Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Melatonin Alleviates High Glucose-induced Oxidative Stress and Mitochondrial Dysfunction in Chondrocytes

Author(s): Saeed Mehrzadi, Shokoufeh Hassani and Azam Hosseinzadeh*

Volume 19, Issue 6, 2024

Published on: 06 November, 2023

Page: [719 - 726] Pages: 8

DOI: 10.2174/0115748855270821231030043727

Price: $65

conference banner
Abstract

Background: Hyperglycemia triggers mitochondrial dysfunction in chondrocytes, potentially contributing to cell damage and the onset of osteoarthritis.

Objective: This study is undertaken with the objective of examining the protective properties of melatonin against toxicity induced by high glucose in C28I2 human chondrocytes.

Methods: To determine non-cytotoxic concentrations of melatonin, various concentrations (10, 25, 50, 75, 100, 500, and 1000 μM) were assessed over different time periods (24, 48, and 72 hours) for their impact on C28I2 cell viability. Following this, cells underwent a pretreatment with melatonin (10 and 100 μM) for 6 hours. This was followed by subjecting the cells to a high concentration of glucose (75 mM) for 48 hours. Oxidative stress markers, including reactive oxygen species (ROS) and malondialdehyde (MDA), alongside the enzymatic activities of glutathione peroxidase, superoxide dismutase, and catalase were quantitatively assessed. To assess mitochondrial function, we evaluated the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio and measured the mitochondrial membrane potential (MMP).

Results: Elevated glucose levels significantly increased ROS and MDA levels, accompanied by reduced MMP, an elevated ADP/ATP ratio, and altered antioxidant enzyme activity. Pretreatment with melatonin effectively reversed the mitochondrial toxicity induced by high glucose (75 mM).

Conclusion: These results indicate that melatonin exhibits a protective influence against hyperglycemia- induced toxicity in chondrocyte mitochondria.

Keywords: Melatonin, mitochondria, oxidative stress, chondrocyte, osteoarthritis, diabetes.

Graphical Abstract
[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers 2016; 2(1): 16072.
[http://dx.doi.org/10.1038/nrdp.2016.72] [PMID: 27734845]
[2]
Wang C, Ying J, Niu X, et al. Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Res 2021; 9(1): 38.
[http://dx.doi.org/10.1038/s41413-021-00153-1] [PMID: 34426569]
[3]
Berenbaum F. Diabetes-induced osteoarthritis: From a new paradigm to a new phenotype. Postgrad Med J 2012; 88(1038): 240-2.
[http://dx.doi.org/10.1136/pgmj.2010.146399rep] [PMID: 22441236]
[4]
Ding DF, Xue Y, Wu XC, et al. Recent advances in reactive oxygen species (ROS)-responsive polyfunctional nanosystems 3.0 for the treatment of osteoarthritis. J Inflamm Res 2022; 15: 5009-26.
[http://dx.doi.org/10.2147/JIR.S373898] [PMID: 36072777]
[5]
Ashraf S, Cha BH, Kim JS, et al. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis Cartilage 2016; 24(2): 196-205.
[http://dx.doi.org/10.1016/j.joca.2015.07.008] [PMID: 26190795]
[6]
Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 2011; 7(3): 161-9.
[http://dx.doi.org/10.1038/nrrheum.2010.213] [PMID: 21200395]
[7]
Laiguillon MC, Courties A, Houard X, et al. Characterization of diabetic osteoarthritic cartilage and role of high glucose environment on chondrocyte activation: Toward pathophysiological delineation of diabetes mellitus-related osteoarthritis. Osteoarthritis Cartilage 2015; 23(9): 1513-22.
[http://dx.doi.org/10.1016/j.joca.2015.04.026] [PMID: 25987541]
[8]
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and cancer: A polyhedral network where the source matters. Antioxidants 2021; 10(2): 210.
[http://dx.doi.org/10.3390/antiox10020210] [PMID: 33535472]
[9]
Volkan G, Emin Ş, Abdulsamed K. An Overview of Effects on Reproductive Physiology of Melatonin. IntechOpen 2022.
[10]
Tordjman S, Chokron S, Delorme R, et al. Melatonin: Pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 2017; 15(3): 434-43.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[11]
Macías M, Escames G, Leon J, et al. Calreticulin-melatonin. Eur J Biochem 2003; 270(5): 832-40.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03430.x] [PMID: 12603316]
[12]
Reiter RJ, Tan D-X, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: Receptor-mediated and receptor-independent actions. Adv Med Sci 2007; 52: 11-28.
[PMID: 18217386]
[13]
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: Beneficial effects of melatonin. Pharmacol Ther 2021; 224: 107825.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107825] [PMID: 33662449]
[14]
Huo X, Wang C, Yu Z, et al. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J Pineal Res 2017; 62(4): e12390.
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[15]
Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: New insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12(1): 30.
[http://dx.doi.org/10.1186/s13098-020-00537-z] [PMID: 32280378]
[16]
Juybari KB, Hosseinzadeh A, Sharifi AM. Protective effects of atorvastatin against high glucose-induced nuclear factor-κB activation in cultured C28I2 chondrocytes. J Recept Signal Transduct Res 2019; 39(1): 1-8.
[http://dx.doi.org/10.1080/10799893.2018.1557206] [PMID: 31237181]
[17]
Courties A, Gualillo O, Berenbaum F, Sellam J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis Cartilage 2015; 23(11): 1955-65.
[http://dx.doi.org/10.1016/j.joca.2015.05.016] [PMID: 26033164]
[18]
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and reactive oxygen species signaling interplays in cardiac physiology and pathologies. Antioxidants 2023; 12(2): 353.
[http://dx.doi.org/10.3390/antiox12020353] [PMID: 36829912]
[19]
Zhang Y, Wong HS. Are mitochondria the main contributor of reactive oxygen species in cells? J Exp Biol 2021; 224(5): jeb221606.
[http://dx.doi.org/10.1242/jeb.221606] [PMID: 33707189]
[20]
Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184: 114-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.019] [PMID: 35398495]
[21]
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862(4): 576-91.
[http://dx.doi.org/10.1016/j.bbadis.2016.01.003]
[22]
Hosseinzadeh A, Bagherifard A, Koosha F, et al. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307: 120866.
[http://dx.doi.org/10.1016/j.lfs.2022.120866] [PMID: 35944663]
[23]
Bahrami N, Goudarzi M, Hosseinzadeh A, Sabbagh S, Reiter RJ, Mehrzadi S. Evaluating the protective effects of melatonin on di(2-ethylhexyl) phthalate-induced testicular injury in adult mice. Biomed Pharmacother 2018; 108: 515-23.
[http://dx.doi.org/10.1016/j.biopha.2018.09.044] [PMID: 30243084]
[24]
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi-Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36(5): 777-89.
[http://dx.doi.org/10.1111/fcp.12780] [PMID: 35384044]
[25]
Rosa SC, Gonçalves J, Judas F, Mobasheri A, Lopes C, Mendes AF. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res Ther 2009; 11(3): R80.
[http://dx.doi.org/10.1186/ar2713] [PMID: 19490621]
[26]
Erten SF, Kocak A, Ozdemir I, Aydemir S, Colak A, Reeder BS. Protective effect of melatonin on experimental spinal cord ischemia. Spinal Cord 2003; 41(10): 533-8.
[http://dx.doi.org/10.1038/sj.sc.3101508] [PMID: 14504608]
[27]
Reiter R, Tan D, Rosales-Corral S, Galano A, Zhou X, Xu B. Mitochondria: Central organelles for melatonin′s antioxidant and anti-aging actions. Molecules 2018; 23(2): 509.
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303]
[28]
Suofu Y, Li W, Jean-Alphonse FG, et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci 2017; 114(38): E7997-8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[29]
Reiter R, Sharma R, Rosales-Corral S, Manucha W, Chuffa LGA, Zuccari DAPC. Melatonin and pathological cell interactions: Mitochondrial glucose processing in cancer cells. Int J Mol Sci 2021; 22(22): 12494.
[http://dx.doi.org/10.3390/ijms222212494] [PMID: 34830375]
[30]
Ahluwalia A, Brzozowska IM, Hoa N, Jones MK, Tarnawski AS. Melatonin signaling in mitochondria extends beyond neurons and neuroprotection: Implications for angiogenesis and cardio/gastroprotection. Proc Natl Acad Sci 2018; 115(9): E1942-3.
[http://dx.doi.org/10.1073/pnas.1722131115] [PMID: 29440384]
[31]
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886: 173471.
[http://dx.doi.org/10.1016/j.ejphar.2020.173471] [PMID: 32877658]
[32]
Reiter RJ, Sharma R, Rosales-Corral SA, Coto-Montes A, Boga JA, Vriend J. Advances in characterizing recently-identified molecular actions of melatonin: Clinical implications. Approach Complex Dis 2020; 2: 301-41.
[http://dx.doi.org/10.1007/978-3-030-32857-3_14]
[33]
Reiter RJ, Sharma R, Simko F, et al. Melatonin: Highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79(3): 143.
[http://dx.doi.org/10.1007/s00018-021-04102-3] [PMID: 35187603]
[34]
Kleszczyński K, Zillikens D, Fischer TW. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet rad. J Pineal Res 2016; 61(2): 187-97.
[http://dx.doi.org/10.1111/jpi.12338] [PMID: 27117941]
[35]
Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011; 2011: 1-16.
[http://dx.doi.org/10.4061/2011/326320] [PMID: 21629741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy