y.; Ge, X.; Meng, L.; Scull, J.; Li, J.; Tian, X.; Zhang, T.; Jin, W.; Cheng, H.; Wang, X.; Tokita, M.; Liu, P.; Mei, H.; Wang, Y.; Li, F.; Schmitt, E.S.; Zhang, W.V.; Muzny, D.; Wen, S.; Chen, Z.; Yang, Y.; Beaudet, A.L.; Liu, X.; Eng, C.M.; Xia, F.; Wong, L.J.; Zhang, J. The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing. Genet. Med., 2017, 19(8), 936-944.
[http://dx.doi.org/10.1038/gim.2016.215] [PMID: 28125085]
[32]
Ceylan, A.C. Erdem, H.B.; Şahin, İ; Agarwal, M. SMN1 gene copy number analysis for spinal muscular atrophy (SMA) in a Turkish cohort by CODE-SEQ technology, an integrated solution for detection of SMN1 and SMN2 copy numbers and the “2+0” genotype. Neurol. Sci., 2020, 41(9), 2575-2584.
[http://dx.doi.org/10.1007/s10072-020-04365-x] [PMID: 32249332]
[33]
Chen, X.; Sanchis-Juan, A.; French, C.E.; Connell, A.J.; Delon, I.; Kingsbury, Z.; Chawla, A.; Halpern, A.L.; Taft, R.J.; Bentley, D.R.; Butchbach, M.E.R.; Raymond, F.L.; Eberle, M.A. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med., 2020, 22(5), 945-953.
[http://dx.doi.org/10.1038/s41436-020-0754-0] [PMID: 32066871]
[34]
Liu, B.; Lu, Y.; Wu, B.; Yang, L.; Liu, R.; Wang, H.; Dong, X.; Li, G.; Qin, Q.; Zhou, W. Survival motor neuron gene copy number analysis by exome sequencing. J. Mol. Diagn., 2020, 22(5), 619-628.
[http://dx.doi.org/10.1016/j.jmoldx.2020.01.015] [PMID: 32092542]
[35]
Tan, C.A.; Westbrook, M.J.; Truty, R.; Kvitek, D.J.; Kennemer, M.; Winder, T.L.; Shieh, P.B. Incorporating spinal muscular atrophy analysis by next-generation sequencing into a comprehensive multigene panel for neuromuscular disorders. Genet. Test. Mol. Biomarkers, 2020, 24(10), 616-624.
[http://dx.doi.org/10.1089/gtmb.2019.0282] [PMID: 32721234]
[36]
Winder, T.L.; Tan, C.A.; Klemm, S.; White, H.; Westbrook, J.M.; Wang, J.Z.; Entezam, A.; Truty, R.; Nussbaum, R.L.; McNally, E.M.; Aradhya, S. Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. Neurol. Genet., 2020, 6(2), e412.
[http://dx.doi.org/10.1212/NXG.0000000000000412] [PMID: 32337338]
[37]
Zhao, S.; Wang, W.; Wang, Y.; Han, R.; Fan, C.; Ni, P.; Guo, F.; Zeng, F.; Yang, Q.; Yang, Y.; Sun, Y.; Zhang, X.; Chen, Y.; Zhu, B.; Cai, W.; Chen, S.; Cai, R.; Guo, X.; Zhang, C.; Zhou, Y.; Huang, S.; Liu, Y.; Chen, B.; Yan, S.; Chen, Y.; Ding, H.; Shang, X.; Xu, X.; Sun, J.; Peng, Z. NGS-based spinal muscular atrophy carrier screening of 10,585 diverse couples in China: A pan-ethnic study. Eur. J. Hum. Genet., 2021, 29(1), 194-204.
[http://dx.doi.org/10.1038/s41431-020-00714-8] [PMID: 32884118]
[38]
Zhao, S.; Wang, Y.; Xin, X.; Fang, Z.; Fan, L.; Peng, Z.; Han, R.; Shi, C.; Zhang, Y.; Fan, C.; Sun, J.; He, X. Next generation sequencing is a highly reliable method to analyze exon 7 deletion of survival motor neuron 1 (SMN1) gene. Sci. Rep., 2022, 12(1), 223.
[http://dx.doi.org/10.1038/s41598-021-04325-1] [PMID: 34997153]
[39]
Huang, Z.; Yang, Q.; Ye, J.; Huang, J.; Lin, J.; Chen, J.; Liang, Z.; Cao, Z. Screening and prenatal diagnosis of survival motor neuron gene deletion in pregnant women in Zhaoqing city. Guangdong Province. BMC Med. Genomics, 2023, 16(1), 39.
[http://dx.doi.org/10.1186/s12920-023-01468-0] [PMID: 36859245]
[40]
Shum, B.O.V.; Henner, I.; Cairns, A.; Pretorius, C.; Wilgen, U.; Barahona, P.; Ungerer, J.P.J.; Bennett, G. Technical feasibility of newborn screening for spinal muscular atrophy by next-generation DNA sequencing. Front. Genet., 2023, 14, 1095600.
[http://dx.doi.org/10.3389/fgene.2023.1095600] [PMID: 36713073]
[41]
Li, S.; Han, X.; Xu, Y.; Chang, C.; Gao, L.; Li, J.; Lu, Y.; Mao, A.; Wang, Y. Comprehensive analysis of spinal muscular atrophy. J. Mol. Diagn., 2022, 24(9), 1009-1020.
[http://dx.doi.org/10.1016/j.jmoldx.2022.05.001] [PMID: 35659528]
[42]
Chen, X.; Harting, J.; Farrow, E.; Thiffault, I.; Kasperaviciute, D.; Hoischen, A.; Gilissen, C.; Pastinen, T.; Eberle, M.A. Comprehensive SMN1 and SMN2 profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing. Am. J. Hum. Genet., 2023, 110(2), 240-250.
[http://dx.doi.org/10.1016/j.ajhg.2023.01.001] [PMID: 36669496]
[43]
Bonk, T.; Humeny, A. MALDI-TOF-MS analysis of protein and DNA. Neuroscientist, 2001, 7(1), 6-12.
[http://dx.doi.org/10.1177/107385840100700104] [PMID: 11486345]
[44]
Jensen, L.; Børsting, C.; Dalhoff, K.; Morling, N. Evaluation of the iPLEX® ADME PGx Pro Panel and allele frequencies of pharmacogenetic markers in Danes. Clin. Biochem., 2016, 49(16-17), 1299-1301.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.07.014] [PMID: 27459874]
[45]
Sutton, B.C.; Birse, R.T.; Maggert, K.; Ray, T.; Hobbs, J.; Ezenekwe, A.; Kazmierczak, J.; Mosko, M.; Kish, J.; Bullock, A.; Shi, Z.; Stack, M.S.; Irwin, D. Assessment of common somatic mutations of EGFR, KRAS, BRAF, NRAS in pulmonary non-small cell carcinoma using iPLEX® HS, a new highly sensitive assay for the MassARRAY® System. PLoS One, 2017, 12(9), e0183715.
[http://dx.doi.org/10.1371/journal.pone.0183715] [PMID: 28926605]
[46]
Belloum, Y.; Janning, M.; Mohme, M.; Simon, R.; Kropidlowski, J.; Sartori, A.; Irwin, D.; Westphal, M.; Lamszus, K.; Loges, S.; Riethdorf, S.; Pantel, K.; Wikman, H. Discovery of targetable genetic alterations in nsclc patients with different metastatic patterns using a MassARRAY-based circulating tumor DNA assay. Cells, 2020, 9(11), 2337.
[http://dx.doi.org/10.3390/cells9112337] [PMID: 33105541]
[47]
Chiou, K.R.; Charng, M.J. Detection of common sequence variations of familial hypercholesterolemia in Taiwan using DNA mass spectrometry. J. Clin. Lipidol., 2017, 11(2), 386-393.e6.
[http://dx.doi.org/10.1016/j.jacl.2016.12.014] [PMID: 28502495]
[48]
Cao, Y.; Qu, Y.; He, S.; Li, Y.; Bai, J.; Jin, Y.; Wang, H.; Song, F. Association between SMN2 methylation and disease severity in Chinese children with spinal muscular atrophy. J. Zhejiang Univ. Sci. B, 2016, 17(1), 76-82.
[http://dx.doi.org/10.1631/jzus.B1500072] [PMID: 26739529]
[49]
Ross, P.; Hall, L.; Smirnov, I.; Haff, L. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol., 1998, 16(13), 1347-1351.
[http://dx.doi.org/10.1038/4328] [PMID: 9853617]
[50]
Zhang, J.; Wang, Y.; Ma, D.; Sun, Y.; Li, Y.; Yang, P.; Luo, C.; Jiang, T.; Hu, P.; Xu, Z. Carrier screening and prenatal diagnosis for spinal muscular atrophy in 13,069 Chinese pregnant women. J. Mol. Diagn., 2020, 22(6), 817-822.
[http://dx.doi.org/10.1016/j.jmoldx.2020.03.001] [PMID: 32205292]
[51]
Czibere, L.; Burggraf, S.; Fleige, T.; Gluck, B.; Keitel, L.M.; Landt, O.; Durner, J.; Roschinger, W.; Hohenfellner, K.; Wirth, B.; Muller-Felber, W.; Vill, K.; Becker, M. High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur. J. Hum. Genet., 2019.
[http://dx.doi.org/10.1038/s41431-019-0476-4] [PMID: 31363188]
[52]
Ar Rochmah, M.; Harahap, N.I.F.; Niba, E.T.E.; Nakanishi, K.; Awano, H.; Morioka, I.; Iijima, K.; Saito, T.; Saito, K.; Lai, P.S.; Takeshima, Y.; Takeuchi, A.; Bouike, Y.; Okamoto, M.; Nishio, H.; Shinohara, M. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA. Brain Dev., 2017, 39(9), 774-782.
[http://dx.doi.org/10.1016/j.braindev.2017.04.015] [PMID: 28522225]
[53]
Zhou, L.; Palais, R.A.; Paxton, C.N.; Geiersbach, K.B.; Wittwer, C.T. Copy number assessment by competitive PCR with limiting deoxynucleotide triphosphates and high-resolution melting. Clin. Chem., 2015, 61(5), 724-733.
[http://dx.doi.org/10.1373/clinchem.2014.236208] [PMID: 25759466]
[54]
Sugarman, E.A.; Nagan, N.; Zhu, H.; Akmaev, V.R.; Zhou, Z.; Rohlfs, E.M.; Flynn, K.; Hendrickson, B.C.; Scholl, T.; Sirko-Osadsa, D.A.; Allitto, B.A. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72 400 specimens. Eur. J. Hum. Genet., 2012, 20(1), 27-32.
[http://dx.doi.org/10.1038/ejhg.2011.134] [PMID: 21811307]
[55]
Maranda, B.; Fan, L.; Soucy, J.F.; Simard, L.; Mitchell, G.A. Spinal muscular atrophy: Clinical validation of a single-tube multiplex real time PCR assay for determination of SMN1 and SMN2 copy numbers. Clin. Biochem., 2012, 45(1-2), 88-91.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.10.019] [PMID: 22085534]
[56]
Gómez-Curet, I.; Robinson, K.G.; Funanage, V.L.; Crawford, T.O.; Scavina, M.; Wang, W. Robust quantification of the SMN gene copy number by real-time TaqMan PCR. Neurogenetics, 2007, 8(4), 271-278.
[http://dx.doi.org/10.1007/s10048-007-0093-1] [PMID: 17647030]
[57]
Feldkötter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.F.; Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet., 2002, 70(2), 358-368.
[http://dx.doi.org/10.1086/338627] [PMID: 11791208]
[58]
Nectoux, J. Current, emerging, and future applications of digital PCR in non-invasive prenatal diagnosis. Mol. Diagn. Ther., 2018, 22(2), 139-148.
[http://dx.doi.org/10.1007/s40291-017-0312-x] [PMID: 29209991]
[59]
Perlado, S.; Bustamante-Aragonés, A.; Donas, M.; Lorda-Sánchez, I.; Plaza, J.; Rodríguez de Alba, M. Fetal genotyping in maternal blood by digital PCR: Towards NIPD of monogenic disorders independently of parental origin. PLoS One, 2016, 11(4), e0153258.
[http://dx.doi.org/10.1371/journal.pone.0153258] [PMID: 27078875]
[60]
Chang, M.Y.; Kim, A.R.; Kim, M.Y.; Kim, S.; Yoon, J.; Han, J.J.; Ahn, S.; Kang, C.; Choi, B.Y. Development of novel noninvasive prenatal testing protocol for whole autosomal recessive disease using picodroplet digital PCR. Sci. Rep., 2016, 6(1), 37153.
[http://dx.doi.org/10.1038/srep37153] [PMID: 27924908]
[61]
Sun, K.; Jiang, P.; Chan, K.C.A. The impact of digital DNA counting technologies on noninvasive prenatal testing. Expert Rev. Mol. Diagn., 2015, 15(10), 1261-1268.
[http://dx.doi.org/10.1586/14737159.2015.1084227] [PMID: 26358092]
[62]
Barrett, A.N.; Chitty, L.S. Developing noninvasive diagnosis for single-gene disorders: The role of digital PCR. Methods Mol. Biol., 2014, 1160, 215-228.
[http://dx.doi.org/10.1007/978-1-4939-0733-5_17] [PMID: 24740232]
[63]
Tsui, N.B.Y.; Kadir, R.A.; Chan, K.C.A.; Chi, C.; Mellars, G.; Tuddenham, E.G.; Leung, T.Y.; Lau, T.K.; Chiu, R.W.K.; Lo, Y.M.D. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood, 2011, 117(13), 3684-3691.
[http://dx.doi.org/10.1182/blood-2010-10-310789] [PMID: 21263151]
[64]
Lun, F.M.F.; Tsui, N.B.Y.; Chan, K.C.A.; Leung, T.Y.; Lau, T.K.; Charoenkwan, P.; Chow, K.C.K.; Lo, W.Y.W.; Wanapirak, C.; Sanguansermsri, T.; Cantor, C.R.; Chiu, R.W.K.; Lo, Y.M.D. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19920-19925.
[http://dx.doi.org/10.1073/pnas.0810373105] [PMID: 19060211]
[65]
Grody, W.W.; Thompson, B.H.; Gregg, A.R.; Bean, L.H.; Monaghan, K.G.; Schneider, A.; Lebo, R.V. ACMG position statement on prenatal/preconception expanded carrier screening. Genet. Med., 2013, 15(6), 482-483.
[http://dx.doi.org/10.1038/gim.2013.47] [PMID: 23619275]
[66]
Martin, J. Asan; Yi, Y.; Alberola, T.; Rodríguez-Iglesias, B.; Jiménez-Almazán, J.; Li, Q.; Du, H.; Alama, P.; Ruiz, A.; Bosch, E.; Garrido, N.; Simon, C. Comprehensive carrier genetic test using next-generation deoxyribonucleic acid sequencing in infertile couples wishing to conceive through assisted reproductive technology. Fertil. Steril., 2015, 104(5), 1286-1293.
[http://dx.doi.org/10.1016/j.fertnstert.2015.07.1166] [PMID: 26354092]
[67]
Chen, M.; Lu, S.; Lai, Z.F.; Chen, C.; Luo, K.; Yuan, Y.; Wang, Y.S.; Li, S.Q.; Gao, Y.; Chen, F. Asan; Chen, D.J. Targeted sequencing of maternal plasma for haplotype‐based non‐invasive prenatal testing of spinal muscular atrophy. Ultrasound Obstet. Gynecol., 2017, 49(6), 799-802.
[http://dx.doi.org/10.1002/uog.15947] [PMID: 27102838]
[68]
Prior, T.W. Spinal muscular atrophy: Newborn and carrier screening. Obstet. Gynecol. Clin. North Am., 2010, 37(1), 23-36.
[http://dx.doi.org/10.1016/j.ogc.2010.03.001] [PMID: 20494255]
[69]
Chien, Y.H.; Chiang, S.C.; Weng, W.C.; Lee, N.C.; Lin, C.J.; Hsieh, W.S.; Lee, W.T.; Jong, Y.J.; Ko, T.M.; Hwu, W.L. Presymptomatic diagnosis of spinal muscular atrophy through newborn screening. J. Pediatr., 2017, 190, 124-129.e1.
[http://dx.doi.org/10.1016/j.jpeds.2017.06.042] [PMID: 28711173]
[70]
Schorling, D.C.; Becker, J.; Pechmann, A.; Langer, T.; Wirth, B.; Kirschner, J. Discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology, 2019, 93(6), 267-269.
[http://dx.doi.org/10.1212/WNL.0000000000007836] [PMID: 31235659]
[71]
Prior, T.W. Carrier screening for spinal muscular atrophy. Genet. Med., 2008, 10(11), 840-842.
[http://dx.doi.org/10.1097/GIM.0b013e318188d069] [PMID: 18941424]
[72]
Liang, Q.; Liu, Y.; Liu, Y.; Duan, R.; Meng, W.; Zhan, J.; Xia, J.; Mao, A.; Liang, D.; Wu, L. Comprehensive analysis of fragile X syndrome: Full characterization of the FMR1 locus by long-read sequencing. Clin. Chem., 2022, 68(12), 1529-1540.
[http://dx.doi.org/10.1093/clinchem/hvac154] [PMID: 36171182]
[73]
Liu, Y.; Chen, M.; Liu, J.; Mao, A.; Teng, Y.; Yan, H.; Zhu, H.; Li, Z.; Liang, D.; Wu, L. Comprehensive analysis of congenital adrenal hyperplasia using long-read sequencing. Clin. Chem., 2022, 68(7), 927-939.
[http://dx.doi.org/10.1093/clinchem/hvac046] [PMID: 35714169]
[74]
Xu, L.; Mao, A.; Liu, H.; Gui, B.; Choy, K.W.; Huang, H.; Yu, Q.; Zhang, X.; Chen, M.; Lin, N.; Chen, L.; Han, J.; Wang, Y.; Zhang, M.; Li, X.; He, D.; Lin, Y.; Zhang, J.; Cram, D.S.; Cao, H. Long-molecule sequencing. J. Mol. Diagn., 2020, 22(8), 1087-1095.
[http://dx.doi.org/10.1016/j.jmoldx.2020.05.004] [PMID: 32473995]
[75]
CLSI, Assessment of the Diagnostic Accuracy of Laboratory Tests Using Receiver Operating Characteristic Curves In: Approved Guideline, 2nd ed; Clinical and Laboratory Standards Institute: Wayne, PA, 2011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy