Title:Fabrication and Physiochemical Characterization of Zinc Oxide Nanoparticles via Citric Assisted Auto Combustion Synthesis
Volume: 10
Issue: 1
Author(s): Anuj Kumar Gond, Atendra Kumar, Himanshu Shekher*, Anees A. Ansari, K.D. Mandal, Youngil Lee and Laxman Singh*
Affiliation:
- Department of Chemistry, Veer Kunwar Singh University, Ara, Bihar, 802301, India
- Department of Chemistry, Siddharth University, Kapilvastu, Siddharth
Nagar, U.P., 272202, India
Keywords:
ZnO NPs, XRD, SEM, auto-combustion synthesis, biosensor, photocatalytic.
Abstract:
Background: There are various synthetic routes to synthesize the ZnO particle. However,
none of the routes is best suited for the synthesis of ZnO nanoparticles. Moreover, ZnO nanoparticles
have potential industrial applications.
Aims: In this research article, ZnO nanoparticles were synthesized by auto combustion route using
the low-cost reagents zinc nitrate hexahydrate and citric acid as a precursor at 90-120°C.
Objective: Herein, we have synthesized ZnO nanoparticles via auto combustion route using the
low-cost reagents zinc nitrate hexahydrate and citric acid. The current route is very simple as well
as energy-saving with the requirement of using low-cost precursor as compared to the traditional
solid-state method and multi-step sol-gel route.
Method: Citric-assisted auto-combustion synthesis was employed to fabricate the ZnO nanoparticles.
Result: The formed precursor powder was calcinated at 500°C for 5 hours in an electrical furnace.
It was found that these particles were in a single phase, and the crystallite size of the nanoparticles
was found to be in the range of 10 to 15 nm.
Conclusion: We synthesized ZnO nanoparticles at a lower temperature via the citric acid-assisted
combustion method. The thermal properties of ZnO nanoparticles were studied by TGA spectra,
representing the total weight loss of around 47.71% and their thermal stability after 900°C.