Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Recent Advances in Pyrazole-based Protein Kinase Inhibitors as Emerging Therapeutic Targets

Author(s): Adnan Cetin*

Volume 27, Issue 19, 2024

Published on: 08 November, 2023

Page: [2791 - 2804] Pages: 14

DOI: 10.2174/0113862073252211231024182817

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties.

Methods: A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities.

Results: Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy.

Conclusion: The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.

Keywords: Cancer, drug discovery, pharmacology, spectroscopy, pyrazole-based protein kinase inhibitors, therapeutic targets.

Next »
Graphical Abstract
[1]
Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159.
[http://dx.doi.org/10.1016/j.chembiol.2012.12.006] [PMID: 23438744]
[2]
Wang, J.; Maldonado, M.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol., 2006, 3(4), 255-261.
[PMID: 16978533]
[3]
Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.P.; Hudson, T.; Sohn, R.; Zemelman, B.; Snell, R.G.; Rundle, S.A.; Crow, S.; Davies, J.; Shelbourne, P.; Buxton, J.; Jones, C.; Juvonen, V.; Johnson, K.; Harper, P.S.; Shaw, D.J.; Housman, D.E. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell, 1992, 68(4), 799-808.
[http://dx.doi.org/10.1016/0092-8674(92)90154-5] [PMID: 1310900]
[4]
Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotype–phenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74.
[http://dx.doi.org/10.1038/nrg2707] [PMID: 20019687]
[5]
Bhagirath, N.; Kennedy-Smith, J.; Lucas, M.C.; Padilla, F. 1 H-pyrazole and 4,5-disubstituted thiazole inhibitors of SYK. US Patent 9,988,378, 2018.
[6]
Das, J. Novel N-pyrimidin-4-yl-3-amino-pyrrolo [3, 4-C] pyrazole derivatives as PKC kinase inhibitors: A patent evaluation of US2015099743 (A1). Expert Opin. Ther. Pat., 2016, 26(4), 523-528.
[http://dx.doi.org/10.1517/13543776.2015.1124088] [PMID: 26593678]
[7]
Lu, Z.; Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci., 2018, 43(4), 301-310.
[http://dx.doi.org/10.1016/j.tibs.2018.01.006] [PMID: 29463470]
[8]
Zhang, G.; Ren, B.; Wang, H.; Zhao, H.; Guo, Y.; Wang, Z.; Zhou, C. 5-Amino-4-carbamoyl-pyrazole Compounds as Selective and Irreversible t790m over wt-egfr Kinase Inhibitors and Use Thereof. US Patent 2016,008,411, 2016.
[9]
Li, H.; Pei, F.; Taylor, D.L.; Bahar, I. QuartataWeb: Integrated chemical-protein-pathway mapping for polypharmacology and chemogenomics. Bioinformatics, 2020, 36(12), 3935-3937.
[http://dx.doi.org/10.1093/bioinformatics/btaa210] [PMID: 32221612]
[10]
Kunos, G.; Iyer, M.; Cinar, R.; Rice, K.C. Pyrazole derivatives and their use as cannabinoid receptor mediators. US Patent 10,329,259, 2019.
[11]
Lee, K.I.; Jung, Y.H.; Song, J.Y.; Jun, S.A. Pyrazole derivative as ALK5 inhibitor and uses thereof. US Patent 10,954,232, 2021.
[12]
Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48.
[http://dx.doi.org/10.1016/j.phrs.2015.10.021] [PMID: 26529477]
[13]
Bogoyevitch, M.; Fairlie, D. A new paradigm for protein kinase inhibition: Blocking phosphorylation without directly targeting ATP binding. Drug Discov. Today, 2007, 12(15-16), 622-633.
[http://dx.doi.org/10.1016/j.drudis.2007.06.008] [PMID: 17706543]
[14]
Lu, X.; Smaill, J.B.; Ding, K. New promise and opportunities for allosteric kinase inhibitors. Angew. Chem. Int. Ed., 2020, 59(33), 13764-13776.
[http://dx.doi.org/10.1002/anie.201914525] [PMID: 31889388]
[15]
Huang, S.; Armstrong, E.A.; Benavente, S.; Chinnaiyan, P.; Harari, P.M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): Combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res., 2004, 64(15), 5355-5362.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0562] [PMID: 15289342]
[16]
Thaimattam, R.; Banerjee, R.; Miglani, R.; Iqbal, J. Protein kinase inhibitors: Structural insights into selectivity. Curr. Pharm. Des., 2007, 13(27), 2751-2765.
[http://dx.doi.org/10.2174/138161207781757042] [PMID: 17897021]
[17]
Shuttleworth, S.J.; Bailey, S.G.; Townsend, P.A. Histone Deacetylase inhibitors: New promise in the treatment of immune and inflammatory diseases. Curr. Drug Targets, 2010, 11(11), 1430-1438.
[http://dx.doi.org/10.2174/1389450111009011430] [PMID: 20583972]
[18]
Mifflin, L.; Ofengeim, D.; Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov., 2020, 19(8), 553-571.
[http://dx.doi.org/10.1038/s41573-020-0071-y] [PMID: 32669658]
[19]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[20]
Bawa, S.; Siddiqui, N. Andalip; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. J. Pharm. Bioallied Sci., 2011, 3(2), 194-212.
[http://dx.doi.org/10.4103/0975-7406.80765] [PMID: 21687347]
[21]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[22]
Wei, Z.Y.; Chi, K.Q.; Wang, K.S.; Wu, J.; Liu, L.P.; Piao, H.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1797-1803.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.021] [PMID: 29678461]
[23]
Çetin, A.; Bildirici, İ. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. J. Saudi Chem. Soc., 2018, 22(3), 279-296.
[http://dx.doi.org/10.1016/j.jscs.2016.05.008]
[24]
Fujimori, Y.; Katsuno, K.; Nakashima, I.; Ishikawa-Takemura, Y.; Fujikura, H.; Isaji, M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther., 2008, 327(1), 268-276.
[http://dx.doi.org/10.1124/jpet.108.140210] [PMID: 18583547]
[25]
Marala, R.B.; Brown, J.A.; Kong, J.X.; Tracey, W.R.; Knight, D.R.; Wester, R.T.; Sun, D.; Kennedy, S.P.; Hamanaka, E.S.; Ruggeri, R.B.; Hill, R.J. Zoniporide: A potent and highly selective inhibitor of human Na+/H+ exchanger-1. Eur. J. Pharmacol., 2002, 451(1), 37-41.
[http://dx.doi.org/10.1016/S0014-2999(02)02193-3] [PMID: 12223226]
[26]
Dooley, M.; Plosker, G.L. Zaleplon. Drugs, 2000, 60(2), 413-445.
[http://dx.doi.org/10.2165/00003495-200060020-00014] [PMID: 10983740]
[27]
Armstrong, D. gastric pH-the most relevant predictor of benefit in reflux disease? Aliment. Pharmacol. Ther., 2004, 20, 19-26.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02140.x] [PMID: 15456460]
[28]
Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; Grimminger, F.; Kurzyna, M.; Simonneau, G. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med., 2005, 353(20), 2148-2157.
[http://dx.doi.org/10.1056/NEJMoa050010] [PMID: 16291984]
[29]
Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rössner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet, 2005, 365(9468), 1389-1397.
[http://dx.doi.org/10.1016/S0140-6736(05)66374-X] [PMID: 15836887]
[30]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394.
[http://dx.doi.org/10.1056/NEJMoa1214886] [PMID: 23724913]
[31]
Castrén, E. Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol., 2004, 4(1), 58-64.
[http://dx.doi.org/10.1016/j.coph.2003.10.004] [PMID: 15018840]
[32]
Schneider, H.; Panigel, M.; Dancis, J. Transfer across the perfused human placenta of antipyrine, sodium, and leucine. Am. J. Obstet. Gynecol., 1972, 114(6), 822-828.
[http://dx.doi.org/10.1016/0002-9378(72)90909-X] [PMID: 4676572]
[33]
Jasiecka, A.; Maślanka, T.; Jaroszewski, J.J. Pharmacological characteristics of metamizole. Pol. J. Vet. Sci., 2014, 17(1), 207-214.
[http://dx.doi.org/10.2478/pjvs-2014-0030] [PMID: 24724493]
[34]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur. J. Med. Chem., 2015, 97, 732-746.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.023] [PMID: 25549911]
[35]
Turkan, F.; Çetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 86, 420-427.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.013] [PMID: 30769267]
[36]
Ganguly, S.; Jacob, S.K. Therapeutic outlook of pyrazole analogs: A mini review. Mini Rev. Med. Chem., 2017, 17(11), 959-983.
[http://dx.doi.org/10.2174/1389557516666151120115302] [PMID: 26586126]
[37]
Karati, D.; Mahadik, K.R.; Trivedi, P.; Kumar, D. A Molecular Insight into Pyrazole Congeners as Antimicrobial, Anticancer, and Antimalarial Agents. Med. Chem., 2022, 18(10), 1044-1059.
[http://dx.doi.org/10.2174/1573406418666220303150640] [PMID: 35240964]
[38]
Siu, M.; Estrada, A.; Liu, W.; Lyssikatos, J.P.; Patel, S.; Liang, G.; Chen, K. Substituted pyrazoles and uses thereof. US Patent 9,365,583, 2016.
[39]
Mor, S.; Khatri, M. punia, R.; Sindhu, S. Recent Progress in anticancer agents incorporating Pyrazole scaffold. Mini Rev. Med. Chem., 2022, 22(1), 115-163.
[http://dx.doi.org/10.2174/1389557521666210325115218] [PMID: 33823764]
[40]
McDonald, E.; Jones, K.; Brough, P.; Drysdale, M.; Workman, P. Discovery and development of pyrazole-scaffold Hsp90 inhibitors. Curr. Top. Med. Chem., 2006, 6(11), 1193-1203.
[http://dx.doi.org/10.2174/156802606777812086] [PMID: 16842156]
[41]
Meyer, M. What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 2000, 49(1), 93-123.
[http://dx.doi.org/10.1023/A:1005613325648]
[42]
Marx, M.; Fuegi, A. Reliance on science: Worldwide front‐page patent citations to scientific articles. Strateg. Manage. J., 2020, 41(9), 1572-1594.
[http://dx.doi.org/10.1002/smj.3145]
[43]
Rotariu, D.; Babes, E.E.; Tit, D.M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A.F.; Vesa, C.M.; Behl, T.; Bungau, A.F.; Bungau, S.G. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother., 2022, 152, 113238.
[http://dx.doi.org/10.1016/j.biopha.2022.113238] [PMID: 35687909]
[44]
Kim, P.M.; Kornberg, M.D. Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr. Opin. Pharmacol., 2022, 62, 103-108.
[http://dx.doi.org/10.1016/j.coph.2021.11.008] [PMID: 34965482]
[45]
Jubaidi, F.F.; Zainalabidin, S.; Taib, I.S.; Abdul Hamid, Z.; Mohamad Anuar, N.N.; Jalil, J.; Mohd Nor, N.A.; Budin, S.B. The role of PKC-MAPK signalling pathways in the development of hyperglycemia-induced cardiovascular complications. Int. J. Mol. Sci., 2022, 23(15), 8582.
[http://dx.doi.org/10.3390/ijms23158582] [PMID: 35955714]
[46]
Miao, L.; Pan, D.; Shi, J.; Du, J.; Chen, P.; Gao, J.; Yu, Y.; Shi, D.Z.; Guo, M. Role and mechanism of PKC-δ for cardiovascular disease: Current status and perspective. Front. Cardiovasc. Med., 2022, 9, 816369.
[http://dx.doi.org/10.3389/fcvm.2022.816369] [PMID: 35242825]
[47]
Hui, L.; Seiji, N.; Stephanie, A.S.; Min, T.; Chunfeng, T. Novel Npyrimidin- 4-yl-3-amino-pyrrolo[3,4-c]pyrazole derivatives as PKC kinase inhibitors. US Patent 0,997,743, 2015.
[48]
An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[49]
Su, V.Y.F.; Yang, K.Y.; Huang, T.Y.; Hsu, C.C.; Chen, Y.M.; Yen, J.C.; Chou, Y.C.; Chang, Y.L.; He, C.H. The efficacy of first-line tyrosine kinase inhibitors combined with co-medications in Asian patients with EGFR mutation non-small cell lung cancer. Sci. Rep., 2020, 10(1), 14965.
[http://dx.doi.org/10.1038/s41598-020-71583-w] [PMID: 32917914]
[50]
Wheeler, D.L.; Dunn, E.F.; Harari, P.M. Understanding resistance to EGFR inhibitors—impact on future treatment strategies. Nat. Rev. Clin. Oncol., 2010, 7(9), 493-507.
[http://dx.doi.org/10.1038/nrclinonc.2010.97] [PMID: 20551942]
[51]
Zahorowska, B.; Crowe, P.J.; Yang, J.L. Combined therapies for cancer: A review of EGFR-targeted monotherapy and combination treatment with other drugs. J. Cancer Res. Clin. Oncol., 2009, 135(9), 1137-1148.
[http://dx.doi.org/10.1007/s00432-009-0622-4] [PMID: 19533170]
[52]
Wang, Y.; Zhou, J.; Gao, Y.; Wang, D.; Hong, B.; Shen, X.; Wu, Y.; Li, C. Benzofuran Pyrazole Amine Protein Kinase Inhibitor. US Patent 18,001,251, 2018.
[53]
Fan, J.; Fong, T.; Xia, Z.; Zhang, J.; Luo, P. The efficacy and safety of ALK inhibitors in the treatment of ALK-positive non-small cell lung cancer: A network meta-analysis. Cancer Med., 2018, 7(10), 4993-5005.
[http://dx.doi.org/10.1002/cam4.1768] [PMID: 30230699]
[54]
Marsilje, T.H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; Sarkisova, Y.; Sun, F.; Steffy, A.; Pferdekamper, A.C.; Li, A.G.; Joseph, S.B.; Kim, Y.; Liu, B.; Tuntland, T.; Cui, X.; Gray, N.S.; Steensma, R.; Wan, Y.; Jiang, J.; Chopiuk, G.; Li, J.; Gordon, W.P.; Richmond, W.; Johnson, K.; Chang, J.; Groessl, T.; He, Y.Q.; Phimister, A.; Aycinena, A.; Lee, C.C.; Bursulaya, B.; Karanewsky, D.S.; Seidel, H.M.; Harris, J.L.; Michellys, P.Y. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J. Med. Chem., 2013, 56(14), 5675-5690.
[http://dx.doi.org/10.1021/jm400402q] [PMID: 23742252]
[55]
Park, C.H.; Choe, H.; Jang, I.Y.; Kwon, S.Y.; Latif, M.; Lee, H.K.; Lee, H.J.; Yang, E.H.; Yun, J.I.; Chae, C.H.; Cho, S.Y.; Choi, S.U.; Ha, J.D.; Jung, H.; Kim, H.R.; Kim, P.; Lee, C.O.; Yun, C.S.; Lee, K. Novel bis-ortho-alkoxy-para-piperazinesubstituted-2,4-dianilinopyrimidines (KRCA-0008) as potent and selective ALK inhibitors for anticancer treatment. Bioorg. Med. Chem. Lett., 2013, 23(22), 6192-6196.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.090] [PMID: 24095090]
[56]
Short, K.M.; Estiarte-Martınez, M.D.L.A.; Kita, D.B.; Shiau, T.P. Substituted Pyrazole Compounds As Serine Protease Inhibitors. US Patent 10,532,995, 2020.
[57]
Mackman, N.; Bergmeier, W.; Stouffer, G.A.; Weitz, J.I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov., 2020, 19(5), 333-352.
[http://dx.doi.org/10.1038/s41573-020-0061-0] [PMID: 32132678]
[58]
Bekassy, Z.; Lopatko Fagerström, I.; Bader, M.; Karpman, D. Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation. Nat. Rev. Immunol., 2022, 22(7), 411-428.
[http://dx.doi.org/10.1038/s41577-021-00634-8] [PMID: 34759348]
[59]
Beaton, H.; Crowe, D.M.; Edwards, H.J.; Griffiths-Haynes, N.J. Polymorphs of N-[(3-fluoro-4-methoxypyridin-2-yl)methyl]-3- (methoxymethyl)-1-({4-[2-oxopyridin-1-yl)methyl]phenyl} methyl) pyrazole-4-carboxamide as kallikrein inhibitors. US Patent 11,230,537, , 2022.
[60]
Davie, R.L.; Edwards, H.J.; Evans, D.M.; Hodgson, S.T.; Pethen, S.J.; Rooker, D.P. Pyrazole Derivatives as Plasma Kallikrein Inhibitors. US Patent 11,180,484, 2021.
[61]
Soualmia, F.; El Amri, C. Serine protease inhibitors to treat inflammation: A patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(2), 93-110.
[http://dx.doi.org/10.1080/13543776.2018.1406478] [PMID: 29171765]
[62]
Barzkar, N.; Khan, Z.; Tamadoni Jahromi, S.; Pourmozaffar, S.; Gozari, M.; Nahavandi, R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int. J. Biol. Macromol., 2021, 170, 674-687.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.134] [PMID: 33387547]
[63]
Abbas, A.A.; Abdellattif, M.H.; Dawood, K.M. Inhibitory activities of bipyrazoles: A patent review. Expert Opin. Ther. Pat., 2022, 32(1), 63-87.
[http://dx.doi.org/10.1080/13543776.2021.1953474] [PMID: 34232805]
[64]
Findlay, A.; Turner, C.; Deodhar, M.; Foot, J.; Zhou, W.; Jarolımek, W.; Robertson, A. Haloallylamine pyrazole derivative inhibitors of Lysyl Oxidases and uses thereof. US Patent 16,490,220, 2020.
[65]
Ayyoub, S.; Orriols, R.; Oliver, E.; Ceide, O.T. Thrombosis models: An overview of common in vivo and in vitro models of thrombosis. Int. J. Mol. Sci., 2023, 24(3), 2569.
[http://dx.doi.org/10.3390/ijms24032569] [PMID: 36768891]
[66]
Shen, C.; Mackeigan, D.T.; Shoara, A.A.; Xu, R.; Bhoria, P.; Karakas, D.; Ma, W.; Cerenzia, E.; Chen, Z.; Hoard, B.; Lin, L.; Lei, X.; Zhu, G.; Chen, P.; Johnson, P.E.; Ni, H. Dual roles of fucoidan-GPIbα interaction in thrombosis and hemostasis: Implications for drug development targeting GPIbα. J. Thromb. Haemost., 2023, 21(5), 1274-1288.
[http://dx.doi.org/10.1016/j.jtha.2022.12.030] [PMID: 36732162]
[67]
Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. J. Med. Chem., 2019, 62(9), 4233-4251.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[68]
Lu, T.; Wang, Y.; Chen, Y.; Lu, Y.; Wang, Z.; Jin, Q.; Yang, T.; Lin, G.; Guo, Q.; Zhao, L. Polycyclic Substituted Pyrazole Kinase Activity Inhibitors and Use Thereof. US Patent 9,550,792, 2017.
[69]
Ford, D.J.; Horsley, H.T.; Reuberson, J.T. Fused Pyrazole Derivatives As Kinase Inhibitors. US Patent 15,762,670, 2018.
[70]
Basinger, J.; Bookser, B.; Chen, M.; Chung, D.; Gupta, V.; Hudson, A.; Kaplan, A.; Na, J.; Renick, J.; Santora, V. Substituted 2,4,5,6-tetrahydropyrrolo[3,4-c] pyrazole and 4,5,6,7-tetrahydro- 2h-pyrazolo [4,3-c] pyridine compounds as GLYT1 inhibitors. US Patent 9,708,334, 2017.
[71]
Biagetti, M.; Capelli, A.M.; Retini, M. Pyrazole derivatives as phosphoinositide 3-kinases inhibitors. US Patent 10,189,844, 2019.
[72]
Kuntz, K.W.; Mitchell, L.H.; Shapiro, G.; Chesworth, R.; Boriack-Sjodin, P.A. PRMT1 inhibitors and uses thereof. US Patent 9,023,883, 2015.
[73]
Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res., 2005, 15(1), 11-18.
[http://dx.doi.org/10.1038/sj.cr.7290257] [PMID: 15686620]
[74]
King-Underwood, J.; Hardy, G.; Murray, P.J.; Williams, J.G.; Onions, S.T. Pyrazole P38 map kinase inhibitors. US Patent 10,000,471, 2018.
[75]
Hsiao, H.M.; Sapinoro, R.E.; Thatcher, T.H.; Croasdell, A.; Levy, E.P.; Fulton, R.A.; Olsen, K.C.; Pollock, S.J.; Serhan, C.N.; Phipps, R.P.; Sime, P.J. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS One, 2013, 8(3), e58258.
[http://dx.doi.org/10.1371/journal.pone.0058258] [PMID: 23484005]
[76]
Pottoo, F.H.; Joseph, A.; Das, S.; Akbar, S.; Ahmed, B.; Dewangan, R.P.; Iqubal, M.K.; Iqubal, A.; Chawla, P. Recent advancement of Pyrazole Scaffold based neuroprotective agents: A review. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 940-951.
[http://dx.doi.org/10.2174/1871527320666210602152308] [PMID: 34080970]
[77]
Wang, T.; Yu, D.; Lamb, M.L. Trk kinase inhibitors as new treatments for cancer and pain. Expert Opin. Ther. Pat., 2009, 19(3), 305-319.
[http://dx.doi.org/10.1517/13543770902721261] [PMID: 19441906]
[78]
Baker-Glenn, C.; Burdick, D.J.; Chambers, M.; Chen, H.; Estrada, A.; Sweeney, Z.K.; Chan, B. Pyrazole aminopyrimidine derivatives as LRRK2 modulators. US Patent 9,212,173, 2015.
[79]
Jiang, T.; Wang, G.; Liu, Y.; Feng, L.; Wang, M.; Liu, J.; Chen, Y.; Ouyang, L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm. Sin. B, 2021, 11(2), 355-372.
[http://dx.doi.org/10.1016/j.apsb.2020.05.004] [PMID: 33643817]
[80]
Barden, T.C.; Sheppeck, J.E.; Rennie, G.R.; Renhowe, P.A.; Perl, N.; Nakai, T.; Mermerian, A.; Lee, T.W.; Jung, J.; Jia, J.; Iyer, K.; Iyengar, R. Pyrazole derivatives as SGC stimulators. EP Patent 3,194,382, 2016.
[81]
Bagal, S.K.; Cui, J.J.; Greasley, S.E.; Lunney, E.A.; Mcalpine, I.J.; Nagata, A.; Ninkovic, S.; Omoto, K.; Skerratt, S.E.; Storer, R.I.; Warmus, J.S. Tropomyosin-related kinase inhibitors containingboth a 1H-pyrazole and a pyrimidine moiety. US Patent 15,300,440, 2017.
[82]
Jin, M.; Zhou, Z.; Zhang, L.; Chen, Y.; Liu, L.; Shen, H. Effects of excessive iodine on the BDNF-TrkB signaling pathway and related genes in offspring of EAT rats. Biol. Trace Elem. Res., 2023, 201(2), 776-785.
[http://dx.doi.org/10.1007/s12011-022-03187-6] [PMID: 35322353]
[83]
Hacioglu, G.; Cirrik, S.; Tezcan Yavuz, B.; Tomruk, C.; Keskin, A.; Uzunoglu, E.; Takir, S. The BDNF-TrkB signaling pathway is partially involved in the neuroprotective effects of hydrogen sulfide in Parkinson’s disease. Eur. J. Pharmacol., 2023, 944, 175595.
[http://dx.doi.org/10.1016/j.ejphar.2023.175595] [PMID: 36804547]
[84]
Huff, J.; Uesugi, M.; Kincaid, J. Di-Substituted Pyrazole Compounds For The Treatment of Diseases. US Patent 17,190,086, 2017.
[85]
Atkinson, S.J.; Demont, E.H.; Harrison, L.A.; Liwicki, G.M.; Lucas, S.C.C.; Preston, A.G.; Seal, J.; Wall, I.D.; Watson, R.J. Pyrazole Derivatives as Bromodomain Inhibitors. US Patent 10,996,961, 2021.
[86]
Ponce-Polo, Á.; Hidalgo, A.R.; Martínez, A.A.; Guijarro, R.I.O. Use of Patent Information to Characterize Trends in the Therapeutic Applications of Extracellular Vesicles Derived from Mesenchymal Stem Cells (MSC-EVs). Recent Pat. Biotechnol., 2022, 16(3), 243-255.
[http://dx.doi.org/10.2174/1872208316666220303095217] [PMID: 35240977]
[87]
Anwar, S.; Shahwan, M.; Hasan, G.M.; Islam, A.; Hassan, M.I. Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell. Signal., 2022, 99, 110434.
[http://dx.doi.org/10.1016/j.cellsig.2022.110434] [PMID: 35961526]
[88]
Roskoski, R. Jr Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol. Res., 2023, 189, 106642.
[http://dx.doi.org/10.1016/j.phrs.2022.106642] [PMID: 36754102]
[89]
Halloran, D.; Pandit, V.; Nohe, A. The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J. Dev. Biol., 2022, 10(3), 31.
[http://dx.doi.org/10.3390/jdb10030031] [PMID: 35997395]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy