Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Protein Kinase C (PKC)-mediated TGF-β Regulation in Diabetic Neuropathy: Emphasis on Neuro-inflammation and Allodynia

Author(s): Liza Changkakoti, Jitu Mani Das, Rajiv Borah, Rajan Rajabalaya, Sheba Rani David, Ashok Kumar Balaraman, Subrata Pramanik, Pallab Kanti Haldar and Asis Bala*

Volume 24, Issue 7, 2024

Published on: 06 November, 2023

Page: [777 - 788] Pages: 12

DOI: 10.2174/0118715303262824231024104849

Price: $65

Abstract

According to the World Health Organization (WHO), diabetes has been increasing steadily over the past few decades. In developing countries, it is the cause of increased morbidity and mortality. Diabetes and its complications are associated with education, occupation, and income across all levels of socioeconomic status. Factors, such as hyperglycemia, social ignorance, lack of proper health knowledge, and late access to medical care, can worsen diabetic complications. Amongst the complications, neuropathic pain and inflammation are considered the most common causes of morbidity for common populations. This review is focused on exploring protein kinase C (PKC)-mediated TGF-β regulation in diabetic complications with particular emphasis on allodynia. The role of PKC-triggered TGF-β in diabetic neuropathy is not well explored. This review will provide a better understanding of the PKC-mediated TGF-β regulation in diabetic neuropathy with several schematic illustrations. Neuroinflammation and associated hyperalgesia and allodynia during microvascular complications in diabetes are scientifically illustrated in this review. It is hoped that this review will facilitate biomedical scientists to better understand the etiology and target drugs effectively to manage diabetes and diabetic neuropathy.

Keywords: Diabetes, diabetic complications, neuropathy, protein kinase C (PKC), transforming growth factor β (TGF-β), allodynia.

Graphical Abstract
[1]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[2]
Avignon, A.; Sultan, A. PKC-ɛ inhibition: A new therapeutic approach for diabetic complications? Diabetes Metab., 2006, 32(3), 205-213.
[http://dx.doi.org/10.1016/S1262-3636(07)70270-7] [PMID: 16799396]
[3]
Akram, R.; Anwar, H.; Javed, M.S.; Imran, A.; Rasul, A.; Malik, S.A.; Manzoor, M.; Islam, F.; Khan, I.U.; Sajid, F.; Iman, T.; Shah, M.A.; Sun, T.; Hussain, G.; Shah, M.A. Natural molecules as promising players against diabetic peripheral neuropathy: An emerging nutraceutical approach. Int. J. Food Prop., 2023, 26(1), 894-914.
[http://dx.doi.org/10.1080/10942912.2023.2189569]
[4]
Adki, K.M.; Kulkarni, Y.A. Biomarkers in diabetic neuropathy. Arch. Physiol. Biochem., 2023, 129(2), 460-475.
[http://dx.doi.org/10.1080/13813455.2020.1837183] [PMID: 33186087]
[5]
IDF Diabetes Atlas 2022 Reports 2022. Available from: https://diabetesatlas.org/2022-reports/ (Accessed on: 13 May 2023).
[6]
Mehta, K.; Behl, T.; Kumar, A.; Uddin, M.S.; Zengin, G.; Arora, S. Deciphering the neuroprotective role of glucagon-like peptide-1 agonists in diabetic neuropathy: Current perspective and future directions. Curr. Protein Pept. Sci., 2021, 22(1), 4-18.
[http://dx.doi.org/10.2174/1389203721999201208195901] [PMID: 33292149]
[7]
Kaur, P.; Kotru, S.; Singh, S.; Munshi, A. Role of miRNAs in diabetic neuropathy: Mechanisms and possible interventions. Mol. Neurobiol., 2022, 59(3), 1836-1849.
[http://dx.doi.org/10.1007/s12035-021-02662-w] [PMID: 35023058]
[8]
F Rahman S.M.; Rani, S.; Pricilla, R.; David, K. Reasons for hospitalisation among patients with diabetes in a secondary care hospital in South India: A retrospective study. Indian J. Endocrinol. Metab., 2022, 26(2), 127-132.
[http://dx.doi.org/10.4103/ijem.ijem_47_22] [PMID: 35873928]
[9]
Calcutt, N.A.; Cooper, M.E.; Kern, T.S.; Schmidt, A.M. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat. Rev. Drug Discov., 2009, 8(5), 417-430.
[http://dx.doi.org/10.1038/nrd2476] [PMID: 19404313]
[10]
Bala, A.; Matsabisa, M.G. Possible importance of Cannabis sativa L. in regulation of insulin and IL-6R/MAO-A in cancer cell progression and migration of breast cancer patients with diabetes. S. Afr. J. Sci., 2018, 114(7/8)
[http://dx.doi.org/10.17159/sajs.2018/a0279]
[11]
Naskar, S.; Mazumder, U.K.; Pramanik, G.; Gupta, M.; Suresh Kumar, R.B.; Bala, A.; Islam, A. Evaluation of antihyperglycemic activity of Cocos nucifera Linn. on streptozotocin induced type 2 diabetic rats. J. Ethnopharmacol., 2011, 138(3), 769-773.
[http://dx.doi.org/10.1016/j.jep.2011.10.021] [PMID: 22041106]
[12]
Demir, S.; Nawroth, P.P.; Herzig, S.; Üstünel, B. Emerging targets in type 2 Diabetes and diabetic complications. Adv. Sci., 2021, 8(18), 2100275.
[http://dx.doi.org/10.1002/advs.202100275] [PMID: 34319011]
[13]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[14]
Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol., 2022, 18(9), 525-539.
[http://dx.doi.org/10.1038/s41574-022-00690-7] [PMID: 35668219]
[15]
Chawla, R.; Chawla, A.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab., 2016, 20(4), 546-551.
[http://dx.doi.org/10.4103/2230-8210.183480] [PMID: 27366724]
[16]
Cuddapah, G.V.; Vallivedu Chennakesavulu, P.; Pentapurthy, P.; Vallakati, M.; Kongara, A.; Reddivari, P.; Singareddy, S.; Chandupatla, K.P.; Swamy, M. Complications in Diabetes Mellitus: Social determinants and trends. Cureus, 2022, 14(4), e24415.
[http://dx.doi.org/10.7759/cureus.24415] [PMID: 35619856]
[17]
Mohan, V.; Sandeep, S.; Deepa, R.; Shah, B.; Varghese, C. Epidemiology of type 2 diabetes: Indian scenario. Indian J. Med. Res., 2007, 125(3), 217-230.
[PMID: 17496352]
[18]
Chan, J.C.N.; Malik, V.; Jia, W.; Kadowaki, T.; Yajnik, C.S.; Yoon, K.H.; Hu, F.B. Diabetes in Asia. JAMA, 2009, 301(20), 2129-2140.
[http://dx.doi.org/10.1001/jama.2009.726] [PMID: 19470990]
[19]
Ramachandran, A.; Wan, Ma R.C.; Snehalatha, C. Diabetes in Asia. Lancet, 2010, 375(9712), 408-418.
[http://dx.doi.org/10.1016/S0140-6736(09)60937-5] [PMID: 19875164]
[20]
Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers, 2019, 5(1), 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197183]
[21]
Jensen, T.S.; Karlsson, P.; Gylfadottir, S.S.; Andersen, S.T.; Bennett, D.L.; Tankisi, H.; Finnerup, N.B.; Terkelsen, A.J.; Khan, K.; Themistocleous, A.C.; Kristensen, A.G.; Itani, M.; Sindrup, S.H.; Andersen, H.; Charles, M.; Feldman, E.L.; Callaghan, B.C. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain, 2021, 144(6), 1632-1645.
[http://dx.doi.org/10.1093/brain/awab079] [PMID: 33711103]
[22]
Pan, D.; Xu, L.; Guo, M. The role of protein kinase C in diabetic microvascular complications. Front. Endocrinol., 2022, 13, 973058.
[http://dx.doi.org/10.3389/fendo.2022.973058] [PMID: 36060954]
[23]
Dewanjee, S.; Das, S.; Das, A.K.; Bhattacharjee, N.; Dihingia, A.; Dua, T.K.; Kalita, J.; Manna, P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol., 2018, 833, 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[24]
Afrazi, S.; Esmaeili-Mahani, S.; Sheibani, V.; Abbasnejad, M. Neurosteroid allopregnanolone attenuates high glucose-induced apoptosis and prevents experimental diabetic neuropathic pain: In vitro and in vivo studies. J. Steroid Biochem. Mol. Biol., 2014, 139, 98-103.
[http://dx.doi.org/10.1016/j.jsbmb.2013.10.010] [PMID: 24176764]
[25]
Pang, L.; Lian, X.; Liu, H.; Zhang, Y.; Li, Q.; Cai, Y.; Ma, H.; Yu, X. Understanding diabetic neuropathy: Focus on oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/9524635] [PMID: 32832011]
[26]
Du, H.; Liu, Z.; Tan, X.; Ma, Y.; Gong, Q. Identification of the genome-wide expression patterns of long non-coding RNAs and mRNAs in mice with streptozotocin-induced diabetic neuropathic pain. Neuroscience, 2019, 402, 90-103.
[http://dx.doi.org/10.1016/j.neuroscience.2018.12.040] [PMID: 30599267]
[27]
Naseri, R.; Farzaei, F.; Fakhri, S.; El-Senduny, F.F.; Altouhamy, M.; Bahramsoltani, R.; Ebrahimi, F.; Rahimi, R.; Farzaei, M.H. Polyphenols for diabetes associated neuropathy: Pharmacological targets and clinical perspective. Daru, 2019, 27(2), 781-798.
[http://dx.doi.org/10.1007/s40199-019-00289-w] [PMID: 31352568]
[28]
Kishore, L.; Kaur, N.; Singh, R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology, 2018, 26(4), 993-1003.
[http://dx.doi.org/10.1007/s10787-017-0416-2] [PMID: 29159712]
[29]
Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res., 2014, 80, 21-35.
[http://dx.doi.org/10.1016/j.phrs.2013.12.005] [PMID: 24373831]
[30]
Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab., 2013, 17(1), 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[31]
Mota, R.I.; Morgan, S.E.; Bahnson, E.M. Diabetic vasculopathy: Macro and microvascular injury. Curr. Pathobiol. Rep., 2020, 8(1), 1-14.
[http://dx.doi.org/10.1007/s40139-020-00205-x] [PMID: 32655983]
[32]
Alberts, B.; Johnson, A.; Lewis, J. Molecular Biology of the Cell. In: Blood Vessels and Endothelial Cells; 4th ed.; Garland Science: New York, 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26848/
[33]
Gabella, G. Spatial lay-out of various smooth muscles. J. Smooth Muscle Res., 2021, 57(0), 19-34.
[http://dx.doi.org/10.1540/jsmr.57.19] [PMID: 34545005]
[34]
Thiriet, M. Macrocirculation. In: PanVascular Medicine; Lanzer, P., Ed.; Springer: Berlin, Heidelberg, 2014.
[http://dx.doi.org/10.1007/978-3-642-37393-0_24-1]
[35]
Richards, O.C.; Raines, S.M.; Attie, A.D. The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocr. Rev., 2010, 31(3), 343-363.
[http://dx.doi.org/10.1210/er.2009-0035] [PMID: 20164242]
[36]
Clyne, A.M. Endothelial response to glucose: Dysfunction, metabolism, and transport. Biochem. Soc. Trans., 2021, 49(1), 313-325.
[http://dx.doi.org/10.1042/BST20200611] [PMID: 33522573]
[37]
Miele, C.; Paturzo, F.; Teperino, R.; Sakane, F.; Fiory, F.; Oriente, F.; Ungaro, P.; Valentino, R.; Beguinot, F.; Formisano, P. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization. J. Biol. Chem., 2007, 282(44), 31835-31843.
[http://dx.doi.org/10.1074/jbc.M702481200] [PMID: 17675299]
[38]
Cocco, L.; Follo, M.Y.; Manzoli, L.; Suh, P.G. Phosphoinositide-specific phospholipase C in health and disease. J. Lipid Res., 2015, 56(10), 1853-1860.
[http://dx.doi.org/10.1194/jlr.R057984] [PMID: 25821234]
[39]
Shmueli, E.; Alberti, K.G.M.M.; Record, C.O. Diacylglycerol/protein kinase C signalling: A mechanism for insulin resistance? J. Intern. Med., 1993, 234(4), 397-400.
[http://dx.doi.org/10.1111/j.1365-2796.1993.tb00761.x] [PMID: 8409836]
[40]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[41]
Bala, A.; Haldar, P.K.; Kar, B.; Naskar, S.; Mazumder, U.K. Carbon tetrachloride: A hepatotoxin causes oxidative stress in murine peritoneal macrophage and peripheral blood lymphocyte cells. Immunopharmacol. Immunotoxicol., 2012, 34(1), 157-162.
[http://dx.doi.org/10.3109/08923973.2011.590498] [PMID: 21721906]
[42]
Cosentino-Gomes, D.; Rocco-Machado, N.; Meyer-Fernandes, J.R. Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci., 2012, 13(9), 10697-10721.
[http://dx.doi.org/10.3390/ijms130910697] [PMID: 23109817]
[43]
Shi, G.J.; Shi, G.R.; Zhou, J.; Zhang, W.; Gao, C.; Jiang, Y.; Zi, Z.G.; Zhao, H.; Yang, Y.; Yu, J.Q. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed. Pharmacother., 2018, 101, 510-527.
[http://dx.doi.org/10.1016/j.biopha.2018.02.105] [PMID: 29505922]
[44]
Budhiraja, S.; Singh, J. Protein kinase C beta inhibitors: A new therapeutic target for diabetic nephropathy and vascular complications. Fundam. Clin. Pharmacol., 2008, 22(3), 231-240.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00583.x] [PMID: 18485142]
[45]
Tzavlaki, K.; Moustakas, A. TGF-β signaling. Biomolecules, 2020, 10(3), 487.
[http://dx.doi.org/10.3390/biom10030487] [PMID: 32210029]
[46]
Tamayo, E.; Alvarez, P.; Merino, R. TGFβ superfamily members as regulators of B cell development and function-implications for autoimmunity. Int. J. Mol. Sci., 2018, 19(12), 3928.
[http://dx.doi.org/10.3390/ijms19123928] [PMID: 30544541]
[47]
Hata, A.; Chen, Y.G. TGF-β signaling from receptors to smads. Cold Spring Harb. Perspect. Biol., 2016, 8(9), a022061.
[http://dx.doi.org/10.1101/cshperspect.a022061] [PMID: 27449815]
[48]
Heydarpour, F.; Sajadimajd, S.; Mirzarazi, E.; Haratipour, P.; Joshi, T.; Farzaei, M.H.; Khan, H.; Echeverría, J. Involvement of TGF-β and autophagy pathways in pathogenesis of diabetes: A comprehensive review on biological and pharmacological insights. Front. Pharmacol., 2020, 11, 498758.
[http://dx.doi.org/10.3389/fphar.2020.498758] [PMID: 33041786]
[49]
Suryavanshi, S.V. Kulkarni, Y.A. NF-κβ A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[50]
Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol., 2018, 7, 81-86.
[http://dx.doi.org/10.1016/j.cotox.2017.11.002] [PMID: 29862377]
[51]
Sprague, A.H.; Khalil, R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol., 2009, 78(6), 539-552.
[http://dx.doi.org/10.1016/j.bcp.2009.04.029] [PMID: 19413999]
[52]
Mundi, S.; Massaro, M.; Scoditti, E.; Carluccio, M.A.; van Hinsbergh, V.W.M.; Iruela-Arispe, M.L.; De Caterina, R. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc. Res., 2018, 114(1), 35-52.
[http://dx.doi.org/10.1093/cvr/cvx226] [PMID: 29228169]
[53]
Mussbacher, M. Derler, M.; Basílio, J.; Schmid, J.A. NF-κB in monocytes and macrophages-an inflammatory master regulator in multitalented immune cells. Front. Immunol., 2023, 14, 1134661.
[http://dx.doi.org/10.3389/fimmu.2023.1134661] [PMID: 36911661]
[54]
Liu, T. Zhang, L; Joo, D; Sun, SC NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23]
[55]
Hernandez, G.E.; Iruela-Arispe, M.L. The many flavors of monocyte/macrophage-endothelial cell interactions. Curr. Opin. Hematol., 2020, 27(3), 181-189.
[http://dx.doi.org/10.1097/MOH.0000000000000573] [PMID: 32167947]
[56]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[57]
Tsioufis, P.; Theofilis, P.; Tsioufis, K.; Tousoulis, D. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches. Int. J. Mol. Sci., 2022, 23(24), 15937.
[http://dx.doi.org/10.3390/ijms232415937] [PMID: 36555579]
[58]
Eva, L. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron, 2017, 93(6), 1296-1313.
[http://dx.doi.org/10.1016/j.neuron.2017.02.005]
[59]
Dobretsov, M.; Romanovsky, D.; Stimers, J.R. Early diabetic neuropathy: Triggers and mechanisms. World J. Gastroenterol., 2007, 13(2), 175-191.
[http://dx.doi.org/10.3748/wjg.v13.i2.175] [PMID: 17226897]
[60]
Jean-Pascal Lefaucheur. Chapter 8 - Clinical neurophysiology of pain. Handbook of Clinical Neurology; , 2019, 161, pp. 121-148.
[http://dx.doi.org/10.1016/B978-0-444-64142-7.00045-X]
[61]
Vinik, A.I.; Newlon, P.; Milicevic, Z.; McNitt, P.; Stansberry, K.B. Diabetic neuropathies: An overview of clinical aspects. In: Diabetes Mellitus; LeRoith, D.; Taylor, SI.; Olefsky, JM., Eds.; Lippincott- Raven Publishers: Philadelphia, New-York, 1996; pp. 737-751.
[62]
Vinik, A.I.; Mehrabyan, A. Diabetic neuropathies. Med. Clin. North Am., 2004, 88(4), 947-999. [xi].
[http://dx.doi.org/10.1016/j.mcna.2004.04.009] [PMID: 15308387]
[63]
Horowitz, S.H. Diabetic neuropathy. Clin. Orthop. Relat. Res., 1993, (296), 78-85.
[PMID: 8222454]
[64]
Ellis, A.; Bennett, D.L.H. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth., 2013, 111(1), 26-37.
[http://dx.doi.org/10.1093/bja/aet128] [PMID: 23794642]
[65]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov., 2014, 13, 533-548.
[http://dx.doi.org/10.1038/nrd4334]
[66]
Fang, X.X.; Wang, H.; Song, H.L.; Wang, J.; Zhang, Z.J. Neuroinflammation involved in diabetes-related pain and itch. Front. Pharmacol., 2022, 13, 921612.
[http://dx.doi.org/10.3389/fphar.2022.921612] [PMID: 35795572]
[67]
Samad, T.A.; Moore, K.A.; Sapirstein, A.; Billet, S.; Allchorne, A.; Poole, S.; Bonventre, J.V.; Woolf, C.J. Interleukin-1β -mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 2001, 410(6827), 471-475.
[http://dx.doi.org/10.1038/35068566] [PMID: 11260714]
[68]
Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/1497449] [PMID: 34307650]
[69]
Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain, 2011, 152(3)(Suppl.), S2-S15.
[http://dx.doi.org/10.1016/j.pain.2010.09.030] [PMID: 20961685]
[70]
Liu, M.; Gao, L.; Zhang, N. Berberine reduces neuroglia activation and inflammation in streptozotocin-induced diabetic mice. Int. J. Immunopathol. Pharmacol., 2019, 33, 2058738419866379.
[http://dx.doi.org/10.1177/2058738419866379] [PMID: 31337260]
[71]
Sun, J.S.; Yang, Y.J.; Zhang, Y.Z.; Huang, W.; Li, Z.S.; Zhang, Y. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. Mol. Med. Rep., 2015, 12(2), 2677-2682.
[http://dx.doi.org/10.3892/mmr.2015.3735] [PMID: 25955348]
[72]
Xu, X.; Chen, H.; Ling, B.Y.; Xu, L.; Cao, H.; Zhang, Y.Q. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes. Neurosci. Bull., 2014, 30(1), 53-66.
[http://dx.doi.org/10.1007/s12264-013-1387-y] [PMID: 24194231]
[73]
Kawasaki, Y.; Kohno, T.; Zhuang, Z.Y.; Brenner, G.J.; Wang, H.; Van Der Meer, C.; Befort, K.; Woolf, C.J.; Ji, R.R. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J. Neurosci., 2004, 24(38), 8310-8321.
[http://dx.doi.org/10.1523/JNEUROSCI.2396-04.2004] [PMID: 15385614]
[74]
Qureshi, Z.; Ali, M.N.; Khalid, M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy. J. Diabetes Res., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/9989272] [PMID: 35127954]
[75]
Cavalli, E.; Mammana, S.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int. J. Immunopathol. Pharmacol., 2019, 33, 2058738419838383.
[http://dx.doi.org/10.1177/2058738419838383] [PMID: 30900486]
[76]
Codd, E.E.; Martinez, R.P.; Molino, L.; Rogers, K.E.; Stone, D.j.; Tallarida, R.j. Tramadol and several anticonvulsants synergize in attenuating nerve injury-induced allodynia. PAIN, 2008, 134(3), 254-262.
[http://dx.doi.org/10.1016/j.pain.2007.04.019]
[77]
Peltier, A.; Goutman, S.A.; Callaghan, B.C. Painful diabetic neuropathy. BMJ, 2014, 348(may06 1), g1799.
[http://dx.doi.org/10.1136/bmj.g1799] [PMID: 24803311]
[78]
Zilliox, L.; Russell, J.W. Treatment of diabetic sensory polyneuropathy. Curr. Treat. Options Neurol., 2011, 13(2), 143-159.
[http://dx.doi.org/10.1007/s11940-011-0113-1] [PMID: 21274758]
[79]
Schreiber, A.K.; Nones, C.F.; Reis, R.C.; Chichorro, J.G.; Cunha, J.M. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes, 2015, 6(3), 432-444.
[http://dx.doi.org/10.4239/wjd.v6.i3.432] [PMID: 25897354]
[80]
Rose, M.A.; Kam, P.C.A. Gabapentin: Pharmacology and its use in pain management. Anaesthesia, 2002, 57(5), 451-462.
[http://dx.doi.org/10.1046/j.0003-2409.2001.02399.x] [PMID: 11966555]
[81]
Gilron, I; Flatters, SJL Gabapentin and pregabalin for the treatment or neuropathic pain: A review of laboratory and clinical evidence. Pain Res Manage., 2006, 11(Suppl A), S16A-29A.
[http://dx.doi.org/10.1155/2006/651712]
[82]
Vinik, A. Clinical review: Use of antiepileptic drugs in the treatment of chronic painful diabetic neuropathy. J. Clin. Endocrinol. Metab., 2005, 90(8), 4936-4945.
[http://dx.doi.org/10.1210/jc.2004-2376] [PMID: 15899953]
[83]
Attal, N.; Cruccu, G.; Baron, R.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Nurmikko, T. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol., 2010, 17(9), 1113-e88.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02999.x] [PMID: 20402746]
[84]
Pergolizzi, J.V., Jr; Raffa, R.B.; Taylor, R., Jr; Rodriguez, G.; Nalamachu, S.; Langley, P. A review of duloxetine 60 mg once-daily dosing for the management of diabetic peripheral neuropathic pain, fibromyalgia, and chronic musculoskeletal pain due to chronic osteoarthritis pain and low back pain. Pain Pract., 2013, 13(3), 239-252.
[http://dx.doi.org/10.1111/j.1533-2500.2012.00578.x] [PMID: 22716295]
[85]
Cegielska-Perun, K. Bujalska-Zadrożny, M.; Tatarkiewicz, J.; Gąsińska, E.; Makulska-Nowak, H.E. Venlafaxine and neuropathic pain. Pharmacology, 2013, 91(1-2), 69-76.
[http://dx.doi.org/10.1159/000345035] [PMID: 23183148]
[86]
Saarto, T.; Wiffen, P.J. Antidepressants for neuropathic pain: A Cochrane review. J. Neurol. Neurosurg. Psychiatry, 2010, 81(12), 1372-1373.
[http://dx.doi.org/10.1136/jnnp.2008.144964] [PMID: 20543189]
[87]
Kremer, M.; Yalcin, I.; Goumon, Y.; Wurtz, X.; Nexon, L.; Daniel, D.; Megat, S.; Ceredig, R.A.; Ernst, C.; Turecki, G.; Chavant, V.; Théroux, J.F.; Lacaud, A.; Joganah, L.E.; Lelievre, V.; Massotte, D.; Lutz, P.E.; Gilsbach, R.; Salvat, E.; Barrot, M. A dual noradrenergic mechanism for the relief of neuropathic allodynia by the antidepressant drugs duloxetine and amitriptyline. J. Neurosci., 2018, 38(46), 9934-9954.
[http://dx.doi.org/10.1523/JNEUROSCI.1004-18.2018] [PMID: 30249798]
[88]
Angst, M.S.; Clark, J.D. Opioid-induced hyperalgesia. Anesthesiology, 2006, 104(3), 570-587.
[http://dx.doi.org/10.1097/00000542-200603000-00025] [PMID: 16508405]
[89]
Page, N.; Deluca, J.; Crowell, K. Clinical inquiry: What medications are best for diabetic neuropathic pain? J. Fam. Pract., 2012, 61(11), 691-693.
[PMID: 23256101]
[90]
Kulkantrakorn, K.; Lorsuwansiri, C.; Meesawatsom, P. 0.025% capsaicin gel for the treatment of painful diabetic neuropathy: A randomized, double-blind, crossover, placebo-controlled trial. Pain Pract., 2013, 13(6), 497-503.
[http://dx.doi.org/10.1111/papr.12013] [PMID: 23228119]
[91]
Wolff, R.F.; Bala, M.M.; Westwood, M.; Kessels, A.G.; Kleijnen, J. 5% lidocaine medicated plaster in painful diabetic peripheral neuropathy (DPN): A systematic review. Swiss Med. Wkly., 2010, 140(21-22), 297-306.
[http://dx.doi.org/10.4414/smw.2010.12995] [PMID: 20458651]
[92]
Rojewska, E.; Popiolek-Barczyk, K.; Kolosowska, N.; Piotrowska, A.; Zychowska, M.; Makuch, W.; Przewlocka, B.; Mika, J. PD98059 influences immune factors and enhances opioid analgesia in model of neuropathy. PLoS One, 2015, 10(10), e0138583.
[http://dx.doi.org/10.1371/journal.pone.0138583] [PMID: 26426693]
[93]
The efficacy of MK-8291 in participants with post-herpetic neuralgia (PHN) with allodynia (MK-8291-012). Available from: https://clinicaltrials.gov/ct2/show/NCT02336555
[94]
Statsenko, M.E.; Poletaeva, L.V.; Turkina, S.V.; Apukhtin, A.F.; Dudchenko, G.P. Mildronate effects on oxidant stress in type 2 diabetic patients with diabetic peripheral (sensomotor) neuropathy. Ter. Arkh., 2008, 80(10), 27-30.
[PMID: 19105409]
[95]
Fulas, O.A.; Laferriere, A.; Stein, R.S.; Bohle, D.S.; Coderre, T.J. Topical combination of meldonium and N-acetyl cysteine relieves allodynia in rat models of CRPS-1 and peripheral neuropathic pain by enhancing NO-mediated tissue oxygenation. J. Neurochem., 2020, 152(5), 570-584.
[http://dx.doi.org/10.1111/jnc.14943] [PMID: 31853976]
[96]
Doğrul, A.; Gül, H.; Yıldız, O.; Bilgin, F.; Güzeldemir, M.E. Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect. Neurosci. Lett., 2004, 368(1), 82-86.
[http://dx.doi.org/10.1016/j.neulet.2004.06.060] [PMID: 15342139]
[97]
Ueda, M.; Iwasaki, H.; Wang, S.; Murata, E.; Poon, K.Y.T.; Mao, J.; Martyn, J.A.J. Cannabinoid receptor type 1 antagonist, AM251, attenuates mechanical allodynia and thermal hyperalgesia after burn injury. Anesthesiology, 2014, 121(6), 1311-1319.
[http://dx.doi.org/10.1097/ALN.0000000000000422] [PMID: 25188001]
[98]
Zamfir, M.; Sharif, B.; Locke, S.; Ehrlich, A.T.; Ochandarena, N.E.; Scherrer, G.; Ribeiro-da-Silva, A.; Kieffer, B.L.; Séguéla, P. Distinct and sex-specific expression of mu opioid receptors in anterior cingulate and somatosensory S1 cortical areas. Pain, 2023, 164(4), 703-716.
[http://dx.doi.org/10.1097/j.pain.0000000000002751] [PMID: 35973045]
[99]
Cao, B.; Scherrer, G.; Chen, L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron, 2022, 110(24), 4108-4124.e6.
[http://dx.doi.org/10.1016/j.neuron.2022.09.027] [PMID: 36223767]
[100]
Tsuda, M.; Ueno, H.; Kataoka, A.; Tozaki-Saitoh, H.; Inoue, K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia, 2008, 56(4), 378-386.
[http://dx.doi.org/10.1002/glia.20623] [PMID: 18186080]
[101]
Kamei, J.; Mizoguchi, H.; Narita, M.; Tseng, L.F. Therapeutic potential of PKC inhibitors in painful diabetic neuropathy. Expert Opin. Investig. Drugs, 2001, 10(9), 1653-1664.
[http://dx.doi.org/10.1517/13543784.10.9.1653] [PMID: 11772275]
[102]
Bala, A.; Mondal, C.; Haldar, P.K.; Khandelwal, B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: Clinical efficacy of dietary antioxidants. Inflammopharmacology, 2017, 25(6), 595-607.
[http://dx.doi.org/10.1007/s10787-017-0397-1] [PMID: 28929423]
[103]
Adki, K.M.; Kulkarni, Y.A. Biomarkers in diabetic neuropathy. Arch. Physiol. Biochem., 2023, 129(2), 460-475.
[http://dx.doi.org/10.1080/13813455.2020.1837183] [PMID: 33186087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy